1. Field of the Invention
The present invention relates to an automatic icemaker installed in an ice compartment of a refrigerator, and in particular, to a mounting structure for a micro switch for adjusting the amount of water to be filled in an ice tray for ice making.
2. Description of the Related Art
Conventionally, in an automatic icemaker installed in an ice compartment of a refrigerator, water is filled in an ice tray for ice making. In order to obtain a constant amount of ice, the amount of filled water should not be varied. However, due to influences of a diameter and water pressure of a water supply pipe in each house, the amount of water filled in the ice tray varies. Thus, the time that a water-filling valve is kept open is adjusted to decrease variation in the amount of filled water.
In accordance with product specification of the automatic icemaker, water filling time is determined to be a value such as 5±0.5 seconds, 5.5±0.5 seconds, or 6±0.5 seconds. However, even when the automatic icemaker is assembled to enable such setting, there is still caused variation in water filling time by a few seconds. In order to keep the water filling time within such specification, the water filling time is adjusted when the automatic icemaker is shipped.
Referring to
As shown in
When a high-strength member is used for the mounting base 10a which supports the second screw 3a and the spring 4a, the mounting base 10a should be made of metal. In such a case, an electrically insulating member 14a has been required to be interposed between the micro switch 9a and the mounting base 10a in order to secure an insulation distance and a spacial distance between a terminal of the micro switch 9a and the mounting base 10a.
A plastic case is generally used for the micro switch 9a. In the conventional icemaker, the case is deformed when the first screws 16a, 17a are tightened by strong torque with respect to the micro switch 9a. To the contrary, when the torque for tightening the first screws 16a, 17a is reduced, the micro switch 9a cannot be securely fixed. Thus, problems have occurred such that the micro switch 9a is displaced while shipping the automatic icemaker and that the micro switch 9a is displaced in a long period of use to cause variations in the amount of water filled in the ice tray in comparison with the filled amount in an early stage of use. In order to solve such problems, highly accurate torque management has been required for tightening the first screws 16a, 17a when the micro switch 9a is fixed to the mounting base 10a.
Such adjustment of the micro switch 9a using the movable arm 12a is sometimes performed by a consumer in a market as well as is performed by a manufacturer prior to shipment of the automatic icemaker. Accordingly, the adjustment is required to be easy and repeatable.
According to a preferred embodiment of the present invention, an automatic icemaker includes a motor; a gear mechanism having a drive shaft serving as an output axis and engaging with the motor; a cam attached to the drive shaft and having a substantially V-shaped cutout on an outer peripheral surface thereof; a micro switch having a switch portion in contact with the outer peripheral surface of the cam; and a mounting base on which the micro switch is mounted.
According to another preferred embodiment of the present invention, a mounting structure including the mounting base and the micro switch mounted on the mounting base is provided. The micro switch is fixed to the mounting base using a first fixing member and a second fixing member. The first fixing member is inserted through a mounting hole provided in the micro switch, and extends from a mounting surface and a fixing surface of the mounting base which are opposite to each other. On the mounting surface is mounted the micro switch. The second fixing member is attached to a portion of the first fixing member protruding from the fixing surface of the mounting base. Accordingly, the micro switch is interposed between the first fixing member and the mounting base by the first fixing member and the second fixing member.
Other features, elements, advantages and characteristics of the present invention will become more apparent from the following detailed description of preferred embodiments thereof with reference to the attached drawings.
Referring to
A structure of an automatic icemaker according to a preferred embodiment of the present invention is now described, referring to
Referring to
The controller 20 includes a motor 5 and a gear mechanism (not shown) engaging with the motor 5. The gear mechanism has a driving shaft as its output shaft. The controller 20 also includes an approximately cylindrical cam 6 attached to the drive shaft of the gear mechanism. The cam 6 has a substantially V-shaped cutout on its outer peripheral surface. In the controller 20, a micro switch 9 (see
Referring to
By using the pins as the first fixing members 16, 17 and the push nuts as the second fixing members 8, it is not required to perform highly accurate torque management which is necessary for a case of using a conventional screw. Specifically, it is only required to manage press fit height of the push nuts as the second fixing members 8 fit into the pins as the first fixing members 16, 17. For such management of the press fit height, the second fixing members 8 need only to be press fitted so that the micro switch 9 is fixed to the mounting base 10 with no space therebetween. As a result, it is possible to improve work efficiency of a manufacturer to fix the micro switch 9 to the mounting base 10. Further, the manufacturer can easily and accurately mount the micro switch 9 onto the mounting base 10 since it is unnecessary to perform the highly accurate torque management as conventional required.
A substantially V-shaped cutout 61 is formed on a portion of then outer peripheral surface of the cam 6. The cam 6 is rotated by the motor 5 via the gear mechanism. The outer peripheral surface of the cam 6 is in contact with a switch portion 93 (see
Next, there is described an exemplary structure for mounting the micro switch 9 onto the mounting base 10 of the automatic icemaker 1 of this preferred embodiment, referring to
Referring to
Referring to
The mounting base 10 is provided with a plurality of openings 103 extending from the mounting surface 101 to the fixing surface 102. The openings 103 include a first opening 1031 allowing the cam 6 to be inserted thereinto, a second opening 1032 and a third opening 1033 allowing the first fixing members 16, 17 for fixing the micro switch 9 to be respectively inserted thereinto. In this preferred embodiment, the third opening 1033 preferably has an approximately oval shape.
The mounting base 10 is also provided with ribs 104 for improving the strength of the mounting surface 101 and that of the fixing surface 102. The ribs 104 include first ribs 1041 respectively formed on outer peripheral edges of the mounting surface 101 and the fixing surface 102, a second rib 1042 formed into an approximately lattice shape on the mounting surface 101, a third rib 1043 formed into an approximately lattice shape on the fixing surface 102, fourth ribs 1044 respectively formed on peripheral edges of the second opening 1032 on the mounting surface 101 and on the fixing surface 102, and fifth ribs 1045 respectively formed on peripheral edges of the third opening 1033 on the mounting surface 101 and on the fixing surface 102.
The adjusting portion 105 has plate-like walls 1051 which are provided on the mounting surface 101 and extend away from the mounting surface 101. The walls 1051 include a first wall 1051a and a second wall 1051b separated from each other. The first wall 1051a, which is a closer one of the walls 1051 to the outer peripheral edge of the mounting base 10, is provided with a through hole allowing the adjusting screw 3 to be inserted therethrough. The second wall 1051b arranged inside the first wall 1051a is provided with a recess allowing the adjusting screw 3 to be inserted therethrough. The spring 4 is accommodated between the first wall 1051a and the second wall 1051b. The first end of the movable arm 12 is fixed to the mounting base 10 by the adjusting screw 3 between the first wall 1051a and the second wall 1051b.
Referring to
Each of the first fixing members 16, 17 has a rod-like extending portion to be inserted through the mounting hole 913 of the micro switch 9. For example, the extending portion preferably is in the form of an approximately circular column in this preferred embodiment. Each of the first fixing members 16, 17 also has a head portion having a diameter larger than that of the extending portion and that of the mounting hole 913. The head portion has a surface to be in contact with the second main surface 912 of the micro switch 9. The extending portion extends substantially perpendicularly to that surface of the head portion. With this configuration, it is possible to position the first fixing members 16, 17 with respect to the micro switch 9.
The second fixing members 8 are attached to the first fixing members 16, 17 on the fixing-surface side of the mounting base 10. The second fixing member 8 attached to the first fixing member 17 is in contact with the fourth rib 1044 on the fixing surface 102, while the second fixing member 8 attached to the first fixing member 16 is in contact with the second end of the movable arm 12. Thus, the movable arm 12 is interposed between the second fixing members 8 and the fixing surface 102 of the mounting base 10. In particular, the movable arm 12 is in contact with the fifth rib 1045 on the fixing surface 102.
The micro switch 9 is interposed between the head portions of the first fixing members 16, 17 and the second rib 1042 on the mounting surface 101 of the mounting base 10 via the first fixing members 16, 17 and the second fixing members 8.
Since the mounting base 10 is preferably made of resin, it is possible to provide a cheaper and lighter mounting base 10 as compared with a metal mounting base conventionally used.
In this preferred embodiment, the mounting base 10 provides electrical insulation because it is made of electrically insulating material, as described above. Thus, the terminals 92 of the micro switch 9 and the mounting surface 101 of the mounting base 10 can be electrically insulated from each other. Accordingly, there is provided a highly reliable automatic icemaker which can reduce or prevent short circuiting of the micro switch.
The micro switch 9 is mounted onto the mounting surface 101 of the mounting base 10, while the movable arm 12 is attached to the fixing surface 102 of the mounting base 10. Thus, it is possible to increase a creeping distance between the terminals 92 of the micro switch 9 and the movable arm 12. Therefore, dielectric strength can be improved between the terminals 92 and the movable arm 12.
Moreover, the pins are used as the first fixing members 16, 17 and the push nuts are used as the second fixing members 8 in this preferred embodiment. Thus, excessive load is prevented from being applied to the mounting base 10 when the micro switch 9 is mounted onto the mounting base, unlike the screws used in the conventional automatic icemaker. Therefore, resin can be used as the material of the mounting base 10, although resin mounting bases generally have lower strength than the conventional metal mounting bases.
There has been described the automatic icemaker according to a preferred embodiment of the present invention. However, the present invention is not limited to the above.
For example, the first fixing members 16, 17 and the second fixing members 8 are embodied respectively as the pins and the push nuts in the above preferred embodiment. However, the present invention is not limited thereto. Any members can be used as the first fixing members 16, 17 and the second fixing members 8 as long as such members do not require highly accurate torque management as conventionally required.
Further, the mounting base 10 and the micro switch 9 are installed in the automatic icemaker 1 in the above preferred embodiment. However, the present invention is not limited thereto. The present invention is also applicable to any equipment utilizing a micro switch and a mounting base other than the automatic icemaker.
While preferred embodiments of the present invention have been described above, it is to be understood that variations and modifications will be apparent to those skilled in the art without departing the scope and spirit of the present invention. The scope of the present invention, therefore, is to be determined solely by the following claims.
Number | Date | Country | Kind |
---|---|---|---|
2007-083236 | Mar 2007 | JP | national |