Microaircraft and cellular phone equipped with microaircraft

Abstract
An aircraft which is attachable to, for example, a cellular phone. The aircraft is provided with at least four rotors actuated with compressed fluid or by ring-shaped electric motors.
Description
SUMMARY OF THE INVENTION

The present invention relates to a microaircraft comprising a basically flat body having at least four ring-shaped microrotors, basically co-planar and arranged on the vertices of a quadrilateral, motor means for controlling said microrotors and an electronic microcontroller for controlling said motor means.


In a preferred embodiment, the aforesaid microrotors are compressed air turbines and the aforesaid motor means comprise a combustion microchamber for a nano-particle fuel and one or more nozzles associated to each microturbine for directing onto the latter one or more shock fronts generated inside the combustion microchamber.


In an alternative embodiment, the motor means are made up of a ring-shaped electric motor for each of the micromotors, each microrotor constituting the rotor of a corresponding electric motor.


The invention also relates to a cellular phone to which a microaircraft as referred to above is connected in a removable way. The cellular phone is equipped with means for remote control of the air-craft. Preferably, the microaircraft is provided with multimedia means, such as for instance a miniature camera and a microphone, and can therefore transmit audio and video messages to the guest mobile phone or also to other cellular systems and Internet networks.


The control means of the four microrotors of the microaircraft are designed to control said microrotors independently from one another or in pairs. Preferably, the microaircraft is controlled by generating a clockwise rotation on the two ring-shaped microturbines placed on two opposite vertices of the quadrilateral, and a counter-clockwise rotation on the other two microturbines. The aircraft has four degrees of freedom. By changing simultaneously or differentially the speed of the microturbines, it is possible to obtain a vertical motion (upwards and downwards), a lateral motion (right or left), a horizontal motion (forwards and backwards) or a rotation around a yaw axis.


The vertical motion is controlled by increasing or decreasing simultaneously the power of all four microturbines. The lateral motion is controlled by increasing the power of two turbines on the same side of the quadrilateral with respect to the other two. For instance, by increasing the speed of the turbines on the left the aircraft shifts towards the right. In the same manner, a power increase of the two back or front turbines causes a forward or backward motion, respectively. The fourth degree of freedom is controlled by the induced moment generated by rotor resistance. This moment acts in the opposite direction with respect to rotor rotation. In order to eliminate aircraft yaw, the sum of all induced moments should be zero. However, if a set of rotors, for instance those turning clockwise, arranged on the vertices of the quadrilateral, increases its rotational speed, the resulting induced moment will generate a counter-clockwise rotation of the aircraft.


In the specific case in which propulsion is obtained with electric motors, in a preferred embodiment the microaircraft uses commercially available thin film batteries or microfuel cells.





BRIEF DESCRIPTION OF THE DRAWINGS

Further characteristics and advantages of the invention shall be evident from the following description with reference to the accompanying drawings, provided as mere non-limiting examples, in which:



FIG. 1 is a perspective front view of a cellular phone-microaircraft assembly according to the invention, in disassembled condition,



FIG. 2 is a perspective rear view of the assembly of FIG. 1,



FIG. 3 is a magnified, partially sectioned perspective view of the microaircraft belonging to the assembly of FIGS. 1, 2,



FIG. 3A shows a variant of a detail of the embodiment of FIG. 3, where a same combustion micro-chamber is provided with two nozzles for controlling two turbines,



FIG. 4 is a diagram showing the control criterion applied to the four microrotors of the microaircraft,



FIGS. 5, 6 are perspective views of possible embodiments of each microrotor, and



FIG. 7 is a block diagram of the control system of the microaircraft according to the invention.





DETAILED DESCRIPTION OF THE INVENTION

With reference to FIGS. 1 and 2, number 1 globally refers to a microcellular phone provided with means for the removable connection of a microaircraft 2. Cellular phones today, can reach transmission rates up to 2 megabits per second, i.e. 200 times more with respect to the limits of a GSM system, thus enabling high definition audio and video transmissions. The success of said standard as global mobile communication standard allows a virtual connectivity worldwide. The microaircraft 2 comprises, as shown in FIG. 3, a basically flat body 3 with four microrotors 4 arranged on the vertices of a quadrilateral, basically co-planar one to the other. A compressed gas (or air) tank 5 supplied through a valve 6 is defined inside the body 3. Each microrotor 4 is associated to one or more nozzles 7 connected to a combustion microchamber 8, in which a nano-particle fuel generates a microcombustion causing one or more shock fronts for controlling each microrotor. The nozzles 7 can be arranged on the two opposite ends of the same combustion microchamber placed between two adjacent turbines (FIG. 3A), so as to control both turbines. The system for obtaining a pulsed jet can be of “valveless” or “detonation” type. The rotor of each microturbine can be of “magnetic lift” type.


In FIG. 4 the microrotors 4 are referred to in short with AS (front left), AD (front right), PS (rear left) and PD (rear right). The two rotor pairs AS, PD and AD, PS are rotated in opposite directions, as shown in FIG. 4, so as to ensure the reciprocal cancellation of yaw moments. As already mentioned above, the vertical, lateral, horizontal motion and a yaw rotation are obtained by means of a selective control of the rotation speed of the four microrotors.



FIGS. 5, 6 are perspective views of two possible embodiments of each microrotor 4.


According to an alternative embodiment, each rotor 4 is a ring-shaped stator of a ring-shaped electric motor.


The body 3 of the microaircraft houses an electronic microcontroller 5, which communicates at a distance with the cellular phone 1. Multimedia means are further arranged on board the microaircraft, such as a miniature camera, a microphone or various sensors transmitting audio and video messages to the guest mobile phone or to other cellular systems or Internet networks.



FIG. 7 shows the structure of the control system in which two main elements can be identified, i.e. the microaircraft 2 and the base station. The microaircraft 2 comprises the four microrotors 4 with their control motors 7 controlled by means of an electronic speed controller 8 by a microprocessor 5. The latter communicates by means of sensors 20 and a GPS antenna 21 at radio frequency with the mobile phone or an Internet station, which send control data, whereas the aircraft transmits audio-video data. Said result is achieved by means of one or more miniature cameras 22 connected through a video transmitter 23 and an antenna 24 with the antenna 25 of a video base receiver 26. The miniature cameras (CCD or CMOS) are also designed as dynamic view sensors. Control signals are sent by the control station 27 or by the mobile phone by means of a R/C transmitter 28 and a transmitting antenna 29, so as to be received by means of an antenna 30 by a data receiver 31 receiving a power line 32 and transmitting to the microprocessor 5 on a four-channel line 33. The microaircraft is eventually associated to a battery assembly 34.


The microprocessor is the core of the microaircraft. It receives input signals from on-board sensors and video information from cameras and sends output signals for electronic speed controllers of the microturborotors. As was already said, in an alternative version with respect to compressed air motors, said motors can be ring-shaped electric motors. A preferred characteristic of the invention is the use of compressed air turborotors supercharged by means of microcombustions.


A self-charge function of turborotors and of ring-shaped electric motors can be provided by means of wind energy.


As was already said, a thin film battery or a microfuel cell can be used.


Obviously, though the basic idea of the invention remains the same, construction details and embodiments can widely vary with respect to what has been described and shown by mere way of example, however without leaving the framework of the present invention.

Claims
  • 1. An aircraft in combination with a cellular phone, the aircraft comprising: a body having at least four ring-shaped co-planar rotors;a plurality of motors, each motor operative to control a respective one of said rotors; andan electronic controller operative to control said plurality of motors,wherein, the aircraft is attachable to at least a portion of the cellular phone in a removable manner, andwherein the aircraft is smaller in size than the cellular phone, such that when the aircraft is attached to the cellular phone, the aircraft forms a removable wall portion of the cellular phone.
  • 2. The combination according to claim 1, wherein said rotors are gas turbines and each of said plurality of motors comprises a combustion chamber for a nano-particle fuel and one or more nozzles associated to each respective gas turbine for directing onto each respective gas turbine one or more shock fronts generated inside the combustion chamber.
  • 3. The combination according to claim 1, wherein each motor includes a ring-shaped electric motor for each respective rotor.
  • 4. The combination according to claim 1, wherein the rotors are of a magnetic lift type.
  • 5. The combination according to claim 1, wherein said cellular phone is configured to remotely control said aircraft.
  • 6. The combination according to claim 5, wherein the aircraft is provided with a camera and a microphone, such that the aircraft can transmit audio and video messages to said cellular phone or to other cellular systems and Internet networks.
  • 7. The combination according to claim 6, wherein said plurality of motors control said four rotors of the aircraft independently from one another.
  • 8. The combination according to claim 7, wherein said rotors are gas turbines and the aircraft is controlled by generating a clockwise rotation on two of said gas turbines which are arranged in opposition to each other, and a counter-clockwise rotation is generated on another two of said gas turbines also arranged in opposition to each other.
  • 9. The combination according to claim 8, wherein said plurality of motors are operative to vary, simultaneously or differentially, a speed of the gas turbines so as to obtain an upward and downward vertical motion, a right and left lateral motion, a forward and backward horizontal motion or a rotation around a yaw axis, said vertical motion being controlled by increasing or decreasing, simultaneously, the power of all four gas turbines, the lateral and horizontal motion being controlled by increasing the power of two gas turbines provided next to each other, and the yaw moment being controlled by rotating at different speeds the rotors turning in a direction with respect to rotors turning in an opposite direction.
  • 10. The combination according to claim 6, wherein the aircraft uses thin film batteries or fuel cells.
  • 11. The combination according to claim 6, wherein the aircraft uses cameras (CCD or CMOS) designed as dynamic view sensors.
Priority Claims (1)
Number Date Country Kind
TO2003A0823 Oct 2003 IT national
US Referenced Citations (19)
Number Name Date Kind
2951661 Dorman et al. Sep 1960 A
2954614 Vogt Oct 1960 A
3045951 Freeland Jul 1962 A
3387456 Feder et al. Jun 1968 A
4043421 Smith Aug 1977 A
4880071 Tracy Nov 1989 A
5082079 Lissaman et al. Jan 1992 A
6260796 Klingensmith Jul 2001 B1
6568630 Yoeli May 2003 B2
6626078 Thornton Sep 2003 B2
D496606 Sanders, Jr. Sep 2004 S
6817570 Yoeli Nov 2004 B2
6824095 Mao Nov 2004 B2
6866478 Fabian et al. Mar 2005 B2
20020104921 Louvel Aug 2002 A1
20030068034 Silvester Apr 2003 A1
20030106959 Fukuyama Jun 2003 A1
20050125151 Lee Jun 2005 A1
20050242231 Yoeli Nov 2005 A1
Foreign Referenced Citations (4)
Number Date Country
100 14 899 Sep 2001 DE
0 279 391 Aug 1888 EP
WO 0209396 Jan 2002 WO
WO 03061155 Jul 2003 WO
Related Publications (1)
Number Date Country
20060038059 A1 Feb 2006 US