The present application is based on, and claims priority from, China Application Serial Number 201510947318.5, filed on Dec. 16, 2015, the disclosure of which is hereby incorporated by reference herein in its entirety.
The invention is related to a micro server, and particularly related to a micro server having satellite control modules.
The micro server is a new server utilizing common infrastructure. The micro server has many low power-consumption servers therein, and the efficiency of the aforementioned structure is better than the efficiency of a structure utilizing a few high-efficiency servers. All server mother boards of one chasis of the micro server share the power device, the internet and the remote managing system so that the power consumption and the cost of heat dissipation are reduced.
However, it is necessary that each server mother board has its own managing system for ensuring the operation of the micro server which sharing the power. Hence, there is need for the improvement of the managing system of each server mother board in the micro server to ensure the efficiency of the common infrastructure of the micro server without setting too many managing elements.
A micro server according to one embodiment of the invention includes a plurality of server board modules, and each of the server board modules includes a mother board for executing a server operation system of the server board module, a controller board plugged in the mother board so as to be electrically connected to the mother board. The controller board includes a PHY Ethernet card, a micro controller and a complex programmable logic device (CPLD). The PHY ethernet card is electrically connected to a remote managing system and used for transferring a system signal to the remote managing system so that the server board module is capable of communicating with the remote managing system. The micro controller is electrically connected to the PHY ethernet card and the mother board, and the micro controller obtains a state signal from the mother board to generate the system signal and transfers the system signal to the remote managing system via the PHY ethernet card so that the remote managing system obtains the system signal of each of the server board modules for monitoring. The CPLD is electrically connected to the mother board and the micro controller, and equips with a system timing control module for providing timing control to the mother board.
In order to make the aforementioned and other features of the present disclosure more comprehensible, several embodiments accompanied with figures are described in detail below.
The present disclosure will become more fully understood from the detailed description given herein below for illustration only, and thus are not limitative of the present disclosure, and wherein:
In the following detailed description, for purposes of explanation, numerous specific details are set forth in order to provide a thorough understanding of the disclosed embodiments. It will be apparent, however, that one or more embodiments may be practiced without these specific details. In other instances, well-known structures and devices are schematically shown in order to simplify the drawings.
Please refer to
As shown in
The mother board 122 executes the server operation system of the server board module 12. The controller board 124 includes a PHY ethernet card 1244, a micro controller 1242, and a Complex Programmable Logic Device (CPLD) 1248. The PHY ethernet card 1244 is electrically connected to a remote managing system 2. The micro controller 1242 is electrically connected to the PHY ethernet card 1244 and the mother board 122. The CPLD 1248 is electrically connected to the mother board 122 and the micro controller 1242. In one embodiment, the CPLD 1248 has a system timing control module 12482.
The PHY ethernet card 1244 transferres the system signal to the remote managing system 2 so that the server board module 12 is capable of communicating with the remote managing system 2. The micro controller 1242 obtains the mother board state signal from the mother board 122 so as to generate the system signal. For example, the mother board state signal includes parameter of the working temperature, parameters of the working voltage, parameters of the working current, parameters of other parameters, or the combination of the aforementioned parameters. The micro controller 1242 transfers the system signal via the PHY ethernet card 1244 to the remote managing system 2 so that the remote managing system 2 is capable of obtaining and monitoring the system signal of the server board module 12. In other words, the user can obtain the information corresponding to the server board module 12 or giving commands to the server board module 12 by the interface provided by the remote managing system 2. In one embodiment, the PHY ethernet card 1244 communicates with the micro controller 1242 via a Media Independent Interface (MII). The micro controller 1242 communicates with the CPLD 1248 with a 16 bit digital/analog bus in one embodiment.
The system timing control module 12482 provides timing control for the mother board 122. In one embodiment, the system timing control module 12482 provides in-phase clock signals to the micro controller 1242 and the mother board 122 simultaneously, so the micro controller 1242 and the mother board 122 are capable of performing synchronous controls or other timing operations mutually.
In another embodiment, the micro server 1 includes the remote managing system 2 therein. In the embodiment, the server board module 12, the server board module 14 and the server board module 16 are respectively electrically connected to the remote managing system 2, and the remote managing system 2 provides power and internet signal for the server board module 12, the server board module 14 and the server board module 16. In other words, the remote managing system 2 is part of the micro server 1. Please refer to
Please refer to
Please refer to
Please refer to
The temperature sensor 1245 is used for sensing the working temperature of the server board module 12 where the controller board 124 is located so as to generate the temperature sensing data, and transferring the temperature sensing data to the micro controller 1242. The temperature sensing data is, for example, the working temperatures of the units in the server board module 12. The micro controller 1242 generates the mother board state signal based on the temperature sensing data. The power monitor 1247 is used for monitoring the power distribution of the server board module 12 where the controller board 124 is located, and providing the power distribution information to the micro controller 1242. The power distribution information is, for example, the power consumed by each unit in the server board module 12. The micro controller 1242 is capable of generating the mother board state signal based on the power distribution information. The micro controller 1242 saves and refreshes the hardware configuration data in the EEPROM 1250. The lamp display module 1249 is capable of receiving the mother board state signal, and selectively display the operation status of the server operation system of the server board module 12 where the lamp display module 1249 is located based on the information in the mother board state signal. The mother board state signal may include the working temperature value of the mother board or the power state of the mother board. The micro controller 1242 communicates with the EEPROM 1250, the temperature sensor 1245, and the power monitor 1247 via a inter-integrated circuit (I2C) in one embodiment.
As above, the invention discloses a micro server. The micro server has a controller board plugged into the mother board and electrically connected to the remote managing system so as to make the controller board act as an interface of communication between the remote managing system and the mother board. Additionally, the controller board is capable of obtaining a variety of monitoring information corresponding to the mother board so that the remote managing system is capable of obtaining the corresponding information and controlling the mother board. The user may control the mother board in each micro server via the remote managing system, so there is no need to set a complicated managing element on each of the mother boards. Therefore, the cost and the system power consumption are reduced.
Number | Date | Country | Kind |
---|---|---|---|
201510947318.5 | Dec 2015 | CN | national |