The present invention relates to a micro-switch and particularly to a micro-switch provided labor-saving switching through a plurality of levers.
Micro-switch is a miniaturized switch with a transmission shaft formed in a selected shape on an outer side to receive an external force to perform switching operation. It generally includes features such as a small contact distance and an instant moving mechanism to provide mechanical ON/OFF through a set moving distance and action force, thus is often used to detect positioning status of machine movement.
A conventional micro-switch such as R.O.C. patent No. 592380 mainly includes an upper lid and a base. The micro-switch also includes a pushbutton, a common pin, an open-circuit pin and a conductive reed fastened to the common pin. One end of the conductive reed is depressible by the pushbutton so that another end of the conductive reed is moved downwards at the same time to connect the common pin and open-circuit pin to generate a switch signal. While it can provide circuit switch function, it relies merely on the conductive reed to bear the downward pressure and provide an elastic force. After used for a prolonged period, the reed tends to fatigue because of frequent bending up and down or even fracture, and could result in dysfunction of the micro-switch.
To remedy the aforesaid shortcoming, China utility patent CN202110987 discloses a micro-switch capable of withstanding a greater number of pressing, referring to
Although the aforesaid technique resolves the problem of easy fatigue and fracturing of the conductive reed, and can withstand a greater number of pressing, it still has the following drawbacks remained to be overcome: when the pushbutton 5 is pushed downwards to press the press-receiving portion 41 the contact portion 42 also is moved downwards. As the conductive reed 4 is formed at a considerable length and thickness, a substantial push force has to be applied to the pushbutton 5 to sway the contact portion 42 to move to and fro at a sufficient distance to switch between different conductive states. To reduce the push force, one of the approaches is to reduce the thickness of the conductive reed 4 that is more difficult in fabrication and also results in decreasing of the lifespan of the conductive reed 4. Moreover, a great current often occurs during connection of the contact portion 42 and conductive reed 4 that generates a greater amount of heat on the contact surface between the contact portion 42 and conductive reed 4 and could cause melting of a portion of the contact portion 42 to stick to the conductive reed 4, then a greater force has to be applied to separate the contact portion 42 and conductive reed 4 to make the micro-switch function normally. Hence to overcome the sticking phenomenon is the prerequisite condition to reduce the press force needed for switching. This is still an issue remained to be resolved.
In addition to the considerations of increasing the lifespan of the micro-switch and reducing the press force for switching, a wide variety of specifications also are required in various industries to fabricate different types of precision machineries. Those varying specifications of micro-switches have specific moving distances and action forces. For instance, while reducing the thickness of the elastic reed can make the action force smaller, changing the moving distance involves assembly of a greater number of internal elements. Merely changing one element cannot meet the requirements of various specifications. Hence the producers have to make a greater number of molds that also makes the production higher. Thus how to change the moving distance of the micro-switch easier through a same production mold is another problem pending to be overcome.
The primary object of the present invention is to reduce press force needed in switching and overcome the disadvantage of dysfunction of micro-switch caused by the sticking phenomenon.
Another object of the invention is to resolve the shortcoming of making multiple sets of molds in response to varying micro-switch specifications.
To achieve the foregoing object the invention provides a micro-switch that provides labor-saving switching. It comprises a housing, a press member located on the housing, an actuation member located in the housing and a driving assembly located between the press member and actuation member. The housing has a housing compartment, at least one first conductive terminal and a common terminal extended outwards from the housing compartment. The actuation member has a butting portion close to the common terminal and a connecting portion remote from the common terminal. The connecting portion has a first conductive state connecting to the at least one first conductive terminal and a second conductive state without connecting to the at least one first conductive terminal. The press member has a displacement when pushed and moved reciprocally in the housing between an original position and a pressed position. The driving assembly includes a force-bearing member hinged on the housing in a swivelable manner and at least one transmission member hinged on the housing and being swivelable inversely against the force-bearing member. The force-bearing member includes a force-receiving portion located in the displacement and an actuating portion connected to the force-receiving portion. The at least one transmission member includes a driven portion driven by the actuating portion and a force-applying portion connected to the driven portion. The force-receiving portion receives being pressed by the press member to drive the force-applying portion swiveling inversely and push the butting portion so as to drive the connecting portion to switch between the first conductive state and second conductive state.
In one embodiment the force-bearing member includes a first pivoting portion bridged the force-receiving portion and actuating portion and hinged on the housing in a swivelable manner. The housing has at least one positioning hole. The first pivoting portion is a swivel shaft hinged in the positioning hole in a swivelable manner.
In another embodiment the force-bearing member includes a first pivoting portion bridged the force-receiving portion and actuating portion and hinged on the housing in a swivelable manner. The housing has at least one holding shaft. The first pivoting portion is a shaft sleeve hinged on the holding shaft in a swivelable manner.
In yet another embodiment the at least one transmission member includes a second pivoting portion bridged the driven portion and force-applying portion and hinged on the housing in a swivelable manner. The housing has at least one positioning hole. The second pivoting portion is a swivel shaft hinged in the positioning hole in a swivelable manner.
In yet another embodiment the at least one transmission member includes a second pivoting portion bridged the driven portion and force-applying portion and hinged on the housing in a swivelable manner. The housing has at least one positioning hole. The second pivoting portion is a swivel shaft hinged in the positioning hole in a swivelable manner. The housing has at least one holding shaft. The second pivoting portion is a shaft sleeve hinged on the holding shaft in a swivelable manner.
In yet another embodiment the actuating portion of the force-bearing member is coupled with the driven portion of the at least one transmission member.
In yet another embodiment the housing has a second conductive terminal in the housing compartment corresponding to the at least one first conductive terminal at a lower side, and the connecting portion is connected to the second conductive terminal in the second conductive state.
In yet another embodiment the press member includes a press portion and an elastic element bracing the press portion in normal conditions.
In yet another embodiment the housing includes a channel to allow the press portion to move reciprocally therein. The press portion has at least one retaining section at the bottom thereof formed with a size greater than the diameter of the channel
In yet another embodiment the actuation member includes a bracing portion using the common terminal as a fulcrum to push the connecting portion to connect to the at least one first conductive terminal in normal conditions.
By means of the structure set forth above, compared with the conventional techniques, the micro-switch of the invention provides features as follow:
1. Reduce the press force needed for switching. The press member of the invention exploits the lever principle through the force-bearing member and transmission member, and can amplify a small press force to overcome sticking and maintain normal switch operation, thus improve sensitivity of the micro-switch to meet use requirements of precision machineries.
2. By changing the specification of the driving assembly various types of micro-switches with different displacements and actuation forces can be made. The displacement of the press member can be changed by adjusting the swivel displacement of the driving assembly. The swivel displacement is determined by many factors, such as the distance between the force-bearing member and transmission member, the lengths of the force-receiving portion and actuating portion of the force-bearing member, and the lengths of the driven portion and force-applying portion of the transmission member. Hence by adjusting those factors that affect the swivel displacement, micro-switches conforming to various displacement specifications can be made without making extra molds.
The foregoing, as well as additional objects, features and advantages of the invention will be more readily apparent from the following detailed description, which proceeds with reference to the accompanying drawings.
Please refer to
Also referring to
Referring to
Please refer to
The mechanism depicted in
Furthermore, the press portion 21 drives the connecting portion 152 to sway up and down via the driving assembly 30 consisting of the force-bearing member 31 and transmission member 32 and is moved in the channel 16 at a distance which can be changed by adjusting the swivel displacement of the driving assembly 30. The swivel displacement of the driving assembly 30 is determined by many factors, such as the distance between the force-bearing member 31 and transmission member 32, the lengths of the force-receiving portion 312 and actuating portion 313, and the lengths of the driven portion 322 and force-applying portion 323. Therefore adjusting the aforesaid factors that affect the swivel displacement can attain desired movements of various specifications of micro-switch without the need of making molds anew.
As a conclusion, the micro-switch of the invention provides a driving assembly between the press member and actuation member. The driving assembly includes a force-bearing member hinged on the housing and at least one transmission member swiveling inversely against the force-bearing member. The force-bearing member has a force-receiving portion in the displacement and an actuation member connected to the force-receiving portion. The transmission member has a driven portion connected to the actuating portion and a force-applying portion connected to the driven portion. Through the structure previously discussed the press member can drive the connecting portion via the driving assembly to switch between a first conductive state and a second conductive state. Compared with the conventional techniques, the micro-switch of the invention employs the lever principle, thus can switch via a small force.
Moreover, the specification of the driving assembly can be changed as desired to make the micro-switch to equip with varying displacements and action forces to meet special use requirements. It provides significant improvements over the conventional techniques.
While the preferred embodiments of the invention have been set forth for the purpose of disclosure, they are not the limitations of the invention, modifications of the disclosed embodiments of the invention as well as other embodiments thereof may occur to those skilled in the art. Accordingly, the appended claims are intended to cover all embodiments which do not depart from the spirit and scope of the invention.
Number | Name | Date | Kind |
---|---|---|---|
4045632 | Pierrot | Aug 1977 | A |
5459295 | Ohta et al. | Oct 1995 | A |
6864453 | Yu | Mar 2005 | B1 |
7932475 | Schnodt | Apr 2011 | B2 |
8680415 | Fang et al. | Mar 2014 | B2 |
20130231007 | Iwamoto et al. | Sep 2013 | A1 |
Number | Date | Country |
---|---|---|
202110987 | Jan 2012 | CN |
592380 | Jun 2004 | TW |
Number | Date | Country | |
---|---|---|---|
20130327622 A1 | Dec 2013 | US |