The present disclosure relates to the art of speakers, particularly to a micro-speaker used in an electronic device.
Micro-speakers have been widely used in portable electronic devices, such as cellular phones, notebooks, and so on. With the continuing development of the portable electronic devices, people request for more and more functions with audible sensations, which brings a rapid development of the technologies of micro-speakers.
A related micro-speaker includes a frame, a vibrating unit and a magnetic circuit unit attached to the frame. The vibrating unit includes a diaphragm attached to the frame. The magnetic circuit unit includes a yoke positioned to the frame and a magnet disposed in the yoke.
The frame is used to accommodate the magnetic circuit unit and support the diaphragm. However, the frame of the related micro-speaker takes a lot of space, which makes the magnetic circuit unit have a small size and the micro-speaker have a low sensitivity.
Therefore, it is desirable to provide a micro-speaker which can overcome the above-mentioned problems.
Many aspects of the embodiment can be better understood with reference to the following drawings. The components in the drawings are not necessarily drawn to scale, the emphasis instead being placed upon clearly illustrating the principles of the present disclosure. Moreover, in the drawings, like reference numerals designate corresponding parts throughout the several views.
Referring to
The magnetic circuit unit 2 includes a base board 21, a first magnetic conduction member 221 disposed at a center portion of the base board 21, a second magnetic conduction member 222 disposed at a periphery portion of the base board 21 for forming a magnetic gap with the first magnetic conduction member 221. At least one of the first and second magnetic conduction members 221,222 is a permanent magnet. In this embodiment, four separated second magnetic conduction members 222 are provided to surround the first magnetic conduction member 221. Each two adjacent second magnetic conduction members 222 forms a gap 223 therebetween. In other embodiment, the amount of the second magnetic conduction members 222 is variable corresponding to actual requirements, and the second magnetic conduction member 222 may be an integrated ring-shaped configuration without gaps. The voice coil 12 has one end accommodated in the magnetic gap and the other end connected with the diaphragm 11. Optionally, the voice coil 12 may be connected to the diaphragm 11 via a medium which is directly connected with the diaphragm 11. In other words, the voice coil 12 may be connected to the diaphragm 11 directly or indirectly. Therefore, the term “connect” here means to connect something to another via a medium or to connect something to another directly without any medium.
In this embodiment, the magnetic circuit unit 2 further includes a first pole plate 231 attached on a top face of the first magnetic conduction member 221, a ring-shaped second pole plate 232 attached on top faces of the second magnetic conduction member 222, and a gasket 24 attached on the second pole plate 232. The shape of the second pole plate 232 is not restricted to the ring as described in this embodiment. Alternatively, the second pole plate 232 may be a rectangular plate corresponding to each of the second magnetic conduction members 222. While electrified, the voice coil 12 drives the diaphragm 11 to vibrate along a vibration direction by the interaction between the voice coil 12 and the magnetic circuit unit 2. Generally, the vibration direction is perpendicular to the base board 21.
In this embodiment, the magnetic circuit unit 2 includes a gasket 24 attached on the second pole plate 232. The vibrating unit 1 is mounted to the magnetic circuit unit 2 with the position portion 1113 of the diaphragm 11 positioned on a top face of the gasket 24. The gasket 24 has a top face higher than the first pole plate 232 so that a greater vibration space is formed for the diaphragm 11. In fact, the gasket 24 is an optional element for increasing the vibration space of the diaphragm 11. It is also feasible that the diaphragm 11 is directly connected to the magnetic circuit unit 2 without the gasket 24, like the second embodiment which will be described in later paragraph. Again, the term “connect” here means to connect something to another via a medium or to connect something to another directly without any medium.
The magnetic circuit unit 2 further includes a pair of slots 241 communicating with outside of the micro-speaker for the terminals 121 of the voice coil 12 passing through. In this embodiment, the slot 241 is depressed from a top face of the gasket. The terminals 121 are disposed between the curved portion 1121 and the second pole plate 232 and respectively extend from the vibration space to outside of the micro-speaker 10 via the slot 241 to electrically connect to an outer circuit. The terminals 121 do not touch the diaphragm 11, which protects the terminals 121 from breaking up while the diaphragm 11 vibrating. Optionally, the slot 241 could be a hole through the gasket 24. The shapes and locations in the gasket 24 of the slots 241 are optional.
The curved portion 1112 of the diaphragm 11 is disposed above the second pole plate 232. A projection of the diaphragm 11 on the base board 21 along the vibration direction of the diaphragm 11 is within an outline of the base board 21. Compared with the related art, the diaphragm is supported by the magnetic circuit unit, and the voice coil is accommodated in the space formed by the diaphragm and the magnetic unit, which configuration omits the frame used in related art. In addition, if provided with a same size to the related art, the magnetic circuit unit could be enlarged for providing improved performance.
Optionally, the micro-speaker 10 further includes a front cover 3 attached to the vibrating unit 1 and the magnetic circuit unit 2. The front cover 3 has an acoustic hole 31 for emitting sounds generated by the diaphragm 11. In addition, the front cover 3 presses on the position portion 1113 of the diaphragm 11 for fixing the diaphragm 11 on the magnetic circuit unit 2.
Referring to
Referring to
Referring to
According to the embodiments described above, the position portion of diaphragm could be directly or indirectly connected to the outer pole plate with a top face of the outer pole plate higher than the inner pole plate. The position portion of diaphragm also could be indirectly connected to the outer pole plate via a gasket with a top face of the gasket higher than that of the inner pole plate. A greater space for vibration of the diaphragm is optional and preferable. A projection area of the diaphragm along the vibration direction on the bottom wall is not larger than the bottom wall, by which the micro-speaker is provided with smaller size, or is provided with enlarged magnetic circuit unit. Sound quality of the micro-speaker having such a configuration is accordingly improved. The slots could be disposed in the gasket, or be disposed in the second pole plate while the gasket is omitted, by which the terminals of the voice coil could extend to outside of the micro-speaker without touching the diaphragm. The terminals of the voice coil are well protected from damage during the vibration of the diaphragm.
The embodiments described above may be summarized as follows. A micro-speaker includes a magnetic circuit unit, a diaphragm connected to the magnetic circuit unit, and a voice coil connected to the diaphragm for driving the diaphragm to vibrate along a vibration direction and including a pair of terminals. The magnetic circuit unit includes an inner part, an outer part, and a magnetic gap formed between the inner part and the outer part. The voice coil is partially received and capable of vibrating in the magnetic gap. One of the inner part and the outer part of the magnetic circuit unit is a magnet. An edge of the diaphragm is connected to the outer part of the magnetic circuit unit. By virtue of such a configuration, a projection of the diaphragm along the vibration direction on the magnetic circuit unit is located within the boundary of the magnetic circuit unit, thereby omitting a frame used in the related art for supporting the diaphragm and the magnetic circuit unit. As the frame used in the related art is omitted by this disclosure, an outer side of the micro-speaker is formed by the outer part of the magnetic circuit unit and the edge of the diaphragm. For enlarging a vibration space of the diaphragm, the outer part is higher than the inner part, or the diaphragm connects to the outer part via a gasket attaching to the top of the outer part. The magnetic circuit unit further includes a pair of slots for the terminals passing through. The slots could be disposed in the gasket, or be disposed in the outer part while the gasket is omitted, by which the terminals of the voice coil could extend to outside of the micro-speaker without touching the diaphragm. The terminals of the voice coil are well protected from damage during the vibration of the diaphragm.
It will be understood that the above-mentioned particular embodiments are shown and described by way of illustration only. The principles and the features of the present disclosure may be employed in various and numerous embodiments thereof without departing from the scope of the disclosure as claimed. The above-described embodiments illustrate the scope of the disclosure but do not restrict the scope of the disclosure.
Number | Date | Country | Kind |
---|---|---|---|
201220427579.6 | Aug 2012 | CN | national |