Micro-spiral implantation device

Information

  • Patent Grant
  • 9198665
  • Patent Number
    9,198,665
  • Date Filed
    Friday, October 28, 2011
    12 years ago
  • Date Issued
    Tuesday, December 1, 2015
    8 years ago
Abstract
The invention relates to a device for the implantation of microcoils into body cavities and blood vessels, in particular aneurysms, with said microcoils comprising wires forming a plurality of windings, at least one microcoil serving as occlusion helix for the occlusion of the body cavity or blood vessel, and the device consisting of a catheter, one or several microcoils movably arranged in longitudinal direction within the catheter and at least one securing means passing at least partially through the lumen of the occlusion helix, with said securing means being fixed in its end areas inside the microcoils. Such a fixation of the securing means is achieved in at least one end area by providing a frictional connection with the microcoil in such a manner that this connection is detachable from the microcoil when a certain tensile force acting on the securing means is exceeded.
Description

The invention relates to a device for the implantation of microcoils into body cavities and blood vessels, in particular aneurysms, with the microcoils comprising wires forming a plurality of windings, at least one microcoil serving as occlusion helix for the occlusion of the body cavity or blood vessel, and the device consisting of a catheter, one or several microcoils movably arranged in longitudinal direction within the catheter and at least one securing means passing at least partially through the lumen of the occlusion helix, with the securing means being fixed in its end areas inside the microcoils. Furthermore, the invention relates to an occlusion helix to be used in connection with the aforedescribed device.


The use of endovascular techniques for the occlusion of body cavities or vessels such as arteries, veins, fallopian tubes or vascular deformities (for example, vascular aneurysms) is known in the art. In this case, the occlusion helix is usually introduced by means of an endovascular insertion wire through a catheter into the cavity to be occluded and deposited therein.


Before placement may commence the occlusion helixes are maneuvered with the help of the catheter through the blood vessel system and, at the target site, advanced out of the catheter and into the cavity to be occluded. Ideally, the separation/severance of the helix follows these steps. In the event of a wrong placement of the occlusion helix or if too large an occlusion helix has been selected for the area to be occluded the helix must then be repositioned or completely retracted into the catheter to subsequently enable such an occlusion helix to be correctly positioned or a correctly sized helix to be placed in position. Maneuvers of this kind involve risks in that parts of the helix are pulled apart and elongated due to the tensile or torsional stresses applied, and in this way become plastically deformed irreversibly, are torn off or broken which may give rise to life-threatening embolism.


To minimize this danger it has been known, inter alia from the European Patent Specification EP 0 792 623 B1, to provide for a polymeric, non-extensible element passing through the lumen of the occlusion helix, the element being permanently attached to the occlusion helix at two places at least. Such a design enables an occlusion helix to be repositioned or retracted into the catheter in such a manner that it is not pulled apart and elongated so that an irreversible deformation can be avoided.


However, this prior-art technique has the disadvantage in that the polymer thread may suddenly break in the event that too high a retraction force is exerted. In such a case the entire tensile load suddenly acts on the occlusion helix itself which may cause not only deformation but may even lead to occlusion helix breakage. Since such a break of the polymer thread may occur all of a sudden the detrimental effects caused in the blood vessel may be considerable and can hardly be controlled.


In view of the problems described above it is therefore the object of the invention to provide a device for the implantation of occlusion helixes that permit a higher degree of safety to be achieved for patients when occlusion helixes are inserted and placed than can be brought about by prior-art means.


According to the invention this objective is reached by providing a device of the kind first mentioned above wherein, in order to achieve a frictional connection, the securing means is fixed in the a microcoil at least in one end area in such a manner that this connection is detachable from the microcoil when a certain tensile force acting on the securing means is exceeded.


By providing only a frictional but not a permanent connection in one end area of the securing means it is ensured that the securing means in this end area is retained in the microcoil by means of frictional forces only. As is doubtlessly possible without difficulty for persons skilled in the art the frictional connection can be designed to involve frictional forces lower than the pull force that must act on the securing means in order to bring about a failure or breakage. On the other hand, the frictional force must be set high enough to enable a retraction and repositioning of the occlusion helix to be performed under normal conditions without problems. In the event the tensile force increases to such an extent that the securing means must be expected to break, the securing means is released at its point of attachment within the microcoil and pulls out of the same so that the frictional connection becomes detached and a failure/breakage of the securing means is avoided. Moreover, the frictional connection will not become detached abruptly as in the case of a failure of the securing means but gradually so that no sudden forces are exerted and permitted to cause negative effects as may be encountered as described with design configurations provided for by prior-art methods. The implantation device provided for by the present invention will cause an “overload slipping clutch” effect.


The frictional connection between the securing means and a microcoil may be established by various methods. One possible design method provides for the securing means to extend between individual or several windings of a microcoil in such a manner that it becomes clamped between the windings. In this case the securing means extends through several gaps between the windings of a microcoil. The strength of the frictional connection can be adjusted via the number of the clamping instances in the gaps between windings provided for the securing means. The securing means in this case may be clamped between the windings on opposites sides of the microcoil resulting in the securing means to cross the microcoil lumen several times in this end area, but may as well extend through the windings of the microcoil on one side only. Another conceivable method of bringing about the frictional connection also provides for the securing means to be wrapped in its end area once or several times around the wire forming the windings of the microcoil so as to produce loops so to speak around the wire forming the microcoil.


Basically, the microcoil to which the securing means is attached may be the occlusion helix itself or microcoils connected to the occlusion helix. In the latter case, the securing means is only indirectly attached to the occlusion helix which offers advantages in that this embodiment is particularly cost effective because customary occlusion helixes may be used for its manufacture. Microcoils attached to the securing means may be inserted into the occlusion helix with the help of customary methods. To connect the microcoil to the occlusion helix methods sufficiently known to persons skilled in the art are suited such as welding, soldering, bonding or mechanical joining processes. Typically, a smaller microcoil is inserted into the occlusion helix both on the distal and on the proximal end with the securing means being attached via the microcoils so inserted.


In accordance with such a conceivable embodiment of the invention at least one additional microcoil is placed in a microcoil serving as occlusion helix, with the outside diameter of the former microcoil corresponding to the inside diameter of the occlusion helix, and the securing means being clamped in at least one end area between the windings of the inner microcoil and the windings of the occlusion helix to enable a frictional connection to be established in this way. An inner microcoil placed in the proximal area may at the same time serve as severance element for the electrolytic detachment of the occlusion helix. The method of electrolytic severance of occlusion helixes is sufficiently known to competent persons skilled in the art and offers many advantages in terms of practicability, safety and cost-effectiveness over other techniques known from prior-art and aimed at separating occlusion helixes. For this purpose, one or several separately spaced electrolytically corrodible locations are provided in the device, expediently within the occlusion helix, with the locations in conjunction with an electrically insulating catheter and a voltage source as well as a cathode usually is positioned on the body surface permitting detachment or severance by electrolytic corrosion. The occlusion helix in this case serves as anode. Aside from this, also prior-art devices are known which provide for the detachment point being arranged in the guide wire.


It is particularly expedient if the occlusion helix, as is known from DE 100 10 840 A1, has several electrolytically corrodible locations, with a securing means being arranged in each segment of the occlusion helix situated between these locations, the securing means preferably extending from one end to the other end of each segment. This embodiment enables the placement of variably sizable lengths of occlusion helixes and at the same time ensures that each individual segment arranged between the electrolytically corrodible points is secured so that a maximum degree of safety is achieved with respect to pre-venting the occlusion helix from being torn off.


Aside from the possibility to clamp the securing means between the windings of the occlusion means and the windings of a microcoil arranged inside the occlusion helix there is also an alternative wherein a thickening element is provided in the end area of the occlusion helix, the outside diameter of which corresponds to the inside diameter of the occlusion helix, and the securing means is clamped between the windings of the occlusion helix and the thickening element. A variety of shapes are conceivable for such a thickening element to be used for the fixation of the securing element with the help of a frictional connection by way of a kind of plug inserted into the occlusion helix.


To bring about the, overload slipping clutch” effect as provided for by the invention it will be sufficient to attach the securing means in one of its end areas to a microcoil by means of a frictional connection whereas the securing means in its other end area is permanently connected to a microcoil. Since from a manufacturing point of view a permanent connection between securing means and microcoil can be produced more easily such a solution is preferred wherein the securing means may be permanently attached both at the proximal and at the distal end of a microcoil. The attachment at the distal end in this case will be less problematic due to manufacturing reasons. It is, of course, also possible to attach the securing means in a microcoil in both end areas by means of a frictional connection so that the securing means can be detached from the microcoil both proximally as well as distally if the pull force acting on the device exceeds a certain limit.


To establish a permanent connection between securing means and microcoil customary methods known from prior-art techniques can be applied such as, for example, gluing, fusing or soldering, depending on the material employed for the securing means. Another way of fixing the securing means at the distal end is to attach it to a thickening element located at the distal end, the thickening element being arranged distally in the microcoil and designed to prevent the securing means from sliding through the microcoil by providing for the diameter of the thickening element to be greater than the inner diameter of the microcoil. The thickening element may, for example, have the form of a sphere or ball. In this manner, a detachment of the securing means from the distal end is prevented without having established a direct, permanent connection between microcoil and securing means.


Moreover, optional combinations of conceivable frictional and permanent connections at the proximal and distal end are possible in the framework of the invention.


As per a particularly preferred embodiment the securing means is a polymer thread or a polymer thread bundle. Such a polymer thread has adequate flexibility so that it can be passed through the gaps between the windings of a microcoil or around the windings of a microcoil. What is more, there are almost no limits to design such a polymer thread to be as thin as required for a given use which makes it possible for the securing means to be used with any conceivable occlusion helixes, in particular those used for intracranial applications. Due to the fact that the gaps between windings of a microcoil are in the range of just 0.008 and 0.01 mm it is an absolute must to provide for securing means that are designed to be as thin as possible.


As polymers numerous biocompatible materials may be employed such as, for example, polyesters, i.e. Dacron, polyamides, in particular nylon, polyolefins, polypropylenes, polybutylenes etc. Another possibility in this context is to incorporate individual metal fibers into the polymer thread with a view to increasing the breaking strength in this manner. Although it is preferred to use polymer threads as securing means the scope of the present invention does by no means exclude the use of other securing means, in particular those on metal basis.


For the production of the polymer threads the use of polyamides, particularly nylon, has turned out to offer special advantages. When using polymer threads as securing means an additional effect may achieved if the polymer threads have thrombogeneous properties. The provision of thrombogeneous threads in occlusion means is basically known in the framework of prior-art techniques, for example from the European Patent Specification EP 0 800 791 A1 or the U.S. Pat. No. 5,382,259. Fibers having a thrombogeneous effect promote the development of thrombi in the body cavity to be occluded, particularly in aneurysms, and in this way make sure the aneurysm can be effectively occluded. A further improvement can be achieved by coating the polymer thread or the securing means and/or the occlusion helix with collagen.


To enable the polymer thread to produce the desired effect it is considered expedient if it projects outwardly from the occlusion helix at one or several locations. The ends of the polymer thread may project from the occlusion helix especially if the polymer threads are clamped in the end area between the windings of the occlusion helix. If the polymer thread extends several times to and fro between the windings several locations will be created in this way where the polymer thread projects from the microcoil which results in the thrombogeneous effect to increase.


Aside from the provision of locations in the end area of the occlusion helix where the polymer thread projects outwardly from it, it is also possible for the polymer thread to project outwardly from the occlusion helix by producing loops at one or several locations between the proximal and distal end of the occlusion helix. Such a loop may extend through the gap between two windings or may also wrap around one or several windings. It is basically possible for the polymer thread to partly project outwardly along the entire length of the occlusion helix and the polymer thread so that it can effectively produce its thrombogeneous effect in this manner. To rule out that such a loop is drawn back into the lumen of the microcoil as soon as a tensile force is exerted on it, it is considered expedient to additionally wrap the polymer thread, adjacent to the loops, around individual windings of the occlusion helix and in this way further secure the position of the loop. Accordingly, the polymer thread may not only fulfill its inventive purpose as securing means but produce a thrombogeneous effect as well.


The positions of the polymer threads are further secured in that the threads, in their end area, extend through the occlusion helix and are appropriately clamped between the windings thereof. The fixation of polymer threads capable of producing a thrombogeneous effect is of special significance because polymer threads that have detached may cause the formation of thrombi in undesirable places and, besides, are difficult to locate. Naturally, the development of thrombi in important blood vessels involves grave health risks for the patients concerned.


Typically, a polymer thread consists of individual fibers which are spun or twisted together. To bring about the thrombogeneous effect it will, therefore, be sufficient if only some of the fibers of a polymer thread project outwardly from the occlusion helix whereas other fibers practically over their entire length extend through the lumen of the occlusion helix to fulfill their inventive purpose as securing means. Individual fibers shorter than the polymer thread itself may also be incorporated into the polymer thread, with the ends of the shorter fibers projecting outwardly from the occlusion helix. In the event individual fibers are available in sufficient number the occlusion means may be provided with outwardly projecting thrombogeneous fibers practically along its entire length. The thrombogeneous fibers in this case as well are secured and fixed in place by passing them through the gaps between the windings of the occlusion helix.


Individual fibers projecting outwardly from the occlusion helix may also be stuck or fused onto the securing means instead of being spun into the polymer thread which serves as securing means. Basically, this may also be done in case the securing means, for example, consists of a metal thread instead of a polymer thread. To enable fibers to be fused it is considered expedient to use for the fibers a thermoplastic material such as polyamides.


Preferably, the securing means of the device according to the invention is a little longer than the particular portion of the microcoil along which it extends. The length of the securing means established in this manner results in a less rigid arrangement in spite of the attachment or fixation inside the microcoil so that in the absence of external forces being exerted the securing means in the microcoil is not subjected to tensile stresses and the flexibility of the microcoil is not restricted. The securing means may as well extend over the entire length of the occlusion helix from the proximal to the distal end without having to make sacrifices in movability and flexibility so that in this way the entire occlusion helix can be secured by preventing it from being torn off. Since the distal tip of an occlusion helix is subjected to particularly high stresses when the helix is placed into a blood vessel the securing means should in fact extend up to the distal tip section of the occlusion helix.


Due to the low traumatizing risks involved platinum and platinum alloys, in particular platinum-iridium alloys, have proven their worth in the manufacture of microcoils and occlusion helixes. The occlusion helix may also be preformed into a superimposed structure which it only assumes in the aneurysm after it has been released from the catheter. In this way the aneurysm is filled up particularly effectively. Preferably, an insertion aid in the form of a guide wire is attached proximally to the occlusion helix.


Aside from a device for the implantation of microcoils into body cavities and blood vessels the invention also relates to the occlusion helix itself which is used in conjunction with the inventive device.





The invention is now described in detail as follows with reference being made to the figures showing the respective embodiments.



FIG. 1 is a longitudinal section of an inventive device (without catheter) as side view showing the proximal and distal area in accordance with a first embodiment of the invention;



FIG. 2 is a longitudinal section of an inventive device (without catheter) as side view showing the proximal and distal area in accordance with a second embodiment of the invention;



FIG. 3 is a longitudinal section of an inventive device (without catheter, distal tip and severance element) as side view showing the proximal and distal area in accordance with a third embodiment of the invention; and



FIG. 4 is a longitudinal section of an inventive device (without catheter, distal tip and severance element) as side view showing the proximal and distal area in accordance with a fourth embodiment of the invention.





From FIG. 1 the proximal area 1 and the distal area 2 of an occlusion helix 3 can be seen shown as a longitudinal section. The occlusion helix 3 shown here consists of a wire comprising a plurality of windings 4. The distal tip 5 of the occlusion helix 3 is rounded with a view to minimizing aneurysm traumatizing risks. Proximally to the occlusion helix 3 there is a severance element 6 which extends through a microcoil 7 additionally incorporated into the occlusion helix 3. The connection between the additional microcoil 7 and the occlusion helix 3 and between severance element 6 and additional microcoil 7 is made by providing joining points 8, for which purpose various techniques may be employed such as soldering, welding, bonding or mechanical joining methods. The severance element 6 is designed so as to be electrolytically corrodible to enable the occlusion helix 3 by applying a voltage to be released and placed into the aneurysm.


A polymer thread extends through the lumen 9 of the occlusion helix 3 in longitudinal direction and serves as securing means 10, with the thread extending to and fro between the windings 4 of the occlusion helix 3 in several places both in the proximal and in the distal end areas in such a manner that it is secured within the occlusion helix 3 by means of a frictional connection. However, in the event a certain pull force is exceeded the polymer thread 10 may slip out of the windings 4. The force to be overcome to bring about this slipping movement may be adjusted by way of the number of runs of the polymer thread 10 provided between the individual windings 4 of the occlusion helix 3. The maximum tensile or pull force of course increases if the polymer thread 10 extends through the windings 4 more frequently. Moreover, the polymer thread 10 in its end areas projects from the occlusion helix 3 several times which enables it to produce a thrombogeneous effect.



FIG. 2 shows an alternative embodiment of the invention, wherein both in the proximal area 1 and in the distal area 2 of the occlusion helix 3 an additional microcoil 11, 12 has been incorporated, the outer diameter of which corresponding to the inner diameter of the occlusion helix 3. The inner microcoils 11, 12 may be threaded into the occlusion helix 3 and secured by techniques such as laser welding, soldering or bonding to the occlusion helix 3. The polymer thread serving as securing means 10 is clamped both in the distal and in the proximal area between the windings of the inner microcoil 11, 12 and the windings 4 of the occlusion helix 3 and in this manner secured and fixed with the help of a frictional connection. In this case the polymer thread 10 does not project outwardly from the occlusion helix 3 so that an additional thrombogeneous effect cannot be produced. When making use of additional microcoils 11, 12 it is, of course, also possible to provide for an arrangement wherein the polymer thread 10 projects from occlusion helix 3. Furthermore, it is also possible for the inner microcoil 11, 12 to be configured in such a manner that it is connected both with the polymer thread 10 and the severance element 6 by combining the inner microcoils 7 and 11 and 7 and 12.


In accordance with a third embodiment of the invention as illustrated in FIG. 3 the securing means 10 extends through the lumen 9 both in the proximal area 1 and in the distal area 2 of the occlusion helix 3. To enable the inventive effect to be achieved the securing means 10 is secured in the occlusion helix 3 in the proximal and/or distal end area by way of a frictional connection. Moreover, around the securing means 10 individual, shorter polymer threads 13 are wound, the ends of which are permitted to outwardly project from the occlusion helix 3. The projecting polymer threads 13 serve the purpose of bringing about a thrombogeneous effect within the body cavities to be occluded, in particular in aneurysms. In the end areas the polymer threads 13 extend through the windings 4 of the occlusion helix 3 so that they become clamped between the windings 4 and in this way are fixed and secured.


Advantageously, the polymer threads 13 are additionally connected with the securing means 10 in that they are heated up together with the securing means 10 which causes softening of the polymer threads 13 and/or the securing means 10, which may also be a polymer thread, so that a bonding effect finally occurs. There is another possibility of fixing the polymer threads 13 to the securing means 10 in that the securing means 10 is provided with an adhesive coating. For purposes of clarity, the polymer threads 13 in FIG. 3 are shown to merely wrap around the securing means 10 with a permanent fixation not having been illustrated.


As has been shown in FIG. 4, in a further embodiment as well the securing means 10 extends through the lumen 9 of the occlusion means 3 between the proximal area 1 and the distal area 2. For the purpose of producing the inventive effect the securing means 10 is frictionally connected with the occlusion helix 3 in at least one end area. In this case the securing means 10 is a polymer thread which consists of individual fibers. Here, some of the fibers extend virtually over their entire length through the lumen 9 of the occlusion helix 3, whereas other fibers 14 are shorter than the overall length of the securing means 10, with the ends of the other fibers projecting outwardly from the occlusion helix 3. The projecting fibers 14 also serve the purpose of achieving a thrombogeneous effect. The fixation of the thrombogeneous fibers 14 is brought about by passing them through the windings 4 of the occlusion helix 3 such that the fibers 14 in their end area are quasi clamped between the windings 4. It is, furthermore, considered expedient to incorporate the thrombogeneous fibers 14 into the securing means 10 by joining them, using spinning or twisting methods, with the polymer thread forming the securing means 10. Alternatively, the fibers 14 may also be bonded or fused onto the securing means 10.


To illustrate the principle of the invention more clearly, joining the fibers 14 to the securing means 10 by twisting has not been shown in FIG. 4.

Claims
  • 1. A coil implant, comprising: a coil configured for implantation in a vascular structure and having a lumen; anda securing member comprising a continuous thread that (a) is coupled to a first end portion of the coil, (b) has a straight portion extending in the lumen along a longitudinal length of the coil, a first undulating portion on a first side of the straight portion, and a second undulating portion on a second side of the straight portion, opposite the first side, (c) is longer than an entire longitudinal length of the coil along which the securing member extends, and (d) is entirely within the lumen.
  • 2. The implant of claim 1, wherein the securing member is coupled to the coil in at least two locations.
  • 3. The implant of claim 2, wherein the securing member extends within the lumen between two of the locations.
  • 4. The implant of claim 3, wherein the securing member has a length between the two locations that is longer than a length of the coil between the two locations.
  • 5. The implant of claim 1, wherein the securing member comprises at least one of a polymer and a metal.
  • 6. The implant of claim 1, wherein, in the absence of external forces applied to the coil, the securing member is not under tensile stress.
RELATED APPLICATIONS

This application is a continuation of U.S. application Ser. No. 11/575,796, filed Mar. 22, 2007, which is a §371 application of PCT Application No. PCT/EP04/10612, filed Sep. 22, 2004.

US Referenced Citations (506)
Number Name Date Kind
3174851 Buehler et al. Mar 1965 A
3334629 Colm Aug 1967 A
3753700 Harrison et al. Aug 1973 A
3834394 Hunter et al. Sep 1974 A
4085757 Pevsner Apr 1978 A
4311146 Wonder Jan 1982 A
4327734 White, Jr. May 1982 A
4341218 U Jul 1982 A
4346712 Handa et al. Aug 1982 A
4364392 Strother et al. Dec 1982 A
4402319 Handa et al. Sep 1983 A
4441495 Hicswa Apr 1984 A
4494531 Gianturco Jan 1985 A
4517979 Pecenka May 1985 A
4545367 Tucci Oct 1985 A
4638803 Rand Jan 1987 A
4677191 Tanaka et al. Jun 1987 A
4735201 O'Reilly Apr 1988 A
4781177 Lebigot Nov 1988 A
4787899 Lazarus Nov 1988 A
4819637 Dormandy, Jr. et al. Apr 1989 A
4832055 Palestrant May 1989 A
4944746 Iwata et al. Jul 1990 A
4957501 Lahille et al. Sep 1990 A
4990155 Wilkoff Feb 1991 A
4994069 Ritchart et al. Feb 1991 A
5002556 Ishida et al. Mar 1991 A
5026377 Burton et al. Jun 1991 A
5035706 Giantureo et al. Jul 1991 A
5037427 Harada et al. Aug 1991 A
5062829 Pryor et al. Nov 1991 A
5104399 Lazarus Apr 1992 A
5108407 Geremia et al. Apr 1992 A
5109867 Twyford, Jr. May 1992 A
5122136 Guglielmi et al. Jun 1992 A
5133731 Butler et al. Jul 1992 A
5133732 Wiktor Jul 1992 A
5147370 McNamara et al. Sep 1992 A
5167624 Butler et al. Dec 1992 A
5181921 Makita et al. Jan 1993 A
5192301 Kamiya et al. Mar 1993 A
5211658 Clouse May 1993 A
5217484 Marks Jun 1993 A
5222970 Reeves Jun 1993 A
5224953 Morgentaler Jul 1993 A
5226911 Chee et al. Jul 1993 A
5234437 Sepetka Aug 1993 A
5250071 Palermo Oct 1993 A
5256146 Ensminger et al. Oct 1993 A
5261916 Engelson Nov 1993 A
5263964 Purdy Nov 1993 A
5282806 Haber et al. Feb 1994 A
5304194 Chee et al. Apr 1994 A
5304195 Twyford, Jr. et al. Apr 1994 A
5312415 Palermo May 1994 A
5314472 Fontaine May 1994 A
5334210 Gianturco Aug 1994 A
5350397 Palermo et al. Sep 1994 A
5354295 Guglielmi et al. Oct 1994 A
5368592 Stern et al. Nov 1994 A
5382259 Phelps et al. Jan 1995 A
5382260 Dormandy et al. Jan 1995 A
5382261 Palmaz Jan 1995 A
5397345 Lazarus Mar 1995 A
5417708 Hall et al. May 1995 A
5423829 Pham et al. Jun 1995 A
5423849 Engelson et al. Jun 1995 A
5443454 Tanabe et al. Aug 1995 A
5443478 Purdy Aug 1995 A
5456693 Conston et al. Oct 1995 A
5476472 Dormandy, Jr. et al. Dec 1995 A
5480382 Hammerslag et al. Jan 1996 A
5485496 Lee et al. Jan 1996 A
5498227 Mawad Mar 1996 A
5499985 Hein et al. Mar 1996 A
5507769 Marin et al. Apr 1996 A
5522822 Phelps et al. Jun 1996 A
5522836 Palermo Jun 1996 A
5527338 Purdy Jun 1996 A
5536274 Neuss Jul 1996 A
5540680 Guglielmi et al. Jul 1996 A
5549624 Mirigian et al. Aug 1996 A
5562698 Parker Oct 1996 A
5569245 Guglielmi et al. Oct 1996 A
5573520 Schwartz et al. Nov 1996 A
5578074 Mirigian Nov 1996 A
5582619 Ken Dec 1996 A
5601600 Ton Feb 1997 A
5624449 Pham et al. Apr 1997 A
5624461 Mariant Apr 1997 A
5626599 Bourne et al. May 1997 A
5634928 Fischell et al. Jun 1997 A
5639277 Mariant et al. Jun 1997 A
5643254 Scheldrup et al. Jul 1997 A
5645558 Horton Jul 1997 A
5645564 Northrup et al. Jul 1997 A
5649949 Wallace et al. Jul 1997 A
5658308 Snyder Aug 1997 A
5662700 Lazarus Sep 1997 A
5669905 Scheldrup et al. Sep 1997 A
5669931 Kupiecki et al. Sep 1997 A
5690666 Berenstein et al. Nov 1997 A
5690667 Gia Nov 1997 A
5690671 McGurk et al. Nov 1997 A
5693067 Purdy Dec 1997 A
5695517 Marin et al. Dec 1997 A
5700258 Mirigian et al. Dec 1997 A
5702361 Evans et al. Dec 1997 A
5718711 Berenstein et al. Feb 1998 A
5725534 Rasmussen Mar 1998 A
5725546 Samson Mar 1998 A
5725552 Kotula et al. Mar 1998 A
5733329 Wallace et al. Mar 1998 A
5743905 Eder et al. Apr 1998 A
5746734 Dormandy, Jr. et al. May 1998 A
5746769 Ton et al. May 1998 A
5749891 Ken et al. May 1998 A
5749894 Engelson May 1998 A
5749918 Hogendijk et al. May 1998 A
5759161 Ogawa et al. Jun 1998 A
5766219 Horton Jun 1998 A
5797953 Tekulve Aug 1998 A
5800426 Taki et al. Sep 1998 A
5800453 Gia Sep 1998 A
5800455 Palermo et al. Sep 1998 A
5814062 Sepetka et al. Sep 1998 A
5830230 Berryman et al. Nov 1998 A
5833705 Ken et al. Nov 1998 A
5843118 Sepetka et al. Dec 1998 A
5846210 Ogawa et al. Dec 1998 A
5851206 Guglielmi et al. Dec 1998 A
5853418 Ken et al. Dec 1998 A
5855578 Guglielmi et al. Jan 1999 A
5891058 Taki et al. Apr 1999 A
5891128 Gia et al. Apr 1999 A
5891155 Irie Apr 1999 A
5891192 Murayama et al. Apr 1999 A
5895385 Guglielmi et al. Apr 1999 A
5895391 Farnholtz Apr 1999 A
5895410 Forber et al. Apr 1999 A
5895411 Irie Apr 1999 A
5911731 Pham et al. Jun 1999 A
5911737 Lee et al. Jun 1999 A
5916235 Guglielmi Jun 1999 A
5919187 Guglielmi et al. Jul 1999 A
5925037 Guglielmi et al. Jul 1999 A
5925059 Palermo et al. Jul 1999 A
5925060 Forber Jul 1999 A
5925062 Purdy Jul 1999 A
5928226 Guglielmi et al. Jul 1999 A
5935145 Villar et al. Aug 1999 A
5935148 Villar et al. Aug 1999 A
5941249 Maynard Aug 1999 A
5941888 Wallace et al. Aug 1999 A
5944714 Guglielmi et al. Aug 1999 A
5944733 Engelson Aug 1999 A
5947962 Guglielmi et al. Sep 1999 A
5947963 Guglielmi Sep 1999 A
5957948 Mariant Sep 1999 A
5964797 Ho Oct 1999 A
5972019 Engelson et al. Oct 1999 A
5976126 Guglielmi Nov 1999 A
5976131 Guglielmi et al. Nov 1999 A
5976152 Regan et al. Nov 1999 A
5976162 Doan et al. Nov 1999 A
5980514 Kupiecki et al. Nov 1999 A
5980550 Eder et al. Nov 1999 A
5980554 Lenker et al. Nov 1999 A
5984929 Bashiri et al. Nov 1999 A
5984944 Forber Nov 1999 A
5989242 Saadat et al. Nov 1999 A
6001092 Mirigian et al. Dec 1999 A
6004338 Ken et al. Dec 1999 A
6010498 Guglielmi Jan 2000 A
6013084 Ken et al. Jan 2000 A
6015424 Rosenbluth et al. Jan 2000 A
6017364 Lazarus Jan 2000 A
6017977 Evans et al. Jan 2000 A
6019757 Scheldrup Feb 2000 A
6022369 Jacobsen et al. Feb 2000 A
6024754 Engelson Feb 2000 A
6024765 Wallace et al. Feb 2000 A
6030413 Lazarus Feb 2000 A
6033423 Ken et al. Mar 2000 A
6039749 Marin et al. Mar 2000 A
6056770 Epstein et al. May 2000 A
6059779 Mills May 2000 A
6059815 Lee et al. May 2000 A
6063070 Eder May 2000 A
6063100 Diaz et al. May 2000 A
6063104 Villar et al. May 2000 A
6066133 Guglielmi et al. May 2000 A
6066149 Samson et al. May 2000 A
6068644 Lulo et al. May 2000 A
6074407 Levine et al. Jun 2000 A
6077260 Wheelock et al. Jun 2000 A
D427680 Mariant et al. Jul 2000 S
6083220 Guglielmi et al. Jul 2000 A
6086577 Ken et al. Jul 2000 A
6090125 Horton Jul 2000 A
6093199 Brown et al. Jul 2000 A
6096546 Raskin Aug 2000 A
6102917 Maitland et al. Aug 2000 A
6102932 Kurz Aug 2000 A
6102933 Lee et al. Aug 2000 A
6113622 Hieshima Sep 2000 A
6117142 Goodson et al. Sep 2000 A
6123714 Gia et al. Sep 2000 A
6126672 Berryman et al. Oct 2000 A
6136015 Kurz et al. Oct 2000 A
6143007 Mariant et al. Nov 2000 A
6146373 Cragg et al. Nov 2000 A
6149664 Kurz Nov 2000 A
6156061 Wallace et al. Dec 2000 A
6159165 Ferrera et al. Dec 2000 A
6159206 Ogawa Dec 2000 A
6165178 Bashiri et al. Dec 2000 A
6165193 Greene, Jr. et al. Dec 2000 A
6165198 McGurk et al. Dec 2000 A
6168570 Ferrera Jan 2001 B1
6168592 Kupiecki et al. Jan 2001 B1
6168610 Marin et al. Jan 2001 B1
6168615 Ken et al. Jan 2001 B1
6168622 Mazzocchi Jan 2001 B1
6171326 Ferrera et al. Jan 2001 B1
6183491 Lulo Feb 2001 B1
6183495 Lenker et al. Feb 2001 B1
6187024 Boock et al. Feb 2001 B1
6187027 Mariant et al. Feb 2001 B1
6190373 Palermo et al. Feb 2001 B1
6193708 Ken et al. Feb 2001 B1
6193728 Ken et al. Feb 2001 B1
RE37117 Palermo Mar 2001 E
6202261 Moore et al. Mar 2001 B1
6203547 Nguyen et al. Mar 2001 B1
6221066 Ferrera et al. Apr 2001 B1
6221086 Forber Apr 2001 B1
6224610 Ferrera May 2001 B1
6231573 Amor et al. May 2001 B1
6231586 Mariant May 2001 B1
6231590 Slaikeu et al. May 2001 B1
6231597 Deem et al. May 2001 B1
6238403 Greene, Jr. et al. May 2001 B1
6238415 Sepetka et al. May 2001 B1
6241691 Ferrera et al. Jun 2001 B1
6254592 Samson et al. Jul 2001 B1
6270495 Palermo Aug 2001 B1
6277125 Barry et al. Aug 2001 B1
6277126 Barry et al. Aug 2001 B1
6280457 Wallace et al. Aug 2001 B1
6281263 Evans et al. Aug 2001 B1
6287315 Wijeratne et al. Sep 2001 B1
6287318 Villar et al. Sep 2001 B1
6293960 Ken Sep 2001 B1
6296622 Kurz et al. Oct 2001 B1
6299619 Greene, Jr. et al. Oct 2001 B1
6299627 Eder et al. Oct 2001 B1
6306153 Kurz et al. Oct 2001 B1
6312405 Meyer et al. Nov 2001 B1
6312421 Boock Nov 2001 B1
6315709 Garibaldi et al. Nov 2001 B1
6319267 Kurz Nov 2001 B1
6322576 Wallace et al. Nov 2001 B1
6331184 Abrams Dec 2001 B1
6335384 Evans et al. Jan 2002 B1
6344041 Kupiecki et al. Feb 2002 B1
6344048 Chin et al. Feb 2002 B1
6346091 Jacobsen et al. Feb 2002 B1
6348041 Klint Feb 2002 B1
6361547 Hieshima Mar 2002 B1
6364823 Garibaldi et al. Apr 2002 B1
6368338 Konya et al. Apr 2002 B1
6371972 Wallace et al. Apr 2002 B1
6375606 Garibaldi et al. Apr 2002 B1
6375628 Zadno-Azizi et al. Apr 2002 B1
6375668 Gifford et al. Apr 2002 B1
6375669 Rosenbluth et al. Apr 2002 B1
6379329 Naglreiter et al. Apr 2002 B1
6379374 Hieshima et al. Apr 2002 B1
6383146 Klint May 2002 B1
6383174 Eder May 2002 B1
6383204 Ferrera et al. May 2002 B1
6383205 Samson et al. May 2002 B1
6409721 Wheelock et al. Jun 2002 B1
6416535 Lazarus Jul 2002 B1
6416541 Denardo Jul 2002 B2
6423085 Murayama et al. Jul 2002 B1
6425893 Guglielmi Jul 2002 B1
6425914 Wallace et al. Jul 2002 B1
6428557 Hilaire Aug 2002 B1
6428558 Jones et al. Aug 2002 B1
6454780 Wallace Sep 2002 B1
6458119 Berenstein et al. Oct 2002 B1
6458127 Truckai et al. Oct 2002 B1
6458137 Klint Oct 2002 B1
6464699 Swanson Oct 2002 B1
6468266 Bashiri et al. Oct 2002 B1
6475169 Ferrera Nov 2002 B2
6475227 Burke et al. Nov 2002 B2
6478773 Gandhi et al. Nov 2002 B1
6485524 Strecker Nov 2002 B2
6494884 Gifford, III et al. Dec 2002 B2
6500149 Gandhi et al. Dec 2002 B2
6500190 Greene, Jr. et al. Dec 2002 B2
6511468 Cragg et al. Jan 2003 B1
6514264 Naglreiter Feb 2003 B1
6530934 Jacobsen et al. Mar 2003 B1
6533801 Wallace et al. Mar 2003 B2
6537293 Berryman et al. Mar 2003 B1
6540657 Cross, III et al. Apr 2003 B2
6544163 Wallace et al. Apr 2003 B2
6544225 Lulo et al. Apr 2003 B1
6544268 Lazarus Apr 2003 B1
6544275 Teoh Apr 2003 B1
6547804 Porter et al. Apr 2003 B2
6551305 Ferrera et al. Apr 2003 B2
6551340 Konya et al. Apr 2003 B1
6554849 Jones et al. Apr 2003 B1
6558367 Cragg et al. May 2003 B1
6569179 Teoh et al. May 2003 B2
6572628 Dominguez et al. Jun 2003 B2
6575994 Marin et al. Jun 2003 B1
6585748 Jeffree Jul 2003 B1
6585754 Wallace et al. Jul 2003 B2
6589227 Sonderskov Klint Jul 2003 B2
6589230 Gia et al. Jul 2003 B2
6589236 Wheelock et al. Jul 2003 B2
6589265 Palmer et al. Jul 2003 B1
6592605 Lenker et al. Jul 2003 B2
6602261 Greene, Jr. et al. Aug 2003 B2
6602269 Wallace et al. Aug 2003 B2
6603994 Wallace et al. Aug 2003 B2
6605101 Schaefer et al. Aug 2003 B1
6607538 Ferrera et al. Aug 2003 B1
6607539 Hayashi et al. Aug 2003 B1
6610085 Lazarus Aug 2003 B1
6613074 Mitelberg et al. Sep 2003 B1
6616617 Ferrera et al. Sep 2003 B1
6620152 Guglielmi Sep 2003 B2
6623493 Wallace et al. Sep 2003 B2
6632241 Hancock et al. Oct 2003 B1
6635068 Dubrul et al. Oct 2003 B1
6635069 Teoh et al. Oct 2003 B1
6638291 Ferrera et al. Oct 2003 B1
6638293 Makower et al. Oct 2003 B1
6656173 Palermo Dec 2003 B1
6656201 Ferrera et al. Dec 2003 B2
6656218 Denardo et al. Dec 2003 B1
6656351 Boyle Dec 2003 B2
6660020 Wallace et al. Dec 2003 B2
6663607 Slaikeu et al. Dec 2003 B2
6679903 Kurz Jan 2004 B2
6685653 Ehr et al. Feb 2004 B2
6689141 Ferrera et al. Feb 2004 B2
6692510 West Feb 2004 B2
6702844 Lazarus Mar 2004 B1
6716238 Elliott Apr 2004 B2
6723112 Ho et al. Apr 2004 B2
6743236 Barry et al. Jun 2004 B2
6743251 Eder Jun 2004 B1
6766219 Hasey Jul 2004 B1
6767358 Leonhardt et al. Jul 2004 B2
6811561 Diaz et al. Nov 2004 B2
6814748 Baker et al. Nov 2004 B1
6835185 Ramzipoor et al. Dec 2004 B2
6849081 Sepetka et al. Feb 2005 B2
6852116 Leonhardt et al. Feb 2005 B2
6853418 Suzuki et al. Feb 2005 B2
6855153 Saadat Feb 2005 B2
6855155 Denardo et al. Feb 2005 B2
6860893 Wallace et al. Mar 2005 B2
6860901 Baker et al. Mar 2005 B1
6872218 Ferrera et al. Mar 2005 B2
6878163 Denardo et al. Apr 2005 B2
6905503 Gifford, III et al. Jun 2005 B2
6913618 Denardo et al. Jul 2005 B2
6929654 Teoh et al. Aug 2005 B2
6945956 Waldhauser et al. Sep 2005 B2
6958061 Truckai et al. Oct 2005 B2
6958068 Hieshima Oct 2005 B2
6964657 Cragg et al. Nov 2005 B2
6966892 Gandhi et al. Nov 2005 B2
6994689 Zadno-Azizi et al. Feb 2006 B1
6994711 Hieshima et al. Feb 2006 B2
7014645 Greene, Jr. et al. Mar 2006 B2
7029486 Schaefer et al. Apr 2006 B2
7029487 Greene, Jr. et al. Apr 2006 B2
7033374 Schaefer et al. Apr 2006 B2
7058456 Pierce Jun 2006 B2
7060083 Gerberding Jun 2006 B2
7070607 Murayama et al. Jul 2006 B2
7147618 Kurz Dec 2006 B2
7169161 Bonnette et al. Jan 2007 B2
7182774 Barry et al. Feb 2007 B2
7198613 Gandhi et al. Apr 2007 B2
7238194 Monstadt et al. Jul 2007 B2
7300458 Henkes et al. Nov 2007 B2
7316701 Ferrera et al. Jan 2008 B2
7323000 Monstdt et al. Jan 2008 B2
7331973 Gesswein et al. Feb 2008 B2
7344558 Lorenzo et al. Mar 2008 B2
7410482 Murphy et al. Aug 2008 B2
7422569 Wilson et al. Sep 2008 B2
7473266 Glaser Jan 2009 B2
7485122 Teoh Feb 2009 B2
7485317 Murayama et al. Feb 2009 B1
7524322 Monstdt et al. Apr 2009 B2
7575582 Gandhi et al. Aug 2009 B2
7578826 Gandhi et al. Aug 2009 B2
RE41029 Guglielmi et al. Dec 2009 E
7691124 Balgobin Apr 2010 B2
7708755 Davis, III et al. May 2010 B2
7722636 Farnan May 2010 B2
7722637 Barry et al. May 2010 B2
7811305 Balgobin et al. Oct 2010 B2
7879064 Monstadt et al. Feb 2011 B2
7896899 Patterson et al. Mar 2011 B2
7901444 Slazas Mar 2011 B2
7918872 Mitelberg et al. Apr 2011 B2
8267955 Patterson et al. Sep 2012 B2
20020010481 Jayaraman Jan 2002 A1
20020065529 Laurent et al. May 2002 A1
20020072712 Nool et al. Jun 2002 A1
20020072791 Eder et al. Jun 2002 A1
20020082620 Lee Jun 2002 A1
20020087184 Eder et al. Jul 2002 A1
20020120297 Shadduck Aug 2002 A1
20020128671 Wallace et al. Sep 2002 A1
20020138095 Mazzocchi et al. Sep 2002 A1
20020143349 Gifford et al. Oct 2002 A1
20020169473 Sepetka et al. Nov 2002 A1
20030014073 Bashiri et al. Jan 2003 A1
20030040733 Cragg et al. Feb 2003 A1
20030045901 Opolski Mar 2003 A1
20030083676 Wallace May 2003 A1
20030130689 Wallace et al. Jul 2003 A1
20030169473 Cotter et al. Sep 2003 A1
20030171770 Kusleika et al. Sep 2003 A1
20030176857 Lee Sep 2003 A1
20030181927 Wallace Sep 2003 A1
20030225365 Greff et al. Dec 2003 A1
20040002731 Aganon et al. Jan 2004 A1
20040002732 Teoh et al. Jan 2004 A1
20040002733 Teoh Jan 2004 A1
20040024394 Wallace et al. Feb 2004 A1
20040034363 Wilson et al. Feb 2004 A1
20040034378 Monstadt et al. Feb 2004 A1
20040078050 Monstadt et al. Apr 2004 A1
20040098029 Teoh et al. May 2004 A1
20040106946 Ferrera et al. Jun 2004 A1
20040170685 Carpenter et al. Sep 2004 A1
20040181256 Glaser Sep 2004 A1
20040193178 Nikolchev Sep 2004 A1
20040193206 Gerberding et al. Sep 2004 A1
20040220563 Eder Nov 2004 A1
20040220585 Nikolchev Nov 2004 A1
20040225279 Raymond Nov 2004 A1
20050021023 Guglielmi et al. Jan 2005 A1
20050079196 Henkes et al. Apr 2005 A1
20050222603 Andreas et al. Oct 2005 A1
20060025801 Lulo et al. Feb 2006 A1
20060025802 Sowers Feb 2006 A1
20060036281 Patterson et al. Feb 2006 A1
20060079926 Desai et al. Apr 2006 A1
20060116714 Sepetka et al. Jun 2006 A1
20060135986 Wallace et al. Jun 2006 A1
20060271097 Ramzipoor et al. Nov 2006 A1
20060276824 Mitelberg et al. Dec 2006 A1
20070055302 Henry et al. Mar 2007 A1
20070173757 Levine et al. Jul 2007 A1
20070185524 Diaz et al. Aug 2007 A1
20070239193 Simon et al. Oct 2007 A1
20080045922 Cragg et al. Feb 2008 A1
20080045997 Balgobin et al. Feb 2008 A1
20080051803 Monjtadt et al. Feb 2008 A1
20080097462 Mitelberg et al. Apr 2008 A1
20080103585 Monstadt et al. May 2008 A1
20080125855 Henkes et al. May 2008 A1
20080220216 Unger et al. Sep 2008 A1
20080228215 Strauss et al. Sep 2008 A1
20080228216 Strauss et al. Sep 2008 A1
20080243106 Coe et al. Oct 2008 A1
20080300616 Que et al. Dec 2008 A1
20080306504 Win et al. Dec 2008 A1
20080319532 Monstadt et al. Dec 2008 A1
20090177261 Teoh et al. Jul 2009 A1
20090182268 Thielen et al. Jul 2009 A1
20090254111 Monstadt et al. Oct 2009 A1
20090254169 Spenser et al. Oct 2009 A1
20090270877 Johnson et al. Oct 2009 A1
20090312748 Johnson et al. Dec 2009 A1
20100004673 Denison et al. Jan 2010 A1
20100023105 Levy et al. Jan 2010 A1
20100030200 Strauss et al. Feb 2010 A1
20100049165 Sutherland et al. Feb 2010 A1
20100076479 Monstadt Mar 2010 A1
20100174269 Tompkins et al. Jul 2010 A1
20110022003 Tekulve Jan 2011 A1
20110098814 Monstadt et al. Apr 2011 A1
20110118777 Patterson et al. May 2011 A1
20110172700 Bose et al. Jul 2011 A1
20120041470 Shrivastava et al. Feb 2012 A1
20120065720 Strauss et al. Mar 2012 A1
20120116442 Monstadt et al. May 2012 A1
20120226305 Strauss et al. Sep 2012 A1
20130331883 Strauss et al. Dec 2013 A1
Foreign Referenced Citations (141)
Number Date Country
1668250 Sep 2005 CN
4445715 Jun 1996 DE
69627243 Jan 1997 DE
19547617 Sep 1997 DE
19607451 Sep 1997 DE
19610333 Sep 1997 DE
19647280 May 2001 DE
19952387 May 2001 DE
10010840 Sep 2001 DE
10118017 Oct 2002 DE
10155191 May 2003 DE
0368571 May 1990 EP
707830 Apr 1996 EP
711 532 May 1996 EP
717969 Jun 1996 EP
720 838 Jul 1996 EP
765636 Apr 1997 EP
0792623 Sep 1997 EP
0800791 Oct 1997 EP
820 726 Jan 1998 EP
830 873 Mar 1998 EP
829236 Mar 1998 EP
853 955 Jul 1998 EP
865 773 Sep 1998 EP
882 428 Sep 1998 EP
904 737 Mar 1999 EP
914 807 May 1999 EP
941 700 Sep 1999 EP
941 701 Sep 1999 EP
992 220 Apr 2000 EP
1005837 Jun 2000 EP
1 120 088 Aug 2001 EP
1 125 553 Aug 2001 EP
1 129 666 Sep 2001 EP
1 142 535 Oct 2001 EP
1 169 969 Jan 2002 EP
1 188 413 Mar 2002 EP
1 188 414 Mar 2002 EP
1 312 312 May 2003 EP
1 316 293 Jun 2003 EP
1 358 850 Nov 2003 EP
1 669 032 Jun 2006 EP
1738698 Jan 2007 EP
832 607 Apr 2008 EP
6-246004 Sep 1994 JP
7-155331 Jun 1995 JP
7-265431 Oct 1995 JP
7-284534 Oct 1995 JP
9-168541 Jun 1997 JP
10-201766 Aug 1998 JP
11-47138 Feb 1999 JP
11-76249 Mar 1999 JP
2001-513389 Sep 2001 JP
2002-523172 Jul 2002 JP
2004-500929 Jan 2004 JP
2006-051349 Feb 2006 JP
2008-525113 Jul 2008 JP
WO-8803817 Jun 1988 WO
WO-8906984 Aug 1989 WO
WO-9012616 Nov 1990 WO
WO-9113592 Sep 1991 WO
WO-9214408 Sep 1992 WO
WO-9221400 Dec 1992 WO
WO-9311719 Jun 1993 WO
WO-9316650 Sep 1993 WO
WO-9406502 Mar 1994 WO
WO-9406503 Mar 1994 WO
WO-9410936 May 1994 WO
WO-9411051 May 1994 WO
WO-9426175 Nov 1994 WO
WO-9512367 May 1995 WO
WO-9618343 Jun 1996 WO
WO-9632153 Oct 1996 WO
WO-9639950 Dec 1996 WO
WO-9727888 Aug 1997 WO
WO-9809570 Mar 1998 WO
WO-9817183 Apr 1998 WO
WO-9833452 Aug 1998 WO
WO-9834546 Aug 1998 WO
WO-9839048 Sep 1998 WO
WO-9858590 Dec 1998 WO
WO-9905977 Feb 1999 WO
WO-9907292 Feb 1999 WO
WO-9909893 Mar 1999 WO
WO-9932037 Jul 1999 WO
WO-9940852 Aug 1999 WO
WO-9942038 Aug 1999 WO
WO-9944538 Sep 1999 WO
WO-9949812 Oct 1999 WO
WO 9951151 Oct 1999 WO
WO-9956636 Nov 1999 WO
WO-0012016 Mar 2000 WO
WO-0013593 Mar 2000 WO
WO-0025680 May 2000 WO
WO-0044306 Aug 2000 WO
WO-0072781 Dec 2000 WO
WO-0132085 May 2001 WO
WO-0156500 Aug 2001 WO
WO-0158382 Aug 2001 WO
WO-0193937 Dec 2001 WO
WO-0202018 Jan 2002 WO
WO-0213705 Feb 2002 WO
WO-0213706 Feb 2002 WO
WO-0232496 Apr 2002 WO
WO-0239911 May 2002 WO
WO-0241753 May 2002 WO
WO-0245596 Jun 2002 WO
WO-02054943 Jul 2002 WO
WO-02054980 Jul 2002 WO
WO-02072168 Sep 2002 WO
WO-02087449 Nov 2002 WO
WO-02087651 Nov 2002 WO
WO-02089676 Nov 2002 WO
WO-02096273 Dec 2002 WO
WO-02096301 Dec 2002 WO
WO-03001970 Jan 2003 WO
WO-03007823 Jan 2003 WO
WO-03017852 Mar 2003 WO
WO-03034927 May 2003 WO
WO-03039624 May 2003 WO
WO-03041615 May 2003 WO
WO-03053257 Jul 2003 WO
WO-03053281 Jul 2003 WO
WO-03072179 Sep 2003 WO
WO-03073914 Sep 2003 WO
WO-03077776 Sep 2003 WO
WO-03077984 Sep 2003 WO
WO-03082128 Oct 2003 WO
WO-03086240 Oct 2003 WO
WO-03092547 Nov 2003 WO
WO-03099370 Dec 2003 WO
WO-2004008974 Jan 2004 WO
WO-2004069059 Aug 2004 WO
WO-2005113035 Dec 2005 WO
WO-2006032291 Mar 2006 WO
WO-2006069123 Jun 2006 WO
WO-2007121405 Oct 2007 WO
WO-2008112435 Sep 2008 WO
WO-2008112436 Sep 2008 WO
WO-2010117883 Oct 2010 WO
WO-2010123821 Oct 2010 WO
Non-Patent Literature Citations (2)
Entry
Henkes et al., Neurosurgery 54, No. 2, 268 (2004).
Middleton, J.C. & Tipton, A.J. Synthetic biodegradable polymers as orthopedic devices, Biomaterials 21, 2335-46 (2000).
Related Publications (1)
Number Date Country
20120116442 A1 May 2012 US
Continuations (1)
Number Date Country
Parent 11575796 US
Child 13284816 US