The present invention relates to a micro speaker, and more particularly to a micro speaker that is able to emit sound after a signal voltage is fed in, and is also able to prevent rubbing noise from occurring, as well as enabling microminiaturization thereof.
Micro speakers are primarily used in devices able to emit sound, such as mobile devices, earphones, or speakers. Micro speakers of the prior art primarily use an internally disposed voice coil that encircles the exterior of a magnet. When a signal voltage is fed into the voice coil, the voice coil is used to cut magnetic lines of force that enables producing an applied force; the applied force then drives a diaphragm to produce up and down amplitudes of vibration, whereby the air is set in motion to emit the corresponding sound.
However, the small size of the micro speaker limits the space inside, which results in a reduced clearance between the voice coil and the magnet. Hence, rubbing between the voice coil and the magnet easily results when the voice coil is producing up and down amplitudes of vibration along the axis of the magnet, which causes a slight rubbing noise to accompany the emitted sound from the micro speaker.
Hence, the present market has proposed structures and methods to resolve the rubbing between the voice coil and the magnet, such as U.S. Pat. Nos. 8,995,704, 9,813,818, 10,003,887, 10,448,167, and 10,299,045,
The above patents primarily dispose an elastic connecting member between a voice coil and an outer casing, wherein the elastic connecting member is used to enable maintaining a clearance between the voice coil and the magnet, further preventing rubbing between the voice coil and the magnet when the voice coil is producing up and down amplitudes of vibration. Although such a method is able to effectively improve the problem of producing rubbing sounds, however, this method requires maintaining a relatively large space between the voice coil and the outer casing in order to conveniently assemble the elastic connecting member. Consequently, the size of the micro speaker is restricted, and thus incapable of being developed toward further microminiaturization.
Hence, the problem to be solved by the present invention involves providing a micro speaker capable of preventing voice coil rubbing and enables effective miniaturization thereof.
The main object of the present invention lies in providing a micro speaker, and more particularly to a micro speaker able to emit sound after a signal voltage is fed in and prevent producing rubbing noise, as well as enable miniaturization thereof.
In order to achieve the aforementioned objects, the present invention provides a micro speaker capable of preventing voice coil rubbing, comprising at least an outer casing, a diaphragm, a magnet, a voice coil, and an elastic connecting member. The center of the outer casing is provided with a holding space, which is provided with a first end and a second end corresponding thereto. The diaphragm is assembled on the first end of the holding space, and the magnet is provided with an axis and assembled on the second end of the holding space so as to be separated from the diaphragm. One end of the voice coil encircles and is positioned on the outer side of the magnet, and the other end is connected to the diaphragm. A signal voltage fed into the voice coil drives the diaphragm to extend in the direction of the axis to produce amplitudes of vibration. The elastic connecting member is connected between the voice coil and the magnet to enable maintaining a clearance therebetween, which reduces amplitudes of deflection produced along the axis while the voice coil is causing amplitudes of vibration.
In one embodiment, the elastic connecting member further comprises at least a frame and at least an elastic member, wherein the frame is used to support the voice coil, and the elastic member is connected between the frame and the magnet.
In one embodiment, the frame is further assembled from a plurality of frame mounts, each of which is separated from each other; moreover, the elastic members are respectively disposed between each of the frame mounts and the magnet.
In the embodiment, a connecting rod is further used to connect between each of the mutually separated frame mounts.
In the embodiment, the magnet assumes an oblong shape, comprising two corresponding long sides and two corresponding short sides, wherein each of the long sides and each of the short sides are adjacent to each other with an arc-shaped side formed therebetween.
Each of the frame mounts is disposed on the outer side of each of the arc-shaped sides; moreover, each of the elastic members are connected between each of the frame mounts and each of the arc-shaped sides.
In one embodiment, the frame mounts are respectively disposed on the outer sides of the two long sides and the two short sides. In addition, elastic members are respectively disposed between each of the frame mounts, each of the long sides, and each of the short sides.
In one embodiment, an attaching layer is further provided on the exterior surface of the magnet.
In the embodiment, the outer casing is further assembled from a weight bearing seat and a main casing, wherein the first end is formed on the weight bearing seat, and is used to support the weight of the diaphragm; the second end is formed on the main casing, and circumferentially located on the exterior of the voice coil. Moreover, the weight bearing seat is assembled on the upper portion of the main casing.
In the embodiment, the diaphragm and the weight bearing seat are formed as an integral body, with the diaphragm made from silicone material, wherewith an injection molding method is used to form the diaphragm on the weight bearing seat.
To enable a further understanding of said objectives and the technological methods of the invention herein, a brief description of the drawings is provided below followed by a detailed description of the preferred embodiments.
Regarding the detailed content and structural means of the present invention, please refer to the description of the diagrams as follows:
Referring to
The center of the outer casing 20 is provided with a holding space 21, the interior of which is provided with a first end 22 and a second end 23, wherein the first end 22 and the second end 22 correspond to each other. In the present embodiment, the outer casing 20 is assembled from a weight bearing seat 24 and a main casing 25, wherein the first end 22 is positioned at the weight bearing seat 24, the second end 23 is positioned at the main casing 25, and the weight bearing seat 24 is assembled on the upper portion of the main casing 25.
The diaphragm 30 is assembled on the end periphery of the first end 22 of the holding space 21. In the present embodiment, the diaphragm 30 is made from silicone material, wherewith an injection molding method is used to form an integral body with the weight bearing seat 24. The method used to form the integral body involves first placing the weight bearing seat 24 into a mold (a method that belongs to prior art, and thus not shown in the drawings), then liquid silicone material is injected into the mold. The diaphragm 30 is directly formed on the weight bearing seat 24 after the silicone material has cooled down and forms inside the mold, which enables the diaphragm 30 and the weight bearing seat 24 to be formed as an integral body.
The magnet 40 is assembled to the second end 23 of the holding space 21 and is covered by the outer casing 20. Moreover, the magnet 40 is separated from the diaphragm 30 and is provided with an axis 41, which is perpendicular to the diaphragm 30. In the present embodiment, the magnet 40 assumes an oblong shape, comprising two long sides 42 and two short sides 43, wherein each of the long sides 42 and each of the short sides 43 are correspondingly adjacent to each other. In addition, an arc-shaped side 44 is formed between each of the adjacent long sides 42 and the short sides 43. The washer 50 covers the magnet 40.
The voice coil 60 is disposed inside the holding space 21; one end of the voice coil 60 is connected to the diaphragm 30 and the other end is made to encircle the exterior of the magnet 40 and the washer 50. A clearance 61 is formed between the magnet 40 and the voiced coil 60. The voice coil 60 is wound around and formed from metal wire material such as enamel-covered wire, copper wire, aluminum wire, or copper-clad aluminum wire. Further, the two ends of the enamel-covered wire are respectively connected to an external power source (a method that belongs to prior art and thus not further detailed herein). An electric current is produced after a signal voltage is fed into the voice coil 60, and the voice coil 60 is used to cut magnetic lines of force, which further produces an applied force that drives the diaphragm 30 to extend along the axis 41, producing amplitudes of vibration that cause the diaphragm 30 to set in motion the air and emit a corresponding sound.
The elastic connecting member 70 is connected between the magnet 40 and the voice coil 60, and the elastic connecting member 70 is used to maintain the appropriate clearance 61 between the magnet 40 and the voice coil 60. The elastic connecting member 70 is assembled from at least a frame 71 and at least an elastic member 72. In the present embodiment, the frame 71 is assembled from four frame mounts 73, which are disposed so as to be separated from each other; moreover, each of the frame mounts 73 is adjacently disposed on the outer sides of each of the arc-shaped sides 44 of the magnet 40. In addition, the elastic members 72 are respectively disposed between each of the frame mounts 73 and the arc-shaped sides 44. Each of the frame mounts 73 assumes an L-shape (as shown in
Hence, after a signal voltage is fed into the voice coil 60, amplitudes of vibration are established on the magnet 40, with the elastic connecting member 70 enabling maintaining the clearance 61 between the voice coil 60 and the magnet 40, and reduce extension of the voice coil 60 along the axis 41 producing left and right deflection phenomena, further effectively preventing rubbing between the voice coil 60 and the magnet 40.
It is worth mentioning that the larger the radius of each of the arc-shaped sides 44 of the magnet 40, the larger the clearance 61 between each of the arc-shaped sides 44 and the frame mounts 73, accordingly, the sized of the elastic members 72 is correspondingly larger. Hence, in the present invention, the clearance 61 between the arc-shaped sides 44 and the frame mounts 73 is controlled by controlling the radius of the arc-shaped sides 44, further, the shape of the elastic members 72 is effectively modified according to the size of the amplitudes of vibration, thereby enabling effectively maintaining the clearance 61 between the voice coil 60 and the magnet 40. In addition, reducing the distance between the outer casing 20 and the voice coil 60 enables achieving an effective reduction in the size of the entire micro speaker 10.
Referring to
Referring to
In summary, referring to
In conclusion, the present invention clearly complies with the essential elements as required for a new invention patent, thus, a new patent application is proposed herein. It is of course to be understood that the embodiments described herein are merely illustrative of the principles of the invention and that a wide variety of modifications thereto may be effected by persons skilled in the art without departing from the spirit and scope of the invention as set forth in the following claims.
It is of course to be understood that the embodiments described herein are merely illustrative of the principles of the invention and that a wide variety of modifications thereto may be effected by persons skilled in the art without departing from the spirit and scope of the invention as set forth in the following claims.
Number | Date | Country | Kind |
---|---|---|---|
109115282 | May 2020 | TW | national |
Number | Name | Date | Kind |
---|---|---|---|
8995704 | Huang | Mar 2015 | B2 |
9813818 | Wu et al. | Nov 2017 | B2 |
10003887 | Linghu et al. | Jun 2018 | B2 |
10299045 | Xiao et al. | May 2019 | B2 |
10448167 | Xiao et al. | Oct 2019 | B2 |
20190230441 | Xiao | Jul 2019 | A1 |
Number | Date | Country | |
---|---|---|---|
20210352411 A1 | Nov 2021 | US |