The present invention relates to the field of biological cell stimulation and the acquisition of information from biological cells. More specifically it relates to the field of implantable micro-systems for neural information recording and neural stimulation.
Neural recording and stimulation through micro-machined devices has been a long standing endeavour of researchers and micro-system engineers in order to improve the understanding of neural activity and to achieve purposeful modulation of neural activity, such as neuro-stimulation for the treatment of Parkinson disease, epilepsy and chronic pain. Such devices are, however, particularly challenging from both a fabrication and a signal processing point of view. One of the key components of these devices is the electrode element which interfaces the neural cells to such electronic micro-device. High charge storage capacity and low impedance are desirable properties of the electrode element for good stimulation of electro-genic cells and good data acquisition relating to the cell state, both in in vivo applications, e.g. in neural implants, and in in vitro applications, e.g. in multi-electrode array cell assays.
Platinum, titanium nitride (TiN), and metal oxides like iridium oxide (IrOx) are known in the art as potential electrode materials. TiN is an especially promising material, as it advantageously combines biocompatibility and complementary metal-oxide-semiconductor (CMOS) compatibility. Furthermore, TiN offers good thermal and chemical stability. However, in order to meet the requirements for providing good stimulation and recording, highly porous TiN layers may be required to provide a sufficiently large contact area. Unfortunately, the pore resistance limits the benefits of the increased electrochemical interface area, particularly for narrow and deep pores. Moreover, TiN is less suitable for prolonged stimulation purposes as it forms a stable and insulating surface oxide.
Carbon nano-materials have also been considered as an alternative electrode material because of their good electrochemical stability as well as their high surface to volume ratio. Carbon nanotubes (CNTs) may be the most extensively studied materials of this class, and have proven to be an advantageous material choice for neural recording and stimulation devices. However, while CNTs provide good cell adhesion, their applicability may be hampered by poor adhesion between the CNTs and the substrate. Furthermore, capillary interactions between CNTs in a wet environment may reduce the effective surface area. Another disadvantage of CNTs may be that the surface density of a CNT array can lie in the range of 1% to 5% due to free space between the tubes.
For example, Scott Miserendino et al. disclose, in “Electrochemical characterization of parylene-embedded carbon nanotube nanoelectrode assays”, published in Nanotechnology 17(4), a parylene-embedded carbon nano-tube nano-electrode array in an electrochemical detector. Such array can advantageously be fabricated in a process which is compatible with standard micro-electromechanical system (MEMS) processing and which does not require additional chemical/mechanical polishing.
However, other carbon allotropes may also provide good surface to volume ratios and electrochemical stability, while being more robust than CNTs, and may thus be potentially better suited for neural recording than typical thin-film electrode materials.
It is an object of embodiments of the present invention to provide good electrochemical and physical material properties of an interface electrode in an in-vivo or in-vitro micro-device for bio-electric cell stimulation and data recording.
The above objective is accomplished by a method and device according to embodiments of the present invention.
In a first aspect, the present invention provides a semiconductor device for stimulating and/or data recording of a biological material, e.g. a complementary metal-oxide semiconductor (CMOS) device for the stimulation and recording of biological cells. The device comprises an electrode element, e.g. an electrode. This electrode element comprises: a semiconductor substrate, such as a silicon substrate, and an insulating layer, e.g. an insulating layer arranged on the semiconductor substrate. The electrode element furthermore comprises an electrode layer arranged atop the insulating layer, e.g. the electrode may comprise a conductive layer which comprises an electrode layer atop the insulating layer. The electrode layer comprises at least one electrode, in which the surface of the at least one electrode is covered by carbon nano-sheets. For example, the electrode layer may comprise a plurality of titanium nitride electrodes, where each titanium nitride electrode surface area is covered by carbon nano-sheets.
Throughout the present description, the term “nano-sheets” is employed. However, this term can encompass any thin free standing graphitic films composed of individual sheet-like layers of thin graphite or multilayer graphene, such as, for example, graphene nano flakes (GNF), carbon nano flakes (CNF), carbon nano walls (CNW), carbon nanosheets (CNS), or graphene nanowalls (GNW), among others.
In a semiconductor device according to embodiments of the present invention, the at least one electrode may comprise at least one titanium nitride electrode, platinum electrode or metal oxide electrode, for example an iridium oxide IrOx electrode.
It is an advantage of embodiments of the present invention that an electrode element is provided composed of materials suitable for biomedical electrodes.
It is an advantage of embodiments of the present invention that an electrode element is provided having a high surface area to volume ratio.
It is an advantage of embodiments of the present invention that an electrode element is provided which does not require a metallic catalyst such as Ni or Co for the manufacturing process, e.g. for the carbon nano-sheet (CNS) deposition.
It is an advantage of embodiments of the present invention that a base layer may act as an effective barrier to oxidation. For example, carbon nano-sheets may advantageously be grown in a vertically oriented fashion from a graphitic base layer parallel to the underlying support, which may act as a barrier to oxidation in an aqueous environment.
It is an advantage of embodiments of the present invention that an electrode element is provided comprising an electrode material which adheres well to the substrate.
It is an advantage of embodiments of the present invention that an electrode element having a surface which is easy to functionalize. For example, the defective nature and the high proportion of exposed edge sites in carbon nano-sheet material layers may offer suitable ‘active’ sites for chemical sensing, fast electrochemical reactions and surface sites for further functionalization, which may be used in addition or in combination to bioelectric signal sensing in a device.
It is an advantage of embodiments of the present invention that an electrode element is provided which provides good sensitivity for recording bio-electric signals.
It is an advantage of embodiments of the present invention that an electrode element is provided which provides a high charge storage capacity and has a low impedance. For example, five times higher charge storage capacity and an almost ten times higher double layer capacitance may be achieved compared to similar titanium nitride electrodes as known in the art.
A semiconductor device according to embodiments of the present invention may also comprise integrated circuitry interconnected to the electrode element and adapted for recording and/or stimulating at least one biological cell via the electrode layer. For example, the present invention may also relate to an integrated CMOS semiconductor device for recording and stimulation of biological cells, in which this device comprises CMOS integrated circuitry and an electrode element as described hereinabove atop the CMOS integrated circuitry. This CMOS integrated circuitry may be interconnected to the electrode element and the CMOS integrated circuitry may be arranged to record and/or stimulate biological cells via the electrode element.
In a semiconductor device according to embodiments of the present invention, the electrode element may be packaged atop the integrated circuitry, e.g. atop the CMOS integrated circuitry.
In a semiconductor device according to embodiments of the present invention, the electrode element may be processed atop the integrated circuitry, e.g. directly processed atop the CMOS integrated circuitry.
In a semiconductor device according to embodiments of the present invention, the integrated circuitry may be adapted for amplification and signal processing of a signal obtained from the electrode element. For example, in some embodiments, the CMOS circuitry may comprise electronic circuitry for signal amplification and signal processing.
A semiconductor device according to embodiments of the present invention may further comprise a ring attached to the electrode element for containing a medium comprising biological material, e.g. a glass ring glued to contain biological cells in a cell medium.
A semiconductor device according to embodiments of the present invention may be an implantable device adapted for recording signals from neural tissue and/or for stimulating the neural tissue.
It is an advantage of embodiments of the present invention that a stimulation/recording device for biological cells is provided which is both biocompatible and CMOS compatible.
In a second aspect, the present invention further provides a method for fabricating a semiconductor device for stimulation and/or data recording of biological material, e.g. a semiconductor device according to the first aspect of the present invention. This method comprises providing a semiconductor substrate, e.g. a silicon substrate, which comprises a first insulating layer, providing a patterned conductive layer on top of the insulating layer and depositing and patterning a second insulating layer atop the patterned conductive layer. The patterning of the second insulation layer may be performed to create trenches to define electrode areas, e.g. to define electrodes.
The method also comprises growing carbon nano-sheets atop the second insulating layer and defining carbon nano-sheet electrode areas on the second insulating layer by etching away the carbon nano-sheets outside of the carbon nano-sheet electrode areas.
In a method according to embodiments of the present invention, providing the patterned conductive layer on top of the insulating layer may comprise providing on top of said insulating layer a patterned titanium nitride layer, a patterned platinum layer or a patterned metal oxide layer, such as a patterned iridium oxide IrOx layer.
In a method according to embodiments of the present invention, defining the carbon nano-sheet electrode areas may comprise applying a resist coating to the second insulating layer, patterning the resist coating to create carbon nano-sheets electrode areas, etching away the carbon nano-sheets outside of the carbon nano-sheet electrode areas and removing the resist coating.
For example, a method according to embodiments of the present invention may be a CMOS compatible method for fabricating a device for stimulation and/or recording of biological cells. Such method may comprise providing a silicon substrate comprising a first insulating layer, creating a conductive layer atop the insulating layer by depositing and patterning a titanium nitride layer atop the insulating layer, and depositing and patterning a second insulating layer atop the titanium nitride layer. Such method may further comprise creating carbon nano-sheet electrodes atop the insulating layer by: growing carbon nano-sheets atop the conductive layer, applying a resist coating and perform patterning to create carbon nano-sheets electrode areas, performing etching of the carbon nano-sheets outside of the carbon nano-sheet electrode areas, and stripping the resist coating. The titanium nitride layer may also be another material such as Platinum or metal oxides such as iridium oxide IrOx.
In a method according to embodiments of the present invention, providing the semiconductor substrate may comprise providing a silicon dioxide material as the first insulating layer on the substrate. Additionally or alternatively, in such method, depositing and patterning the second insulating layer may comprise providing a silicon dioxide material as the second insulating layer. For example, in a method according to embodiments, the first or second insulating layer may be a silicon dioxide layer. In embodiments of the disclosure, the second insulating layer may be any material suitable for patterning trenches to define electrodes.
In a method according to embodiments of the present invention, providing the patterned titanium nitride layer may comprise depositing the titanium nitride layer by sputtering, e.g. the depositing of the titanium layer may be performed by sputtering.
In a method according to embodiments of the present invention, growing the carbon nano-sheets may comprise using a plasma process.
This plasma process may be performed using Radio Frequency Plasma-Enhanced Chemical Vapour Deposition for 1 to 5 minutes at a pressure of 0.5 Torr or lower and at a temperature in the range of 600 to 800 degrees Celsius. For example, the plasma process may be performed at low pressure, e.g. 0.5 Torr or lower, at 600 to 800 degrees Celsius using a Radio Frequency Plasma-Enhanced Chemical Vapour Deposition machine under vacuum (1×10−5 Torr) for 1 to 5 minutes.
This plasma process may also be performed using microwave plasma enhanced Chemical Vapour Deposition for 1 to 5 minutes at a pressure of 1×10−5 Torr or lower and at a temperature in the range of 400 to 600 degrees Celsius. For example, the plasma process may be performed at low pressure, e.g. 0.5 Torr or lower, at 400 to 600 degrees Celsius using a microwave plasma enhanced Chemical Vapour Deposition machine under vacuum (1×10−5 Torr) for 1 to 5 minutes.
In a method according to embodiments of the present invention, growing the carbon nano-sheets may further comprise letting the substrate cool at a pressure of 1×10−5 Torr or lower after applying said plasma process. For example, in some embodiments, after the step of growing carbon nano-sheets, the substrate is left to cool under vacuum (1×10−5 Torr).
In a method according to embodiments of the present invention, defining the carbon nano-sheet electrode areas may comprise etching away the carbon nano-sheets outside of the carbon nano-sheet electrode areas using an O2 plasma. For example, the etching of the carbon nano-sheets outside of the carbon nano-sheet electrode areas may be performed using O2 plasma.
A method according to embodiments of the present invention, may further comprise exposing the carbon nano-sheet electrode areas to UV/O3 to increase hydrophilic behaviour of the carbon nano-sheet electrode areas. This exposing to UV/O3 may comprise exposing for an exposure time in the range of less than 1 minute to 15 minutes. For example, the method may further comprise a step of increasing UV/O3 exposure time of the carbon nano-sheet electrodes. This may advantageously increase the hydrophilic behaviour of the carbon nano-sheet electrodes and reduce the contact angle. In some embodiments, the UV/O3 exposure time may be increased from 0 to 15 minutes.
A method according to embodiments of the present invention may further comprise characterizing the carbon nano-sheets by cyclic voltammetry and electrochemical impedance spectroscopy.
Particular and preferred aspects of the invention are set out in the accompanying independent and dependent claims. Features from the dependent claims may be combined with features of the independent claims and with features of other dependent claims as appropriate and not merely as explicitly set out in the claims.
These and other aspects of the invention will be apparent from and elucidated with reference to the embodiment(s) described hereinafter.
The drawings are only schematic and are non-limiting. In the drawings, the size of some of the elements may be exaggerated and not drawn on scale for illustrative purposes.
Any reference signs in the claims shall not be construed as limiting the scope.
In the different drawings, the same reference signs refer to the same or analogous elements.
The present invention will be described with respect to particular embodiments and with reference to certain drawings but the invention is not limited thereto but only by the claims. The drawings described are only schematic and are non-limiting. In the drawings, the size of some of the elements may be exaggerated and not drawn on scale for illustrative purposes. The dimensions and the relative dimensions do not correspond to actual reductions to practice of the invention.
Furthermore, the terms first, second and the like in the description and in the claims, are used for distinguishing between similar elements and not necessarily for describing a sequence, either temporally, spatially, in ranking or in any other manner. It is to be understood that the terms so used are interchangeable under appropriate circumstances and that the embodiments of the invention described herein are capable of operation in other sequences than described or illustrated herein.
Moreover, the terms top, under and the like in the description and the claims are used for descriptive purposes and not necessarily for describing relative positions. It is to be understood that the terms so used are interchangeable under appropriate circumstances and that the embodiments of the invention described herein are capable of operation in other orientations than described or illustrated herein.
It is to be noticed that the term “comprising”, used in the claims, should not be interpreted as being restricted to the means listed thereafter; it does not exclude other elements or steps. It is thus to be interpreted as specifying the presence of the stated features, integers, steps or components as referred to, but does not preclude the presence or addition of one or more other features, integers, steps or components, or groups thereof. Thus, the scope of the expression “a device comprising means A and B” should not be limited to devices consisting only of components A and B. It means that with respect to the present invention, the only relevant components of the device are A and B.
Reference throughout this specification to “one embodiment” or “an embodiment” means that a particular feature, structure or characteristic described in connection with the embodiment is included in at least one embodiment of the present invention. Thus, appearances of the phrases “in one embodiment” or “in an embodiment” in various places throughout this specification are not necessarily all referring to the same embodiment, but may. Furthermore, the particular features, structures or characteristics may be combined in any suitable manner, as would be apparent to one of ordinary skill in the art from this disclosure, in one or more embodiments.
Similarly it should be appreciated that in the description of exemplary embodiments of the invention, various features of the invention are sometimes grouped together in a single embodiment, figure, or description thereof for the purpose of streamlining the disclosure and aiding in the understanding of one or more of the various inventive aspects. This method of disclosure, however, is not to be interpreted as reflecting an intention that the claimed invention requires more features than are expressly recited in each claim. Rather, as the following claims reflect, inventive aspects lie in less than all features of a single foregoing disclosed embodiment. Thus, the claims following the detailed description are hereby expressly incorporated into this detailed description, with each claim standing on its own as a separate embodiment of this invention.
Furthermore, while some embodiments described herein include some but not other features included in other embodiments, combinations of features of different embodiments are meant to be within the scope of the invention, and form different embodiments, as would be understood by those in the art. For example, in the following claims, any of the claimed embodiments can be used in any combination.
In the description provided herein, numerous specific details are set forth. However, it is understood that embodiments of the invention may be practiced without these specific details. In other instances, well-known methods, structures and techniques have not been shown in detail in order not to obscure an understanding of this description.
Carbon nano-sheets as nano-structured coating materials can be deposited on top of conductive layers such as titanium nitride (TiN) electrode layers, in accordance with embodiments of the present invention, and may advantageously provide good electrochemical behaviour and biocompatibility. Carbon nano-sheets or flakes (CNS) may comprise several graphite or graphene layers stacked on top of each other, forming thin free standing graphitic films composed of individual sheet-like layers of thin graphite or multi-layer graphene. At present, there is little accepted or definite nomenclature to describe such films; however, they may be referred to as graphene nano-flakes (GNF), carbon nano-flakes (CNF) carbon nano-walls (CNW), carbon nano-sheets (CNS) or graphene nano-walls (GNW). Common to such structures is that they may be synthesized in a plasma environment. Hereinafter, the term “carbon nano-sheets” may refer to any such structures, e.g. will encompass GNF, CNW, CNS, GNW or similar films composed of individual free-standing sheet-like layers of thin graphite or multi-layer graphene. Typically these layers are considered for innovative energy storage solutions such as supercapacitors, mainly because of their high surface area to volume ratio. The latter feature also makes such structures an interesting material for biomedical electrodes. As opposed to carbon nanotubes (CNTs), no metallic catalysts like Ni or Co are required for CNS deposition, and CNS adheres very well to the substrate. Furthermore, the ease of CNS surface functionalization is an additional benefit. Nevertheless, CNS may not have been previously used for neural recording or stimulation electrodes.
In a first aspect, the present invention relates to a semiconductor device for stimulating and/or data recording of a biological material. This semiconductor device comprises an electrode element which comprises a semiconductor substrate, an insulating layer arranged on the semiconductor substrate, and an electrode layer arranged atop the insulating layer. The electrode layer comprises at least one electrode, in which the surface of the at least one electrode is covered by carbon nano-sheets.
Referring to
The semiconductor device comprises an electrode element 2, which comprises a semiconductor substrate 3, e.g. a silicon (Si) substrate, and an insulating layer 4 arranged on the semiconductor substrate. For example, the insulating layer 4 may be an oxide or nitride layer, such as a silicon dioxide SiO2 layer.
The device further comprises an electrode layer 5 arranged atop the insulating layer 4. This electrode layer 5 comprises at least one electrode 6. The at least one electrode 6 may comprise at least one titanium nitride electrode, platinum electrode, or metal oxide electrode. For example, the electrode layer 5 may comprise a conducting layer, e.g. comprising titanium nitride TiN material, platinum material, or a metal oxide electrode material. The electrode layer 5 may also comprise a second insulating layer, e.g. comprising an insulating oxide or nitride material, such as a silicon dioxide SiO2, for example arranged to partially cover the conducting layer. The electrode layer may be adapted in composition and structure to be compatible with carbon nano-sheet (CNS) processing, e.g. the electrode layer 5 may be compatible in the sense that CNS can be grown on this conductive layer. The at least one electrode 6 may be defined, e.g. delineated, in the electrode layer 5 by micro-patterning of the conducting layer and the second insulating layer, e.g. manufactured by etching of these layers. The surface of the at least one electrode 6 is furthermore covered by carbon nano-sheets 7. For example, the electrode layer 5 may comprise at least one titanium nitride TiN electrode, a second insulating layer, e.g. a SiO2 layer, and a carbon nano-sheet layer, e.g. carbon nano-sheets grown on the titanium nitride electrode material.
The semiconductor device 1 may further comprise integrated circuitry 8 interconnected to the electrode element 2 and adapted for recording and/or stimulating at least one biological cell via the electrode layer 5, as schematically shown in
Furthermore, a semiconductor device 1 according to embodiments of the present invention may comprise a plurality of electrode elements 2, e.g. in a multi-site stimulation and/or recording implant or a multi-well bioelectrical signal analysis device.
The semiconductor device 1 may further comprise a ring 9, e.g. a glass ring, attached to the electrode element 2, e.g. glued to the electrode element 2, such as e.g. to an outer surface thereof, for containing a medium comprising biological material, for example for forming a sample well in a in vitro bioelectric signal analysis system. Therefore, in some embodiments, study of in vitro cultures can be achieved. For example, in such embodiments, at least one multi-electrode test chip, e.g. an electrode element 2, may be packaged on a custom printed circuit board (PCB). A glass ring may furthermore be glued on top of the PCB to contain the cells and the cell medium. The PCB may also contain custom electronic circuits for signal amplification and signal processing.
However, the present invention also relates to an implantable device comprising a semiconductor device 1 according to embodiments of the present invention, in which the implantable device is adapted for recording signals from neural tissue and/or for stimulating said neural tissue.
CNS-coated TiN electrodes according to embodiments adhere well to neural tissue, as is demonstrated by following in vitro example, in which cultured hippocampal neurons on patterned CNS samples are shown.
Atomic Force Microscopy (AFM) analysis on blanket substrates revealed an average surface roughness Ra of 21.9 nm and a root mean square roughness RMS of 27.1 nm, while the starting TiN layers have a Ra=0.9 nm and RMS=1.1 nm. These measurements were done using a Nanoscope IVa Dimension 3100 (tapping mode).
The Raman spectral data is shown in
In a second aspect, the present invention relates to a method for fabricating a semiconductor device for stimulation and/or data recording of biological material, e.g. a semiconductor device according to embodiments of the first aspect of the present invention. For example, such method may be a method to fabricate CNS-coated TiN electrodes for in vivo or in vitro applications. A dedicated process flow may allow patterning carbon nano-sheets with diameters down to a few micrometers.
For example, providing 21 the semiconductor substrate may comprise providing a silicon dioxide material as the first insulating layer on the substrate, and/or depositing 23 and patterning the second insulating layer may comprise providing a silicon dioxide material as the second insulating layer. Providing 22 the patterned conductive layer on top of the insulating layer may comprise providing on top of the first insulating layer a patterned titanium nitride layer, a patterned platinum layer or a patterned metal oxide layer. For example, a patterned titanium nitride layer may be provided by depositing the titanium nitride layer in a sputtering process.
The method 20 further comprises growing 24 carbon nano-sheets atop the second insulating layer. Growing 24 the carbon nano-sheets may comprise using 19 a plasma process. This plasma process may be performed using Radio Frequency Plasma-Enhanced Chemical Vapour Deposition for 1 to 5 minutes at low pressure, e.g. at a pressure of 0.5 Torr or lower, and at a temperature in the range of 600 to 800 degrees Celsius. Alternatively, the plasma process may be performed using microwave plasma enhanced Chemical Vapour Deposition for 1 to 5 minutes in vacuum, e.g. at a pressure of 1×10−5 Torr or lower, and at a temperature in the range of 400 to 600 degrees Celsius.
Furthermore, growing 24 the carbon nano-sheets may further comprise letting the substrate cool in vacuum, e.g. at a pressure of 1×10−5 Torr or lower, after applying such plasma process.
The method 20 also comprises defining 25 carbon nano-sheet electrode areas on the second insulating layer by etching away the carbon nano-sheets outside of the carbon nano-sheet electrode areas, e.g. using an O2 plasma. For example, in embodiments of the present invention, defining 25 the carbon nano-sheet electrode areas may comprise applying 26 a resist coating to the second insulating layer, patterning 27 the resist coating to create the carbon nano-sheet electrode areas, etching 28 away the carbon nano-sheets outside of the carbon nano-sheet electrode areas, and removing 29 the resist coating.
Furthermore, the method 20 may comprise exposing the carbon nano-sheet electrode areas to UV/O3 to increase hydrophilic behaviour of the carbon nano-sheet electrode areas, e.g. exposing for an exposure time in the range of less than 1 minute to 15 minutes.
For example, Raman spectral data is shown in
In this example, providing 21 a semiconductor substrate with a first insulating layer comprises SiO2 deposition on the substrate. The underlying films may for example comprise or consist of a 200 nm thermal SiO2 layer grown on a 4 inch Si substrate, but larger or smaller wafer sizes can also be employed in embodiments of the present invention. In embodiments of the present invention, the thickness of the SiO2 can vary from a few μm (e.g. 5 μm) to 50 nm but is not necessarily restricted to this range.
Providing 22 the patterned conductive layer on top of the first insulating layer may comprise TiN lift-off patterning. In the example illustrated in
The step of depositing and patterning 23 a second insulating layer atop the patterned conductive layer may comprise SiO2 deposition and patterning. In the example shown in
The bottom row of
Growing 24 carbon nano-sheets on the second insulating layer may comprise growing carbon layers in at low pressure (e.g. 0.5 Torr) 13.56 MHz RF generator, for example using an Oxford Instruments plasma technology UK. NANOCVD, as was used for the example illustrated in
In some embodiments, the deposition time may range up to 5 minutes. Thermal equilibrium can be established in the pre-treatment step as well. To prepare the wafer surface, an H2 plasma pre-treatment (300 W) may be carried out, e.g. for 15 minutes. Pre-treating for 15 minutes may for example be sufficient to ensure thermal equilibrium. A typical range for pre-treatment may be 1 to 15 minutes, e.g. at 0.5 Torr, however, if treatment conditions and equipment are suitable for lower pressures, it may be advantageous to lower the pressure to, for example, 0.05 Torr.
To deposit the carbon nano-sheets, CH4 (50 sccm) may be flown into the plasma chamber in a CH4/H2 ratio of 1:2, or C2H2 (10 sccm) may be used in a C2H2/H2 ratio of 1:10 for a 300 W plasma. Although other reaction gases may be suitable, and other gas ratios may be used in accordance with embodiments of the present invention, the gases and gas ratios mentioned hereinabove advantageously produce few layers per sheet and a high surface density, without forming a dense amorphous carbon film when applying a total pressure of 0.5 Torr. In some embodiments, a higher powered plasma treatment can be selected, such as 900 W. A high RF power, e.g. 300 W, and a low total pressure may preferably be selected in embodiments of the present invention to produce atomic hydrogen and to achieve a low deposition rate.
In the example illustrated in
The smallest electrode diameters obtained in the present example are 25 μm; however, the fabrication process according to embodiments may be suitable for fabricating even smaller electrodes with diameters down to a few microns. In embodiments of the present invention, electrode diameters can vary from 1 μm to 500 μm, although the present invention is not necessarily restricted to this range.
The carbon nano-sheets, grown on TiN, have been characterized by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS), which are commonly used techniques to characterize electrode materials. UV/O3 treatment provides a way to improve the electrochemical behaviour of the manufactured electrode elements by firstly increasing the wettability through polarity change and secondly by introducing redox couples and additional surface charge. For example, a five-fold improvement in impedance was obtained using CNS coated electrodes over reference TiN electrodes, which were fabricated with the steps in the process shown in
In this example, biocompatibility was checked by culturing hippocampal neurons from mice. After 8 days in vitro, the neurons formed stable networks and the samples were used for in vitro recording of the action potentials. Neural spikes were recorded with a signal-to-noise ratio (SNR) as high as 6.4. This may be a factor of 5 improvement compared to standard TiN electrodes as known in the art under the same conditions.
The scaled carbon nano-sheets electrodes were characterized using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) in a standard electrochemical three-electrode cell with a Pt reference electrode and an Ag/AgCl counter electrode. The measurements were performed in phosphate buffered saline (PBS, 20 mM, 150 mM NaCl) with a pH=7.4. The potential of the working electrode was swept between −1.0 and 1.1 V at a scan rate of 0.5V/s. A comparison between the TiN electrode 41 and the carbon nano-sheets coated TiN electrode 42 produced by the exemplary method shown in
The double layer capacitance, slope n and spreading resistance were extracted using a model where a constant phase angle element is put in series with a resistance Rs. The constant phase angle element accounts for the capacitive behaviour of the electrode while Rs represents the spreading resistance at higher frequencies. The results for different electrode materials are compared in the table hereinbelow. Similar to TiN, the electrodes coated with carbon nano-sheets exhibit a capacitive behaviour with a slope n close to 0.9. Table 2 shows the extracted parameters from the impedance spectra comparing TiN and CNS electrodes, in which RS represents the spreading resistance at higher frequencies, n the slope of the capacitance dominated impedance behaviour and Cdl the extracted double layer capacitance.
As is the case for CNTs, the carbon nano-sheets without additional UV/O3 may be found to be very hydrophobic. Contact angle measurements revealed an angle of 125°, as shown in
The UV/O3 exposure time may be increased from 0 to 15 minutes. As an advantage, impedance and CSCc can be improved.
The improvement at lower exposure times may be explained by the changing surface wettability from hydrophobic (contact angle of 125°) to hydrophilic (contact angle of) ˜10° due to an increase in the amount of carbon-oxygen bonds. The CNS/electrolyte interfacial contact and reaction may thus be enhanced. In the present example of embodiments of the present invention, extending the exposure time beyond 15 minutes did not show a significant further improvement of the wettability, although other exposure times may be appropriate in different choices of materials or treatment, as will be understood by the person skilled in the art.
Moreover,
Before culturing cells on the samples in this illustrative example, the sample was exposed to 15 min UV/O3. Hippocampal neurons were isolated from E18 FVB strain mice according to established procedures. Timed pregnant mice were euthanized, and embryos were isolated. Hippocampi were dissected from both hemispheres in sterile Hanks' buffered saline solution (HBSS) and incubated in 0.25% trypsin for 15 min in an incubator at 37° C. and 5% CO2 atmosphere. After trypsinization, cells were washed three times with HBSS and mechanically dissociated. The cells originating from half of the hippocampus were seeded on the chips in a MEM medium supplemented with 10% horse serum. After 4 hours, the medium was replaced with a neurobasal medium containing 2% B27 supplement and 0.125% glutamate.
In
The in vitro example setup consisted of a mechanical device to hold and allow electrical contact to the multi-electrode test chips and a PCB containing custom electronic circuits for signal amplification and processing. All the recordings were performed with a gain of 1000 V/V and a band-pass filter from 300 Hz to 6 kHz, in order to properly isolate spontaneous action potentials in the cells. Processed signals were sampled at 20 kHz and digitized (12 bits). The interface with the computer was done through a National Instruments USB-6259 data acquisition card. Custom-developed acquisition software in Matlab® (MathWorks, Inc.) allows the programming of the electronic circuits as well as the real-time transmission, display and storing of the recorded data. Wave_Clus was used to perform clustering of spontaneous action potentials recorded on CNS and TiN electrodes. Wave_Clus is a Matlab® toolbox that performs thresholding and sorting of spikes. In this way, spikes with similar shape, e.g. which could eventually originate from a same neuron or a same unit, may be separated, e.g. sufficiently different spikes, e.g. corresponding to different units, may be sorted into different clusters.
Recorded signals were amplified with a gain of 1000 V/V and band-pass filtered between 300 and 6 kHz. Spike sorting algorithms were applied to the datasets. The recorded action potentials are shown in
This application claims priority to U.S. Provisional Patent Application No. 61/658,822 filed on Jun. 12, 2012, the contents of which are hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
4969468 | Byers | Nov 1990 | A |
5318572 | Helland | Jun 1994 | A |
7852612 | Zhao | Dec 2010 | B2 |
20020009861 | Narwankar | Jan 2002 | A1 |
20060276702 | McGinnis | Dec 2006 | A1 |
20080232028 | Zhao | Sep 2008 | A1 |
20110172736 | Gefen | Jul 2011 | A1 |
Number | Date | Country |
---|---|---|
WO2009085015 | Jul 2009 | WO |
Entry |
---|
Miserendino, Scott et al., “Electrochemical Characterization of Parylene-Embedded Carbon Nanotube Nanoelectrode Arrays”, Institute of Physics Publishing, Nanotechnology, vol. 17, Jan. 25, 2006, pp. S23-S28. |
Chen, Xu et al., “A high performance electrochemical sensor for acetaminophen based on single-walled carbon nanotube-graphene nanosheet hybrid films,” Sensors and Actuators B: Chemical (2012) 161(1) 648-654. |
Soin, Navneet et al., “Microstructural and electrochemical properties of vertically aligned few layered graphene (FLG) nanoflakes and their application in methanol oxidation,” Materials Chemistry and Physics 129(3):1051-1057, Oct. 2011. |
Wen, Zhenhai et al., “Metal Nitride/Graphene Nanohybrids: General Synthesis and Multifunctional Titanium Nitride/Graphene Electrocatalyst,” Advanced Materials (2011) 23, 5445-5450. |
Zhao, Xin et al., “Carbon nanosheets as the electrode material in supercapacitors,” Journal of Power Sources, (2009) 194(2) 1208-1212. |
Number | Date | Country | |
---|---|---|---|
20130341185 A1 | Dec 2013 | US |
Number | Date | Country | |
---|---|---|---|
61658822 | Jun 2012 | US |