The present application relates to optical structures that redirect light. Panel lights and direct-lit LED-based light fixtures typically include plastic sheets that diffuse light from light sources, such as light-emitting diodes (LEDs) in a uniform manner. Such sheets may be used alone, or in combination with other optical and/or structural elements.
This summary is provided as a general introduction to some of the embodiments described herein, and is not intended to be limiting. Additional example embodiments including variations and alternative configurations are provided herein.
“LED,” as used herein, refers to a light emitting diode, which may be in bare chip form or packaged form. When LEDs are packaged, there may be one or more bare chips packaged with any type of protective structures and/or optics.
In one or more embodiments, a luminaire includes a housing that defines a light output aperture, a backlight apparatus that is configured to emit light in a light output direction toward the light output aperture, and a planar optical sheet of a light transmissive material. The planar optical sheet is disposed adjacent the backlight apparatus toward the light output direction, and is configured such that when the light passes therethrough, the light is modified by the planar optical sheet before leaving the luminaire. The optical sheet forms a first surface and an opposite second surface, and at least one of the first surface or the second surface of the optical sheet includes a plurality of spatial regions. A first four of the spatial regions are arranged to form an outer rectangle. Two of the first four of the spatial regions, on top and bottom sides of the outer rectangle, include elliptical diffusers that are oriented predominantly in a first direction that is transverse to the planar optical sheet, and the other two of the first four of the spatial regions, on left and right sides of the outer rectangle, include elliptical diffusers that are oriented predominantly in a second direction that is transverse to the planar optical sheet and is transverse to the first direction. A second four of the spatial regions are arranged to form an inner rectangle that is surrounded by the outer rectangle. Two of the second four of the spatial regions, on top and bottom sides of the inner rectangle, include elliptical diffusers that are oriented predominantly in the second direction, and the other two of the second four of the spatial regions, on left and right sides of the inner rectangle, include elliptical diffusers that are oriented predominantly in the first direction.
In one or more embodiments, a method of providing a three-dimensional (3D) appearance for a planar output surface of a luminaire includes providing a backlight apparatus that is configured to emit light toward a light output direction, and providing a planar optical sheet capable of modifying the light, as it propagates toward the light output direction. The optical sheet includes a plurality of first spatial regions that include elliptical diffusers oriented predominantly in a first direction, a plurality of second spatial regions that include elliptical diffusers oriented predominantly in a second direction, and one or more third spatial regions that include at least one type of optical microstructure selected from the group consisting of Fresnel lenses, v-groove lenses, v-cut lenses, pyramidal lenses, lenticular lenses, donut lenses and conical diffusers.
In one or more embodiments, a luminaire includes a housing that defines a light output aperture, a backlight apparatus that emits light toward the light output aperture, and an optical sheet of a light transmissive material. The optical sheet is disposed adjacent the backlight apparatus toward the light output direction, such that the light is modified by the optical sheet before leaving the light output aperture. The optical sheet forms a first surface and an opposite second surface. At least one of the first surface or the second surface of the optical sheet includes a first spatial region that includes elliptical diffusers oriented predominantly in a first direction, a second spatial region that includes elliptical diffusers oriented predominantly in a second direction that is different from the first direction, and a third spatial region that includes at least one type of optical microstructure selected from the group consisting of Fresnel lenses, v-groove lenses, v-cut lenses, pyramidal lenses, lenticular lenses, donut lenses and conical diffusers.
The accompanying drawings are included to provide a further understanding of the invention and are incorporated in and constitute a part of this specification, illustrate embodiments of the invention, and together with the description serve to explain the principles of the invention.
The drawings represent an illustration of some of the embodiments of the present invention and are not to be construed as limiting the scope of the invention in any manner. Further, the drawings are not necessarily to scale, some features may be exaggerated to show details of particular components. Therefore, specific structural and functional details disclosed herein are not to be interpreted as limiting, but merely as a representative basis for teaching one skilled in the art to variously employ the present invention.
As used herein, the terms “comprises,” “comprising,” “includes,” “including,” “has,” “having” or any other variation thereof, are intended to cover a non-exclusive inclusion. For example, a process, method, article, or apparatus that comprises a list of elements is not necessarily limited to only those elements but may include other elements not expressly listed or inherent to such process, method, article, or apparatus. Also, use of “a” or “an” are employed to describe elements and components described herein. This is done merely for convenience and to give a general sense of the scope of the invention. This description should be read to include one or at least one and the singular also includes the plural unless it is obvious that it is meant otherwise.
Specific instances of an item may be referred to by use of a first numeral followed by a second numeral within parentheses (e.g., optical sheets 100(1), 100(2), etc.) while numerals not followed by a second numeral within parentheses refer to any such item (e.g., optical sheets 100). In instances where multiple instances of an item are shown, only some of the instances may be labeled, for clarity of illustration.
Certain exemplary embodiments of the present invention are described herein and are illustrated in the accompanying drawings. The embodiments described are only for purposes of illustrating the present invention and should not be interpreted as limiting the scope of the invention. Other embodiments of the invention, and certain equivalents, modifications, combinations, and improvements of the described embodiments, will occur to those skilled in the art and all such alternate embodiments, equivalents, combinations, modifications, and improvements are within the scope of the present invention.
Certain embodiments herein relate to optical sheets that create three-dimensional (“3D”) visual impressions through the use of light redirecting elements. The light redirecting elements may be arranged on a nominally flat optical sheet, to form regions with a collective appearance that simulates one or more 3D objects. Various ones of the regions can direct light into certain directions relative to the optical sheet and relative to one another, such that light intensity from the various regions changes when viewing angle with respect to the optical sheet changes. This can create the visual impression in the viewer that the regions are actually a three dimensional object, even though the regions are arranged in a simple flat plane, or at most a sheet that follows simple curves. The light redirecting elements may be micro-structures of varying shapes or orientations, and/or a combination of prismatic lenses with such structures, as explained below. The light redirecting elements and optical sheets disclosed herein are particularly adapted for use with panel lights and LED light assemblies.
Some of these embodiments, and others, are directed to optical sheets having a micro-structured pattern of varying shapes and/or orientations of light redirecting elements, and/or a combination of prismatic lenses with varying shaped/oriented light redirecting elements, particularly for use with panel lights and direct-lit LED light assemblies. An exemplary optical sheet may include an arrangement of one or more types of light redirecting elements and/or prismatic lenses. The arrangement may be configured to produce various visual effects including collimated light, diffuse light and/or combinations thereof. Specifically, an arrangement of light redirecting elements that are oriented at different angles with respect to one other can be used to create varying appearance when viewed from different viewing angles. Certain combinations of light redirecting elements and lenses (such as, but not limited to Fresnel lens structures) can be used to create a visual impression of depth, for example. An exemplary 3D optical sheet may have micro-structured pattern surface regions (e.g., regions having a distribution of light redirecting elements arranged thereon) that produce light emission angles that are different from one another, with the regions arranged in a pattern. The different light redirecting elements may include, but are not limited to, elliptical, conical, prismatic, v-groove, lenticular lens, and Fresnel structures; each such type of light redirecting element can cause light to be preferentially emitted from the optical sheet at one or more selected angles, or ranges of angles.
Light redirecting elements disclosed herein include two types of diffusers, which are referred to as “elliptical” or “conical” diffusers respectively. These elements selectively diffuse and/or redirect light over one or more angles or angular ranges as a function of their sizes, orientations, local density on an optical sheet, and/or mixture with other light redirecting elements.
“Elliptical” diffusers, as shown and discussed further below, typically act predominantly as small cylindrical lenses that either extend from, or are recessed within, an optical sheet. Physically, certain embodiments resemble “fibers” that are arranged in a relatively consistent axial direction on an optical sheet, with distal surfaces of the diffusers extending from the optical sheet and proximal surfaces of the diffusers merged with the sheet. However, these “fibers” are not completely uniform in direction or in circumference, they do not repeat at any fixed periodicity, and they do not typically lie atop the optical sheet, but rather merge with it. The distal surfaces are typically long in a predominant axial direction and curved in a transverse direction. Thus, the distal surfaces may approximate cylindrical lens profiles, and may refract light accordingly, that is, light entering an elliptical diffuser from the proximal surface (the optical sheet itself) and leaving through the distal surface will be spread by refraction transverse to the predominant axial direction of the diffuser. Elliptical diffusers will generally be substantially elongated in a predominant axial direction as compared to their cylindrical radius, usually in a ratio of at least 10:1, and often up to 100:1 or greater. However, elliptical diffusers are typically not purely cylindrical shapes; instead, they may and usually will vary in cross-section, radius of curvature, shape, direction and/or length, as shown and described below. These variations add an element of diffusion to the refractive spreading discussed above.
Because of the mechanical properties discussed above, elliptical diffusers are so named because of the effect that they provide on light passing through. The effect can be considered as transforming a collimated input beam to one that is dispersed into an elliptical output pattern. That is, the light passing through the sheet is refracted so as to expand the output beam significantly in a direction that is transverse to the dominant axial direction of the “fibers,” but only minimally along the axial direction. Variations in diameter of the “fibers,” as well as small deviations of the “fibers” from the dominant axial direction, expand the output beam somewhat along the axial direction itself. Thus an input light ray that would otherwise project to a single point will instead spread to project over an ellipse that is transverse to the original light ray direction of travel.
Controlling these physical features—diameters of the “fibers,” point to point variations in these diameters, the “fibers'” dominant axial directions, and variations in these axial directions—allow control over the elliptical refraction characteristics. Films may be characterized and/or described by these characteristics. For example, a film that expands a collimated input beam that passes through the film, into an output beam that is 70 degrees wide (full width, half maximum) along the transverse direction and only 2 degrees wide along the dominant axial direction, may be characterized as, or called, a “70×2 elliptical film.” Such a film would be a fairly extreme case of an elliptically diffusing film, in that the transverse beam expansion is much greater than the axial beam expansion. A film that provides about half as much expansion along the transverse direction, and about 2½ times the expansion along the axial direction, may be characterized as, or called, a “35×5 elliptical film.” Useful angles of beam expansion cones for conical diffusers herein are often in the range of at least twenty degrees in the transverse direction and less than ten degrees in the axial direction, so that the effect is directional enough to trigger a viewer's impression that a viewed object is three-dimensional rather than a typical, symmetric diffuser.
One skilled in the art will also appreciate that elliptical diffusers may also be formed by cutting grooves, with physical features that cause the same refractive effects as discussed below, into an optical sheet. This is an example of elliptical diffusers not needing to be actually or even approximately cylindrical in shape; elliptical diffusers may have other curvatures or locally planar surfaces that spread light more in one direction than another. Many alternatives, equivalents and improvements will be readily conceived by the skilled practitioner upon reading and understanding the present disclosure, all of which are within the scope of this disclosure. For example, elliptical diffusers of asymmetrical (e.g., not cylindrical) cross-section may also be formed, and such diffusers may refract light into asymmetrical distributions.
“Conical” diffusers, also shown and discussed further below, typically resemble randomly distributed, nonperiodic, rounded shapes with little discernable axial direction. Distal surfaces of conical diffusers may be approximately hemispherical, teardrop shaped, conical, conical lenslets, or elliptical, but with a limited aspect ratio (up to about 3:1). Proximal surfaces of the conical diffusers merge with an optical sheet on which they are located. Light entering a conical diffuser from the proximal surface (e.g., the optical sheet itself) and leaving through the distal surface is generally scattered in many directions, and for light entering an optical sheet at any incidence angle, much of the light may be deviated from that incidence angle.
Because of the mechanical properties discussed above, conical diffusers are so named because of the effect that they provide on light passing through. The effect can be considered as transforming a collimated input beam to one that is dispersed into a conical output pattern. That is, the light passing through the sheet is refracted so as to expand the output beam significantly in all directions that are transverse to the initial direction of the beam. Controlling sizes and shapes of conical diffuser features can be used to control the degree of output beam expansion (e.g., a half angle of an output cone of light) relative to the input beam. Conical diffuser films may be characterized and described by the effect on the input beam. For example, a film that expands a collimated input beam that passes through the film, into an output beam that can be considered a dispersion cone, 30 degrees wide (full width, half maximum) may be called a 30 degree conical film.
Thus, areas of an optical sheet having a high density of conical diffusers will tend to cast light into many angles, and may thus obscure a point of origin of the light. This makes areas of conical diffusers useful in that when small, high output LEDs are used, their light will be spread over a large area, and the unpleasant experience of a viewer seeing the light as coming from very bright point sources can be mitigated.
Elliptical diffusers, conical diffusers and other diffusers herein may have a multi-lens outer surface, such as a curved outer surface, and may be in the shape of a dome, or bead.
Prismatic lenses, or simply lens or lenses, as used herein, include lenses with planar surfaces in at least one local direction, including Fresnel lenses. For example, a Fresnel lens that is laid out as a set of curved lines in plan view, but with spaces between each pair of curved lines forming a locally planar surface from one line to other of the pair, would be considered one form of a prismatic lens. Prismatic lenses may also be linear or two axis prisms. Prismatic, v-groove, v-cut, pyramidal, lenticular, and/or Fresnel lenses are examples of lenses that direct light at least primarily into one or two preferred directions from a planar surface of an optical sheet to produce directed light, which may include collimated light, which light may be emitted at a single angle, or different angles, including asymmetrically.
An exemplary optical sheet is macroscopically flat, that is, the optical sheet forms a planar surface within a small tolerance such as 1 millimeter measured normal to the planar surface. Microscopically, the optical sheet is patterned with micro-structured light redirecting elements such as those discussed above, and may optionally include further features such as diffusers and/or lenses, distributed over various regions of the optical sheet. In an exemplary embodiment, a first region of the optical sheet is configured with a light redirecting element of a first type and/or orientation, and a second region is configured with a different type or orientation of light redirecting element, to form a pattern. For example, a first region of the optical sheet may have a first type of light redirecting element and a second region may be configured with a second type of light redirecting element to form a pattern. The second orientation may be ninety degrees different from the first orientation, but other differences between orientations are possible. A first region of the optical sheet surface may have a first type of diffuser and a second region may have a second type of diffuser. A first region of the optical sheet surface may have a first type of diffuser that is oriented in a first direction and a second region may have the same type of diffuser that is oriented in a second direction or orientation to produce a pattern. In many cases, multiple regions are configured with light redirecting elements in a first orientation, and other multiple regions are configured with a similar type of light redirecting elements, but in a second orientation. A first region of the optical sheet surface may have a first type of lens and a second region may have a second type of lens. A first region of the optical sheet surface may have a first type of lens that is oriented in a first direction and a second region may have the same type of lens that is oriented in a second direction or orientation to produce a pattern. A first region of the optical sheet surface may be configured with one or more diffusers, and a second region may be configured with one or more lenses. Regions configured with different ones and/or mixtures of the diffusers and lenses are also possible. An optical sheet designer who reads and comprehends the present disclosure will readily conceive further combinations, improvements, equivalents and alternatives to the specific examples provided above, all of which are within the scope of this disclosure.
Examples of patterns that can be formed using the features and modalities described herein include, without limitation, any type of image or design that would lend itself to a lit surface with a visual impression of depth. These include picture frames, simulations of existing luminaire types (e.g., center basket luminaires and others), geometrical patterns, logos, trademark symbols, text letters, words, images, real or imagined topography, abstract designs, and the like. Examples created during development include a center-basket luminaire image, a picture frame, a picture frame made from quadrants, and a pyramid, as well as numerous abstract designs using micro lenses in combinations. Interior and/or outer portions of an optical sheet may include regions having one type of light redirecting element, prismatic lens or diffuser, and another region or area with the opposing type of light redirecting element. In one exemplary embodiment, one type of light redirecting element is configured in a polygonal region of the sheet, such as a square, rectangle, pentagon or any other multi-sided region. In a further exemplary embodiment, one type of light redirecting element is configured in a perimeter region surrounding another type of light redirecting element. In a further exemplary embodiment, one type of light redirecting element is configured in a circular or oval region of the optical sheet. In a further exemplary embodiment, one type of light redirecting element in configured in an arc shaped region of the optical sheet. In a still further exemplary embodiment, one or more types of light redirecting elements are configured in regions that form a letter, numeral, symbol or other text.
The light redirecting elements discussed above, for example, diffusers and micro lenses having a height of no more than 1000 microns and preferably no more than 500 microns from an optical sheet surface, may be arranged to form a micro-structured pattern on the optical sheet surface. The micro-structured pattern in the surface of the optical sheet may be an additive relief pattern, wherein the light altering elements, diffusers and lenses, extend upwards (e.g., away) from a reference surface of the optical sheet. For example, a reference surface may be a local plane at a height of the lowest part of all features of the additive relief pattern, (notwithstanding that the optical sheet may be curved or otherwise formed on a scale far exceeding that of the light altering elements). Exemplary micro diffusers may include a combination of holographically originated random elliptical and conical diffusers that may be obtained from WaveFront Technology (Paramount, Calif.) having a height of 3 to 20 microns and a radius of curvature of 1 to 50 microns. These and other micro diffusers and micro lenses may be micro-structures added to the reference surface (or cut into the surface, as discussed below). Such structures may be characterized as having dimensions such as height, diameter, width, and/or depth of no more than about 1,000 microns, no more than about 500 microns, no more than about 250 microns, no more than about 100 microns, no more than about 50 microns, and any range between and including the dimensions provided, including between 1 and 500 microns; from the reference surface of the optical sheet. However, axial dimensions (e.g., length) of elliptical diffusers are excluded from these ranges as they may be many times the height, diameter, width, and/or depth of these structures, as discussed above.
Alternatively, light altering elements may be cuts or indentations into a reference surface of the optical sheet. For example, an exemplary lens may be formed by a prismatic groove having a 3 to 20 micron height and 5 to 100 micron width, with symmetric and/or asymmetric angles.
The height and radius ranges above should be understood as generally applying to height and/or depth of features relative to a background surface of an optical sheet. That is, prismatic lenses and some diffusers, such as elliptical diffusers and/or bead diffusers, and grooves that extend across an optical sheet, may have lengths greater than these dimensions. Such features may be as long or wide as an optical sheet, or even longer/wider given that they may form curved shapes within the optical sheet.
When an exemplary optical sheet as disclosed herein is used within a light assembly having a light guide, the light guide may include extraction features in a pattern that can be varied to create a light intensity pattern that complements the optical sheet, to create additional depth. For example, an extraction dot pattern may be eliminated in portions of the light guide that are adjacent to specific contrast lines in the optical sheet, or the extraction dot pattern may be made dense adjacent to portions of the optical sheet that produce bright lines and/or areas. Light guides used herein are typically planar to facilitate containing light by total internal reflection except when the light encounters extraction features that scatter the light out of the light guide, but nonplanar light guides are also possible.
An exemplary light assembly, having a light guide, a back reflector, and an optical sheet as disclosed herein, can be further modified to create and/or enhance 3D imagery to create additional perceived depth. For example, the back reflector may be modified to have a pattern configured therein through painting, screen-printing, UV printing and/or adhesive laminating a pattern. One example was made wherein a white pattern was UV printed onto Miro 4 specular highly reflective metal (which may be obtained from Alanod, Ennepetal Germany) to complement the front diffuser pattern.
Referring now to
Because the illustrated arrangement is square, spatial regions 110(1) through 110(4) are sometimes referred to as quadrants herein. Although optical sheet 100(1) is square, optical sheets herein may be of any shape suitable for use with a luminaire; square, rectangular, and rounded shapes (circular, elliptical, ovoid and the like) are the most common shapes; these and any other shapes that can be covered with a planar or curved planar optical sheet 100 are contemplated. Also, spatial regions that form an outer boundary corresponding to a given shape may be referred to herein as having or forming that shape, although they may not fill the shape. For example, spatial regions 110(1), 110(2), 110(3) and 110(4) are said to form a square, outer square, rectangle or outer rectangle, even though those spatial regions do not fill the portion of optical sheet 100(1) that is occupied by perimeter spatial region 120(1) and central spatial region 130(1). Perimeter spatial region 120(1), and central spatial region 130(1), are likewise central rectangles, inner rectangles, central squares or inner squares within the outer square. Furthermore, although spatial regions 110(1), 110(2), 110(3) and 110(4) are uniform in width (distance from the outer square edge to the inner edge of each spatial region) spatial regions that form asymmetric frame-like features are also contemplated (e.g., frames with wider side borders than top and bottom borders, vice versa, and the like).
The illustrated arrangement of elliptical diffusers and prismatic lenses produces light emission from optical sheet 100 that creates an impression of depth, even though optical sheet 100 is planar as installed. Orientation of the elliptical diffusers in each spatial region 110 is such that the diffusers in adjacent regions are at different angles to one another; in this case, spatial regions 110(1) and 110(3) have diffusers that are predominantly left-to-right in the perspective of
Diffusers 112 and 116, and prismatic lens structures 114, are examples of micro-structures coupled with the optical sheet surface. Diffusers 112 and 116 have a maximum diffuser height HD of no more than about 1,000 microns relative to a reference plane 101 of optical sheet 100. Reference plane 101 is a planar surface that would be present if no microstructures were added to, or embossed or cut into, optical sheet 100, and is shown for discussion purposes, but is not a physical structure. As shown below in
Axial direction A and transverse direction T, which are relevant to elliptical diffusers 112, are labeled in
Prismatic lens structures 114, examples of which are illustrated in
As seen in
Light sources 240, light guide 250, optional reflector 230 and optical sheet 100(2) depicted in
Optional reflector 230 may be used to capture any light that is scattered out of light guide 250 away from the light output direction and redirect that light toward output aperture 270. Reflector 230 may also have one or more patterns thereon, to further affect the amount, average direction, and directional or diffuse quality of light reflected therefrom. For example, when present, reflector 230 may have some spatial areas of specular reflection and other spatial areas of diffuse reflection, and the diffusion provided in such areas can vary. Areas of specular reflection will cause light extracted from the light guide to reflect back from the reflector at its angle of incidence. Depending on the type of extraction feature that directs some light toward reflector 230 (see
In the orientations of
Exemplary materials for light guide 250 and/or optical sheets 100 are light transmissive, and include plastics such as PMMA (polymethylmethacrylate), other acrylics, polycarbonates, polystyrene, thermoplastics, and/or blends of these plastics, elastomers such as silicone, and glasses. Optional reflector 230, when present, may be a separate component, or may be a reflective surface applied or adhered to a back side of the light guide 250.
With backside illumination, whether from light sources 240 and a light guide 250, or from a different backlight apparatus behind optical sheet 100, different portions of a 3D pattern can be configured to cause light 280 to come out at different angles (e.g., elliptically, conically, collimated or asymmetrically) for different areas of the pattern, these typically generate a visual impression of patterned areas of contrast. Furthermore, when a viewer changes viewing angle from the surface, the areas of contrast (e.g., bright vs dark areas) can change, because of the change in viewing angle in relationship to the local emitting angle. This changing contrast effect allows for areas of the pattern to change from dark to bright in relationship to each other and is strongly associated in the human mind with a 3D effect. That is, from experience in viewing similar changes in light with respect to change in viewing angle, a human viewer will generally assume that they are looking at a 3D surface, unless they take the time to look closely and figure out that the pattern is being emitted from a two-dimensional object. Alternatively, when the backlight apparatus is turned off, the luminaire surface is no longer emitting light, but ambient light can fall on the outer surface of optical sheet 100. In this case, the viewer still sees the reflection of this ambient light off of the surface; the reflected light is also affected by the optical microstructures in the reciprocal manner of the transmitted light, thus again providing surface patterns of contrast that change when the viewing angle changes. Because of this, in this case also, the surface will be perceived by a human viewer as 3D. The use of a reflector 230 behind a light guide, in edge-lit designs, can enhance the reflected light even when the luminaire is in the “off” state, enhancing the 3D impression.
The prismatic elements can be Fresnel or straight prismatic structures. In this sense, Fresnel denotes having changing prism angles to create a lens with a diameter/focal point, while straight prismatic structures may be linear prisms with a repeating fixed angle. Both the Fresnel and prismatic elements can be used to create greater contrast when placed next to diffuser structures. Fresnel structures can impart a round or curved image, based on the associated focal point of the lens. Prismatic elements can cause collimation and/or redirection of the transmitted light into particular angles, and provide enhanced contrast change vs viewing angle. Asymmetric prisms can cause asymmetric bending of the transmitted light and asymmetric contrast. Contrasting prismatic elements with diffuser elements can be used to create a “forced perspective,” where the design itself creates a 3D impression. A basic example is the drawing of a train track moving out to the horizon using two lines; by varying angles of the design elements, a sense of depth can be created. The prismatic structures or oriented diffuser structures can be overlaid on a pattern to create a forced perspective, and ultimately enhance the resulting 3D look.
In
Optical sheet 100(8) schematically illustrated in
However, in optical sheet 100(8), the outermost area spatial regions 110 are narrower than their counterparts in optical sheet 100(7), and the large area between the outermost area and the small, frame-like area is divided into several mitered bands (e.g., frame regions) formed of additional spatial regions 110 with elliptical diffusers, separated by small continuous bands 117 with conical diffusers. Each spatial region of the several mitered bands has the same elliptical orientation as those segments that run parallel to it, and in each quadrant of the frame layout, this orientation is rotated 90 degrees with respect to the elliptical orientation of the outermost spatial region 110 of that quadrant. There is also a wide, conical diffuser spatial region 118 between the innermost mitered band and the small, frame-like area.
Viewed from below, the layout of optical sheet 100(8) creates a 3D impression of “height” extending from the surface of luminaire 400 at the level of the trim ring 465, receding “upwards” through the several mitered bands, until it reaches a “ceiling” level at conical diffuser spatial region 118 between the innermost mitered band and the small, frame-like area (spatial regions 120, 130(4)). The small, frame-like area and the 30 degree conical diffuser area at the center then provide the appearance of a feature that is either suspended “below” the “ceiling” level of spatial region 118, or extends further “above” it. The words in quotation marks here signify that these appearances are only illusory, since the optical sheet that generates the 3D appearance is in fact flat (give or take normal manufacturing tolerances and the height of the diffusers themselves, <=1000 microns from a reference height of the sheet).
Optical sheet 100(10), as schematically illustrated in
It will be appreciated by those skilled in the art that the widths and lengths described above can be modified to provide differently sized luminaires, but the heights need not scale with the widths, due to the use of light pipe and optical sheet technology described above. Thus, luminaires that are very large in area can be made with similar heights as those described above, but much larger widths/lengths/diameters.
It will be apparent to those skilled in the art that various modifications, combinations and variations can be made in the present invention without departing from the scope of the invention. Specific embodiments, features and elements described herein may be modified, and/or combined in any suitable manner. Thus, it is intended that the present invention cover the modifications, combinations and variations of this invention provided they come within the scope of the appended claims and their equivalents.
This application is a nonprovisional application of, and claims priority to, U.S. Provisional Patent Application No. 62/850,135, filed 20 May 2019, and U.S. Provisional Patent Application No. 63/022,871, filed 11 May 2020. The disclosures of the above-identified provisional patent applications are incorporated by reference herein in their entireties for all purposes.
Number | Date | Country | |
---|---|---|---|
62850135 | May 2019 | US | |
63022871 | May 2020 | US |