The present invention relates to the field of electroacoustic transducers, more particularly to a micro speaker.
The normal or typical method to detect the amplitude of the diaphragm of a speaker is linear estimation method. This type of method cannot detect the real-time amplitude of the diaphragm correctly.
The present invention provides an improved method or solution to detect the real-time amplitude of the diaphragm of a micro speaker.
Many aspects of the embodiment can be better understood with reference to the following drawings. The components in the drawings are not necessarily drawn to scale, the emphasis instead being placed upon clearly illustrating the principles of the present disclosure. Moreover, in the drawings, like reference numerals designate corresponding parts throughout the several views.
The present invention will hereinafter be described in detail with reference to an exemplary embodiment. To make the technical problems to be solved, technical solutions and beneficial effects of present disclosure more apparent, the present disclosure is described in further detail together with the Figs. and the embodiment. It should be understood the specific embodiment described hereby is only to explain this disclosure, not intended to limit this disclosure.
Referring to
The conductive front cover 20 includes a plurality of units being isolated from each other.
The vibration system 40 includes a diaphragm 41 and a voice coil 42 driving the diaphragm 41 to generate sounds. The diaphragm 41 includes a conductive dome 411 and a suspension 412 surrounding the conductive dome 411. The conductive dome 411 includes a plurality of units corresponding to the units of the conductive front cover 20.
The magnetic circuit system 50 includes a lower plate 51, a first magnetic part 51 mounted on the lower plate 50, and a second magnetic part 53 located on the lower plate 50. At least one of the first and second magnetic parts 52, 53 is a permanent magnet. When one of the first and second magnetic parts 52, 53 is a permanent magnet, the other is a permanent magnet, or is a magnetic conduction component. The second magnetic part 53 surrounds and keeps a distance from the first magnetic part 52 thereby forming a magnetic gap 55 therebetween. The voice coil 42 is partially received in the magnetic gap 55. The magnetic circuit system 50 further includes a pole plate 54 attached to the first magnetic part 52. The lower plate 51 is not restricted to the structure shown in
A plurality of capacitors is formed between the units of the conductive front cover 20 and the units of the conductive dome 411. In this embodiment, the conductive dome 411 could be an aluminum foil dome or a compound aluminum foil dome. In fact, the conductive dome 411 could be a metallic dome, a multi-layer dome having a metallic layer, or a compound dome having conductivity. The conductive front cover 20 could be a metallic cover located above or below the conductive dome 411, or be a non-conductive member with a conductive layer combined therewith, or a non-conductive member with a conductive layer formed by LDS, or be a non-conductive member with a flexible printed circuit attached thereto. In fact, any configuration of the conductive front cover is feasible, as long as the front cover forms a capacitor with the conductive dome.
When the diaphragm 41 vibrates, the conductive dome 411 will move synchronously. Accordingly, distances between the units of the conductive front cover 20 and the units of the conductive dome 411 are changed. The values of the capacitors formed by the units of the conductive front cover 20 and the units of the conductive dome 411 are thereby changed. Electrical signals outputted by the capacitor reflect the real-time amplitude of the diaphragm 41. In this embodiment, the amount of the units of the conductive front cover 20 is four, and the amount of the conductive dome 411 is four. Accordingly, four capacitors are thereby formed. The four units are respectively electrically connected to four conductive pads 412d located at 4 arc sides 412c (referring to
Referring to
The conductive front cover 20 includes a lead wire 201 for outputting electrical signals from the conductive front cover 20. The lead wire 201 could be a conductive wire or patterns formed on a substrate.
By virtue of the configuration described above, the real-time amplitude of the diaphragm could be correctly detected.
It is to be understood, however, that even though numerous characteristics and advantages of the present embodiments have been set forth in the foregoing description, together with details of the structures and functions of the embodiments, the disclosure is illustrative only, and changes may be made in detail, especially in matters of shape, size, and arrangement of parts within the principles of the invention to the full extent indicated by the broad general meaning of the terms in which the appended claims are expressed.
Number | Date | Country | Kind |
---|---|---|---|
201520518127.2 | Jul 2015 | CN | national |