MICROBIAL PRODUCTION OF MOGROL AND MOGROSIDES

Abstract
The present invention provides host cells and methods for making mogrol glycosides, including Mogroside V (Mog.V), Mogroside VI (Mog.VI), Iso-Mogroside V (Isomog.V), siamenoside, and glycosylation products that are minor products in Siraitia grosvenorii. The invention provides engineered enzymes and engineered host cells for producing mogrol glycosylation products, such as Mog.V, Mog.VI, and Isomog.V, at high purity and/or yield. The present technology further provides methods of making products containing mogrol glycosides, such as Mog.V, Mog.VI, and Isomog.V, including food products, beverages, oral care products, sweeteners, and flavoring products.
Description
BACKGROUND

Mogrosides are triterpene-derived specialized secondary metabolites found in the fruit of the Cucurbitaceae family plant Siraitia grosvenorii (a/k/a monkfruit or Luo Han Guo). Their biosynthesis in fruit involves a number of consecutive glycosylations of the aglycone mogrol. The food industry is increasing its use of mogroside fruit extract as a natural non-sugar food sweetener. For example, mogroside V (Mog.V) has a sweetening capacity that is ˜250 times that of sucrose (Kasai et al., Agric Biol Chem (1989)). Moreover, additional health benefits of mogrosides have been revealed in recent studies (Li et al., Chin J Nat Med (2014)).


A variety of factors are promoting a surge in interest in research and commercialization of the mogrosides and monkfruit in general, including, for example, the explosion in popularity of and demand for natural sweeteners; the difficulties in scalable sourcing of other promising natural sweeteners such as rebaudioside M (RebM) from the Stevia plant; the superior taste performance of Mog.V relative to other natural and artificial sweetener products on the market; and the medicinal potential of the plant and fruit.


Purified Mog.V has been approved as a high-intensity sweetening agent in Japan (Jakinovich et al., Journal of Natural Products (1990)) and the extract has gained GRAS status in the USA as a non-nutritive sweetener and flavor enhancer (GRAS 522). Extraction of mogrosides from the fruit can yield a product of varying degrees of purity, often accompanied by undesirable aftertaste. In addition, yields of mogroside from cultivated fruit are limited due to low plant yields and particular cultivation requirements of the plant. Mogrosides are present at about 1% in the fresh fruit and about 4% in the dried fruit (Li H B, et al., 2006). Mog.V is the main component, with a content of 0.5% to 1.4% in the dried fruit. Moreover, purification difficulties limit purity for Mog.V, with commercial products from plant extracts being standardized to about 50% Mog.V. It is highly likely that a pure Mog.V product will achieve greater commercial success than the blend, since it is less likely to have off flavors, will be easier to formulate into products, and has good solubility potential. It is therefore advantageous to be able to produce sweet mogroside compounds via biotechnological processes.


SUMMARY

The present invention, in various aspects and embodiments, provides enzymes (including engineered enzymes), microbial strains, and methods for making mogrol and mogrol glycosides (“mogrosides”) using recombinant microbial processes. In other aspects, the invention provides methods for making products, including foods, beverages, and sweeteners (among others), by incorporating the mogrol glycosides produced according to the present disclosure.


In various aspects, the invention provides microbial strains and methods for making mogrol or mogrol glycoside(s). The invention involves a recombinant microbial host cell expressing a heterologous enzyme pathway catalyzing the conversion of isopentenyl pyrophosphate (IPP) and/or dimethylallyl pyrophosphate (DMAPP) to mogrol or mogrol glycoside(s). The microbial host cell in various embodiments may be prokaryotic (e.g., E. coli) or eukaryotic (e.g., yeast).


In various embodiments, the heterologous enzyme pathway comprises a farnesyl diphosphate synthase (FPPS) and a squalene synthase (SQS), which are recombinantly expressed. In various embodiments, the SQS comprises an amino acid sequence that is at least 70% identical to an amino acid sequence selected from SEQ ID NOS: 2 to 16, 166, and 167. In some embodiments, the SQS comprises an amino acid sequence that is at least 70% identical to SQS (SEQ ID NO: 11), which has high activity in E. coli.


In some embodiments, the host cell expresses one or more enzymes that produce mogrol from squalene. For example, the host cell may express one or more squalene epoxidase (SQE) enzymes, one or more triterpenoid cyclases, an epoxide hydrolase (EPH), one or more cytochrome P450 oxidase enzymes (CYP450), a non-heme iron-dependent oxygenases, and a cytochrome P450 reductases (CPR). As shown in FIG. 2, the heterologous pathway can proceed through several routes to mogrol, which may involve one or two epoxidations of the core substrate.


In some embodiments, the heterologous enzyme pathway comprises two squalene epoxidase (SQE) enzymes. For example, the heterologous enzyme pathway may comprise an SQE that produces 2,3-oxidosqualene. In some embodiments, the SQE will produce 2,3:22,23-dioxidosqualene, and this conversion can be catalyzed by the same SQE enzyme, or an enzyme that differs in amino acid sequence by at least one amino acid modification. For example, the squalene epoxidase enzymes may include at least two SQE enzymes each comprising (independently) an amino acid sequence that is at least 70% identical to any one of SEQ ID NOS: 17 to 39, 168 to 170, and 177 to 183.


In some embodiments, at least one SQE comprises an amino acid sequence that is at least 70% identical to SEQ ID NO: 39.


In some embodiments, the host cell comprises two squalene epoxidase enzymes that each comprise an amino acid sequence that is at least 70% identical to squalene epoxidase (SEQ ID NO: 39). For example, one of the SQE enzymes may have one or more amino acid modifications that improve specificity or productivity for conversion of 2,3-oxidosqualene to 2,3:22,23 dioxidosqualene, as compared to the enzyme having the amino acid sequence of SEQ ID NO: 39. In some embodiments, the amino acid modifications comprise one or more modifications at positions corresponding to the following positions of SEQ ID NO: 39: 35, 133, 163, 254, 283, 380, and 395. For example, the amino acid at the position corresponding to position 35 of SEQ ID NO: 39 may be arginine (e.g., H35R). The position corresponding to position 133 of SEQ ID NO 39 may be glycine (e.g., N133G). The amino acid at the position corresponding to position 163 of SEQ ID NO: 39 may be alanine (e.g., F163A). The amino acid at the position corresponding to position 254 of SEQ ID NO: 39 may be phenylalanine (e.g., Y254F). The amino acid at the position corresponding to position 283 of SEQ ID NO: 39 may be leucine (e.g., M283L). The amino acid at the position corresponding to position 380 of SEQ ID NO: 39 may be leucine (e.g., V280L). The amino acid at the position corresponding to position 395 of SEQ ID NO: 39 may be tyrosine (e.g., F395Y).


In various embodiments, the heterologous enzyme pathway comprises a triterpene cyclase (TTC) enzyme. In some embodiments, where the microbial cell coexpresses FPPS, along with the SQS, SQE, and one or more triterpene cyclase enzymes, the microbial cell produces 2,3;22,23-dioxidosqualene. The 2,3;22,23-dioxidosqualene may be the substrate for downstream enzymes in the heterologous pathway. In some embodiments, the triterpene cyclase (TTC) comprises an amino acid sequence that is at least 70% identical to an amino acid sequence selected from SEQ ID NOS: 40 to 55 and 191 to 193. The TTC in various embodiments comprises an amino acid sequence that is at least 70% identical to the amino acid sequence of SEQ ID NO: 40.


In various embodiments, the heterologous enzyme pathway comprises at least two copies of a TTC enzyme gene, or comprises at least two enzymes having triterpene cyclase activity and converting 22,23-dioxidosqualene to 24,25-epoxycucurbitadienol. In such embodiments, product can be pulled to 24,25-epoxycucurbitadienol, with less production of cucurbitadienol. In some embodiments, the heterologous enzyme pathway comprises at least one TTC that comprises an amino acid sequence that is at least 70% identical to one of SEQ ID NO: 191, SEQ ID NO: 192, and SEQ ID NO: 193. For example, when co-expressed with SgCDS, these enzymes demonstrated improved production of 24,25-epoxycucurbitadienol compared to expression of SgCDS alone.


In some embodiments, the heterologous enzyme pathway comprises an epoxide hydrolase (EPH). The EPH may comprise an amino acid sequence that is at least 70% identical to amino acid sequence selected from SEQ ID NOS: 56 to 72, 184 to 190, and 212. In some embodiments, the EPH may employ as a substrate 24,25-epoxycucurbitadienol, for production of 24,25-dihydroxycucurbitadienol


In some embodiments, the heterologous pathway comprises at least one EPH converting 24,25-epoxycucurbitadienol to 24,25-dihydroxycucurbitadienol, the at least one EPH comprising an amino acid sequence that is at least 70% identical to one of: SEQ ID NO: 189, SEQ ID NO: 58, SEQ ID NO: 184, SEQ ID NO: 185, SEQ ID NO: 187, SEQ ID NO: 188, SEQ ID NO: 190, and SEQ ID NO: 212.


In some embodiments, the heterologous pathway comprises one or more oxidases. The one or more oxidases may be active on cucurbitadienol or oxygenated products thereof as a substrate, adding (collectively) hydroxylations at C11, C24 and 25, thereby producing mogrol. Alternatively or in addition, the heterologous pathway may comprise one or more oxidases that oxidize C11 of C24,25 dihydroxycucurbitadienol to produce mogrol.


In some embodiments, at least one oxidase is a cytochrome P450 enzyme. Exemplary cytochrome P450 enzymes comprise an amino acid sequence that is at least 70% identical to an amino acid sequence selected from SEQ ID NOS: 73 to 91, 171 to 176, and 194 to 200.


In some embodiments, the microbial host cell expresses a heterologous enzyme pathway comprising a P450 enzyme having activity for oxidation at C11 of C24,25 dihydroxycucurbitadienol, to thereby produce mogrol. For example, in some embodiments, the cytochrome P450 comprises an amino acid sequence that is at least 70% identical to an amino acid sequence selected from SEQ ID NO: 194 and SEQ ID NO: 171.


In various embodiments, the microbial host cell expresses one or more electron transfer proteins selected from a cytochrome P450 reductase (CPR), flavodoxin reductase (FPR) and ferredoxin reductase (FDXR) sufficient to regenerate the one or more oxidases. Exemplary CPR proteins are provided herein as SEQ ID NOS: 92 to 99 and 201.


In some embodiments, the microbial host cell expresses SEQ ID NO: 194 or a derivative thereof, and SEQ ID NO: 98 or a derivative thereof. In some embodiments, the microbial host cell expresses SEQ ID NO: 171 or a derivative thereof, and SEQ ID NO. 201 or a derivative thereof.


In some embodiments, the heterologous enzyme pathway further comprises one or more uridine diphosphate-dependent glycosyltransferase (UGT) enzymes, thereby producing one or more mogrol glycosides. The mogrol glycoside may be pentaglycosylated, hexaglycosylated, or more, in some embodiments. In other embodiments, the mogrol glycoside has two, three, or four glucosylations. The one or more mogrol glycosides may be selected from Mog.II-E, Mog.III, Mog.III-A1, Mog.III-A2, Mog.II, Mog.IV, Mog.IV-A, siamenoside, Mog.V, and Mog.VI. In some embodiments, the host cell produces Mog.V or siamenoside.


In some embodiments, the host cell expresses a UGT enzyme that catalyzes the primary glycosylation of mogrol at C24 and/or C3 hydroxyl groups. In some embodiments, the UGT enzyme catalyzes a branching glycosylation, such as a beta 1,2 and/or beta 1,6 branching glycosylation at the primary C3 and C24 glucosyl groups.


In some embodiments, at least one UGT enzyme comprises an amino acid sequence that is at least 70% identical to an amino acid sequence selected from SEQ ID NOS: 116 to 165, 202 to 210, 211, and 213 to 218.


For example, in some embodiments, the microbial cell expresses at least four UGT enzymes, resulting in glucosylation of mogrol at the C3 hydroxyl group, the C24 hydroxyl group, as well as a further 1,6 glucosylation at the C3 glucosyl group, and a further 1,6 glucosylation and a further 1,2 glucosylation at the C24 glucosyl group. The product of such glucosylation reactions is Mog.V.


In some embodiments, at least one UGT enzyme comprises an amino acid sequence having at least 70% sequence identity to one of SEQ ID NO: 164, 165, 138, 204 to 211, and 213 to 218. In some embodiments, the UGT enzyme is engineered to have higher glycosyltransferase productivity as compared to the wild type enzyme.


In various embodiments, the microbial strain expresses one or more UGT enzymes capable of primary glycosylation at C24 and/or C3 of mogrol. Exemplary UGT enzymes include UGT enzymes comprising: an amino acid sequence that is at least 70% identical to SEQ ID NO: 165, an amino acid sequence that is at least 70% identical to SEQ ID NO: 146, an amino acid sequence that is at least 70% identical to SEQ ID NO. 202, an amino acid sequence that is at least 70% identical to SEQ ID NO: 202, an amino acid sequence that is at least 70% identical to SEQ ID NO: 129, an amino acid sequence that is at least 70% identical to SEQ ID NO: 116, an amino acid sequence that is at least 70% identical to SEQ ID NO: 218, and amino acid sequence that is at least 70% identical to SEQ ID NO: 217.


In various embodiments, the microbial strain expresses one or more UGT enzymes capable of catalyzing a branching glycosylation of one or both primary glycosylations. Such UGT enzymes are summarized in Table 2.


In some embodiments, the microbial host cell has one or more genetic modifications that increase the production of UDP-glucose, the co-factor employed by UGT enzymes.


Mogrol glycosides can be recovered from the microbial culture. For example, mogrol glycosides may be recovered from microbial cells, or in some embodiments, are predominately available in the extracellular media, where they may be recovered or sequestered.


Other aspects and embodiments of the invention will be apparent from the following detailed disclosure.





DESCRIPTION OF THE FIGURES


FIG. 1 shows the chemical structures of Mog.V, Mog.VI, Isomog.V, and Siamenoside. The type of glycosylation reaction is shown within each glucose moiety (e.g., C3 or C24 core glycosylation and the 1-2, 1-4, or 1-6 glycosylation additions).



FIG. 2 shows routes to Mog.V production in vivo. The enzymatic transformation required for each step is indicated, along with the type of enzyme required. Numbers in parentheses correspond to the chemical structures in FIG. 3. Abbreviations: FPP, farnesyl pyrophosphate; SQS, squalene synthase; SQE, squalene epoxidase; TTC, triterpene cyclase; EPH, epoxide hydrolase; CYP450, cytochrome P450 with reductase partner, UGTs, uridine diphosphate glycosyltransferases.



FIG. 3 depicts chemical structures of metabolites involved in Mog.V biosynthesis: (1) farnesyl pyrophosphate; (2) squalene; (3) 2,3-oxidosqualene; (4) 2,3;22,23-dioxidosqualene; (5) 24,25-epoxycucurbitadienol; (6) 24,25-dihydroxycucurbitadienol; (7) mogrol; (8) mogroside V; (9) cucurbitadienol.



FIG. 4 illustrates glycosylation routes to Mog.V Bubble structures represent different mogrosides. White tetra-cyclic core represents mogrol. The numbers below each structure indicate the particular glycosylated mogroside. Black circles represent C3 or C24 glucosylations. Dark grey vertical circles represent 1,6-glucosylations. Light grey horizontal circles represent 1,2-glucosylations. Abbreviations: Mog, mogrol; sia, siamenoside.



FIG. 5 shows results for in vivo production of squalene in E. coli using different squalene synthases. The asterisk denotes a different plasmid construct and experiment run on a different day from the others shown. Legend: (1) SgSQS (SEQ ID NO:2), (2) AaSQS (SEQ ID NO: 11), (3) EsSQS (SEQ ID NO: 16), (4) EISQS (SEQ ID NO: 14), (5) FbSQS (SEQ ID NO: 166), (6) BbSQS (SEQ ID NO: 167).



FIG. 6 shows results for in vivo production of squalene, 2,3-oxidosqualene, and 2,3;22,23-dioxidosqualene using different squalene epoxidases. Legend: (A) SEQ ID NO: 2 and SEQ ID NO: 168; (B) SEQ ID NO: 11 and SEQ ID NO: 168; (C) SEQ ID NO: 2 and SEQ ID NO 169; (D) SEQ ID NO: 11 and SEQ ID NO: 169; (E) SEQ ID NO: 2 and SEQ ID NO: 170; (F) SEQ ID NO: 2 and SEQ ID NO: 39; (G) SEQ ID NO: 11 and SEQ ID NO: 39.



FIG. 7 shows results for in vivo production of the cyclized triterpene product. Reactions involve an increasing number of enzymes expressed in an E. coli cell line having an overexpression of MEP pathway enzymes. The asterisks represent fermentation experiments incubated for a quarter of the time than the other experiments. As shown, co-expression of SQS (SEQ ID NO: 11), SQE (SEQ ID NO: 39), and TTC (SEQ ID NO: 40) (lane G) resulted in high production of the triterpenoid product, cucurbitadienol. Legends: Product 1 is squalene; Product 2 is 2,3-oxidosqualene; Product 3 is cucurbitadienol; (A) expression of SEQ ID NO: 2, (B) expression of SEQ ID NO. 11, (C) coexpression of SEQ ID NO: 2 and SEQ ID NO: SEQ ID NO: 17, (D) coexpression of SEQ ID NO: 2 and SEQ ID NO: 169; (E) coexpression of SEQ ID NO-11 and SEQ ID NO: 169; (F) coexpression of SEQ ID NO: 2, SEQ ID NO: 17, and SEQ ID NO: 40; (G) coexpression of SEQ ID NO: 11, SEQ ID NO: 39, and SEQ ID NO: 40.



FIG. 8 shows results for SQE engineering to produce high titers of 2,3;22,23-dioxidosqualene Expression of SQS(SEQ ID NO: 11), SQE (SEQ ID NO: 39), and TTC (SEQ ID NO: 40) whether on a bacterial artificial chromosome (BAC) or integrated, produce large amounts of cucurbitadienol. Point mutations in SQE (SEQ ID NO: 39) were screened to complement SQE to reduce levels of cucurbitadienol, with corresponding gain in titers of 2,3;22,23-dioxidosqualene. Two variants are shown in FIG. 8, SQE A4 (including H35R, F163A, M283L, V380L, and F395Y substitutions, SEQ ID NO: 203) and SQE C11 (including H35R, N133G, F163A, Y254F, V380L, and F395Y substitutions).



FIG. 9 shows production of 2,3;22,23 dioxidosqualene. Titers are plotted for each strain producing 2,3;22,23 dioxidosqualene. An engineered squalene epoxidase gene, SEQ ID NO: 203, was expressed in a strain producing 2,3 oxidosqualene via the squalene epoxidase of SEQ ID NO: 39. Strains were incubated for 48 hours before extraction. Lanes: (1) expression of SQE of SEQ ID NO: 39; (2) expression of SQE of SEQ ID NO-39 and SEQ ID NO: 203.



FIG. 10 shows the coexpression of SQS, SQE, and TTC enzymes. CDS of SEQ ID NO: 40, when coexpressed with SQS (SEQ ID NO: 11), SQE (SEQ ID NO: 39), and SQE A4 (SEQ ID NO: 203) in E. coli, resulted in production of cucurbitadienol and 24,25-epoxycucurbitadienol. E. coli strains coexpressing SQS (SEQ ID NO: 11), SQE (SEQ ID NO: 39), SQE A4 (SEQ ID NO: 203), and CDS (SEQ ID NO: 40), with an additional TTC produced higher levels of 24,25-epoxycucurbitadienol. Legend: TTC1 is SEQ ID NO: 92, TTC2 is SEQ ID NO: 191, TTC3 is SEQ ID NO: 193, TTC4 is SEQ ID NO: 40.



FIG. 11 shows production of cucurbitadienol and 24,25-epoxycucurbitadienol. E. coli strains producing oxidosqualene and dioxidosqualene were complemented with CDS homologs and CAS genes engineered to produce cucurbitadienol. The ratio of 24,25-epoxycucurbitadienol to cucurbitadienol varies from 0.15 for Enzyme 1 (SEQ ID NO: 40) to 0.58 for Enzyme 2 (SEQ ID NO: 192), demonstrating improved substrate specificity toward the desired 24,25-epoxycucurbitadienol product for Enzyme 2. Enzyme 3 is SEQ ID NO: 219, and Enzyme 4 is SEQ ID NO: 220.



FIG. 12 shows the screening of EPH enzymes for hydration of 24,25-epoxycucurbitadienol to produce 24,25-dihydroxycucurbitadienol in E. coli strains coexpressing SQS (SEQ ID NO: 11), SQE (SEQ ID NO: 39), SQE A4 (SEQ ID NO. 203), and TTC (SEQ ID NO: 40). These fermentation experiments were performed at 30° C. for 72 hours in 96 well plates. Legend: EPH1 (SEQ ID NO: 186); EPH2 (SEQ ID NO: 212); EPH3 (SEQ ID NO: 190); EPH4 (SEQ ID NO: 187); EPH5 (SEQ ID NO: 184); EPH6 (SEQ ID NO: 185); EPH7 (SEQ ID NO: 188); EPH8 (SEQ ID NO: 189); and EPH9 (SEQ ID NO: 58).



FIG. 13(A-C) show the coexpression of SQS, SQE, TTC, EPH, and P450 enzymes to produce mogrol. An E. coli strain expressing SEQ ID NOS: 11, 39, 203 along with CDS, EPH, and P450 genes with a CPR resulted in production of mogrol and oxo-mogrol (FIG. 13A). These fermentation experiments were performed at 30° C. for 72 hours in 96 well plates. Mogrol production was validated by LC-QQQ mass spectrum analysis with a spiked authentic standard (FIG. 13B) and GC-FID chromatography versus an authentic standard (FIG. 13C). Legend: (1) coexpression of SEQ ID NO: 40, SEQ ID NO: 58, SEQ ID NO: 194), and SEQ ID NO: 98); (2) coexpression of SEQ ID NO. 40, SEQ ID NO. 58, SEQ ID NO: 197, and SEQ ID NO: 98; (3) SEQ ID NO: 40, SEQ ID NO: 58, SEQ ID NO: 171, and SEQ ID NO: 201.



FIG. 14 shows the screening of cytochrome P450s for oxidation at C11 of the 24,25-dihydroxycucurbitadienol-like molecule cucurbitadienol. Native anchor P450 enzymes shown are: (1) SEQ ID NO: 194, (2) SEQ ID NO: 197, (3) SEQ ID NO: 171, (4) SEQ ID NO: 74), and (5) SEQ ID NO: SEQ ID NO: 75. In some cases, the native transmembrane domain was replaced with the transmembrane domain from E. coli sohB (Anchor 3). E. coli zipA (Anchor 2), or bovine 17a (Anchor 1) to improve interaction with the E. coli membrane. Each P450 was coexpressed with either CPR SEQ ID NO: 98 or CPR (SEQ ID NO: 201), resulting in production of 11-hydroxycucurbitadienol. These fermentation experiments were performed at 30° C. for 72 hours in 96 well plates.



FIG. 15 shows production of products with oxidation at C11.



FIG. 16 shows Mog.V production using a combination of different enzymes. (A) Penta-glycosylated products are observed when UGTs of SEQ ID NO: 165, SEQ ID NO. 146, SEQ ID NO: 117, or SEQ ID NO: 164 are incubated together with mogrol as a substrate. Strains: (1) expresses SEQ ID NO: 165, (2) expresses SEQ ID NO: 146, (3) co-expresses SEQ ID NO: 165 and SEQ ID NO: 146, (4) co-expresses SEQ ID NO: 165, SEQ ID NO: 146, and SEQ ID NO: 117, (5) co-expresses SEQ ID NO. 165, SEQ ID NO. 146, SEQ ID NO. 117, and SEQ ID NO: 164. Mogroside substrates were incubated in Tris buffer containing magnesium chloride, beta-mercaptoethanol, UDP-glucose, single UGT, and a phosphatase. (B) Extracted ion chromatogram (EIC) for 1285.4 Da (mogroside V+H) of reactions containing SEQ ID NO: 165 and SEQ ID NO: 146, and either Enzyme 1 (SEQ ID NO: 117) or Enzyme 2 (SEQ ID NO: 164) when incubated with Mog.II-E. (C) Extracted ion chromatogram (EIC) for 1285.4 Da (mogroside V+H) of reactions containing SEQ ID NO: 165 and SEQ ID NO: 146 and either Enzyme 1 (SEQ ID NO: 117) or Enzyme 2 (SEQ ID NO: 164) when incubated with mogrol. Abbreviation: MogV, mogroside V.



FIG. 17 shows in vitro assays showing the conversion of mogroside substrates to more glycosylated products. Mogroside substrates were incubated in Tris buffer containing magnesium chloride, beta-mercaptoethanol, UDP-glucose, single UGT, and a phosphatase. The panels correspond to the use of different substrates: (A) mogrol; (B) Mog.I-A; (C) Mog.I-E; (D) Mog.II-E; (E) Mog.III; (F) Mog.IV-A; (G) Mog.IV; (H) siamenoside. Enzyme 1 (SEQ ID NO: 165), Enzyme 2 (SEQ ID NO: 146), Enzyme 3 (SEQ ID NO: 116), Enzyme 4 (SEQ ID NO: 117), and Enzyme 5 (SEQ ID NO: 164).



FIG. 18 shows the bioconversion of mogrol into mogroside-IA or mogroside-IIE. In the experiment, engineered E. coli strains were inoculated with 0.2 mM mogrol at 37° C. Product formation was examined after 48 hours. The values are reported relative to the empty vector control (the values reported are the detected compound minus the background level detected in the empty vector control). Products were measured on LC/MS-QQQ with authentic standards. Only Enzyme 1 shows formation of mogroside-HE. Enzyme 1 to 5 are SEQ ID NOS: 202, 116, 216, 217, and 218 respectively.



FIG. 19A and FIG. 19B shows the bioconversion of Mog.IA (FIG. 19A) or Mog.IE (FIG. 18B) into Mog.IIE. Engineered E. coli strains (expressing either Enzyme 1, SEQ ID NO: 165; Enzyme 2, SEQ ID NO: 202; or Enzyme 3, SEQ ID NO: 116) were grown at 37° C. in fermentation media containing 0.2 mM Mog.IA (FIG. 19A) or Mog.IE (FIG. 19B). Product formation was measured after 48 hours using LC-MS/MS with authentic standards. Reported values are those in excess of the empty vector control.



FIG. 20 shows the production of Mog.III or siamenoside from Mog.II-E by engineered E. coli strains expressing Enzyme 1 (SEQ ID NO: 204), Enzyme 2 (SEQ ID NO: 138), or Enzyme 3 (SEQ ID NO: 206). Strains were grown at 37° C. in fermentation media containing 0.2 mM Mog.IA, and product formation was measured after 48 hours using LC-MS/MS with authentic standards.



FIG. 21 shows the in vitro production of Mog.IIA2 by cells expressing Enzyme 1 (SEQ ID NO: 205). 0.1 mM Mog.I-E was added, and reactions were incubated at 37° C. for 48 hr. Data was quantified by LC MS/MS with authentic standards of each compound.



FIG. 22(A,B) shows production of Mog.V in E. coli. (A) Chromatogram indicating Mog.V production from engineered E. coli strains expressing SEQ ID NO: 11, SEQ ID NO: 39, SEQ ID NO: 203, SEQ ID NO: 40, SEQ ID NO: 189, SEQ ID NO: 199, SEQ ID NO: 202, SEQ ID NO: 165, and SEQ ID NO: 122. Strains were incubated at 30° C. for 72 hours before extraction. Mog.V production was verified by LC-QQQ spectrum analysis versus an authentic standard. (B) Chromatogram indicating Mog.V production from a biological sample with a spiked Mog.V authentic standard.



FIG. 23 shows bioconversion of mogroside-HE to further glycosylated products using an engineered version of the UGT enzyme of SEQ ID NO. 164.



FIG. 24 shows bioconversion of Mog.IA to Mog. IE with an engineered version of the UGT enzyme of SEQ ID NO: 165.



FIG. 25 shows bioconversion of Mog.IE to Mog.IIE with an engineered version of the UGT enzyme of SEQ ID NO: 217.



FIG. 26 is an amino acid alignment of CaUGT_1,6 and SgUGT94_289_3 using Clustal Omega (Version CLUSTAL O (1,2,4). These sequences share 54% amino acid identity.



FIG. 27 is an amino acid alignment of Homo sapiens squalene synthase (HsSQS) (NCBI accession NP_004453.3) and AaSQS (SEQ ID NO: 11) using Clustal Omega (Version CLUSTAL O (1.2.4)). HsSQS has a published crystal structure (PDB entry: 1EZF). These sequences share 42% amino acid identity.



FIG. 28 is an amino acid alignment of Homo sapiens squalene epoxidase (HsSQE) (NCBI accession XP_011515548) and MlSQE (SEQ ID NO: 39) using Clustal Omega (Version CLUSTAL O (1.2.4)). HsSQE has a published crystal structure (PDB entry: 6C6N). These sequences share 35% amino acid identity.





DETAILED DESCRIPTION OF THE INVENTION

The present invention, in various aspects and embodiments, provides microbial strains and methods for making mogrol and mogrol glycosides, using recombinant microbial processes. In other aspects, the invention provides methods for making products, including foods, beverages, and sweeteners (among others), by incorporating the mogrol glycosides produced according to the methods described herein. In still other aspects, the invention provides engineered UGT enzymes for glycosylating secondary metabolite substrates, such as mogrol or mogrosides.


As used herein, the terms “terpene or triterpene” are used interchangeably with the terms “terpenoid” or “triterpenoid,” respectively.


In various aspects, the invention provides microbial strains and methods for making the triterpenoid compound mogrol, or glycoside products thereof. The invention provides a recombinant microbial host cell expressing a heterologous enzyme pathway catalyzing the conversion of isopentenyl pyrophosphate (IPP) and/or dimethylallyl pyrophosphate (DMAPP) to one or more of mogrol or mogroside(s).


The microbial host cell in various embodiments may be prokaryotic or eukaryotic. In some embodiments, the microbial host cell is a bacterium, and which can be optionally selected from Escherichia spp., Bacillus spp., Corynebacterium spp., Rhodobacter spp., Zymomonas spp., Vibrio spp., and Pseudomonas spp. For example, in some embodiments, the bacterial host cell is a species selected from Escherichia coli, Bacillus subtilis, Corynebacterium glutamicum, Rhodobacter capsulatus, Rhodobacter sphaeroides, Zymomonas mobilis, Vibrio natriegens, or Pseudomonas putida. In some embodiments, the bacterial host cell is E. coli. Alternatively, the microbial cell may be a yeast cell, such as but not limited to a species of Saccharomyces, Pichia, or Yarrowia, including Saccharomyces cerevisiae, Pichia pastoris, and Yarrowia lipolytica.


The microbial cell will produce MEP or MVA products, which act as substrates for the heterologous enzyme pathway. The MEP (2-C-methyl-D-erythritol 4-phosphate) pathway, also called the MEP/DOXP (2-C-methyl-D-erythritol 4-phosphate/l-deoxy-D-xylulose 5-phosphate) pathway or the non-mevalonate pathway or the mevalonic acid-independent pathway refers to the pathway that converts glyceraldehyde-3-phosphate and pyruvate to IPP and DMAPP. The pathway, which is present in bacteria, typically involves action of the following enzymes: 1-deoxy-D-xylulose-5-phosphate synthase (Dxs), 1-deoxy-D-xylulose-5-phosphate reductoisomerase (IspC), 4-diphosphocytidyl-2-C-methyl-D-erythritol synthase (IspD), 4-diphosphocytidyl-2-C-methyl-D-erythritol kinase (IspE), 2C-methyl-D-erythritol 2,4-cyclodiphosphate synthase (IspF), 1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate synthase (IspG), and isopentenyl diphosphate isomerase (IspH). The MEP pathway, and the genes and enzymes that make up the MEP pathway, are described in U.S. Pat. No. 8,512,988, which is hereby incorporated by reference in its entirety. For example, genes that make up the MEP pathway include dxs, ispC, ispD, ispE, ispF, ispG, ispH, idi, and ispA. In some embodiments, the host cell expresses or overexpresses one or more of dxs, ispC, ispD, ispE, ispF, ispG, ispH, idi, ispA, or modified variants thereof, which results in the increased production of IPP and DMAPP. In some embodiments, the triterpenoid (e.g., squalene, mogrol, or other intermediate described herein) is produced at least in part by metabolic flux through an MEP pathway, and wherein the host cell has at least one additional gene copy of one or more of dxs, ispC, ispD, ispE, ispF, ispG, ispH, idi, ispA, or modified variants thereof.


The MVA pathway refers to the biosynthetic pathway that converts acetyl-CoA to IPP. The mevalonate pathway, which will be present in yeast, typically comprises enzymes that catalyze the following steps: (a) condensing two molecules of acetyl-CoA to acetoacetyl-CoA (e.g., by action of acetoacetyl-CoA thiolase); (b) condensing acetoacetyl-CoA with acetyl-CoA to form hydroxymethylglutaryl-CoenzymeA (HMG-CoA) (e.g., by action of HMG-CoA synthase (HMGS)); (c) converting HMG-CoA to mevalonate (e.g., by action of HMG-CoA reductase (HMGR)); (d) phosphorylating mevalonate to mevalonate 5-phosphate (e.g., by action of mevalonate kinase (MK)); (e) converting mevalonate 5-phosphate to mevalonate 5-pyrophosphate (e.g., by action of phosphomevalonate kinase (PMK)); and (f) converting mevalonate 5-pyrophosphate to isopentenyl pyrophosphate (e.g., by action of mevalonate pyrophosphate decarboxylase (MPD)). The MVA pathway, and the genes and enzymes that make up the MVA pathway, are described in U.S. Pat. No. 7,667,017, which is hereby incorporated by reference in its entirety. In some embodiments, the host cell expresses or overexpresses one or more of acetoacetyl-CoA thiolase, HMGS, HMGR, MK, PMK, and MPD or modified variants thereof, which results in the increased production of IPP and DMAPP. In some embodiments, the triterpenoid (e.g., mogrol or squalene) is produced at least in part by metabolic flux through an MVA pathway, and wherein the host cell has at least one additional gene copy of one or more of acetoacetyl-CoA thiolase, HMGS, HMGR, MK, PMK, MPD, or modified variants thereof.


In some embodiments, the host cell is a bacterial host cell engineered to increase production of IPP and DMAPP from glucose as described in U.S. Pat. Nos. 10,480,015 and 10,662,442, the contents of which are hereby incorporated by reference in their entireties. For example, in some embodiments the host cell overexpresses MEP pathway enzymes, with balanced expression to push/pull carbon flux to IPP and DMAP. In some embodiments, the host cell is engineered to increase the availability or activity of Fe—S cluster proteins, so as to support higher activity of IspG and IspH, which are Fe—S enzymes. In some embodiments, the host cell is engineered to overexpress IspG and IspH, so as to provide increased carbon flux to 1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate (HMBPP) intermediate, but with balanced expression to prevent accumulation of HMBPP at an amount that reduces cell growth or viability, or at an amount that inhibits MEP pathway flux and/or terpenoid production. In some embodiments, the host cell exhibits higher activity of IspH relative to IspG. In some embodiments, the host cell is engineered to downregulate the ubiquinone biosynthesis pathway, e.g., by reducing the expression or activity of IspB, which uses IPP and FPP substrate.


In various embodiments, the heterologous enzyme pathway comprises a farnesyl diphosphate synthase (FPPS) and a squalene synthase (SQS), which are recombinantly expressed. In various embodiments, the SQS comprises an amino acid sequence that is at least 70% identical to an amino acid sequence selected from SEQ ID NOS: 2 to 16, 166, and 167.


By way of non-limiting example, the FPPS may be Saccharomyces cerevisiae farnesyl pyrophosphate synthase (ScFPPS)(SEQ ID NO: 1), or modified variants thereof. Modified variants may comprise an amino acid sequence that is at least 70% identical to SEQ ID NO: 1). For example, the FPPS may comprise an amino acid sequence that is at least 80%, or at least 85%, or at least 90%, or at least 95%, or at least 98%, or at least 99% identical to SEQ ID NO: 1. In some embodiments, the FPPS comprises an amino acid sequence having from 1 to 20 amino acid modifications or having from 1 to 10 amino acid modifications with respect to SEQ ID NO: 1, the amino acid modifications being independently selected from amino acid substitutions, deletions, and insertions. Numerous other FPPS enzymes are known in the art, and may be employed for conversion of IPP and/or DMAPP to farnesyl diphosphate in accordance with this aspect.


In some embodiments, the SQS comprises an amino acid sequence that is at least 70% identical to SEQ ID NO: 11. For example, the SQS may comprise an amino acid sequence that is at least 80%, or at least 85%, or at least 90%, or at least 95%, or at least 98%, or at least 99% identical to SEQ ID NO: 11. In some embodiments, the SQS comprises an amino acid sequence having from 1 to 20 amino acid modifications or from 1 to 10 amino acid modifications with respect to SEQ ID NO: 11, the amino acid modifications being independently selected from amino acid substitutions, deletions, and insertions. Amino acid modifications may be made to increase expression or stability of the enzyme in the microbial cell, or to increase productivity of the enzyme. As shown in FIG. 5, AaSQS has high activity in E. coli.


In some embodiments, the SQS comprises an amino acid sequence that is at least 70% identical to SEQ ID NO: 2. For example, the SQS may comprise an amino acid sequence that is at least 80%, or at least 85%, or at least 90%, or at least 95%, or at least 98%, or at least 99% identical to SEQ ID NO: 2. In some embodiments, the SQS comprises an amino acid sequence having from 1 to 20 amino acid modifications or from 1 to 10 amino acid modifications with respect to SEQ ID NO: 2, the amino acid modifications being independently selected from amino acid substitutions, deletions, and insertions. Amino acid modifications may be made to increase expression or stability of the enzyme in the microbial cell, or to increase productivity of the enzyme. As shown in FIG. 5, SgSQS has high activity in E. coli.


In some embodiments, the SQS comprises an amino acid sequence that is at least 70% identical to SEQ ID NO: 14. For example, the SQS may comprise an amino acid sequence that is at least 80%, or at least 85%, or at least 90%, or at least 95%, or at least 98%, or at least 99% identical to SEQ ID NO: 14. In some embodiments, the SQS comprises an amino acid sequence having from 1 to 20 amino acid modifications or from 1 to 10 amino acid modifications with respect to SEQ ID NO: 14, the amino acid modifications being independently selected from amino acid substitutions, deletions, and insertions. Amino acid modifications may be made to increase expression or stability of the enzyme in the microbial cell, or to increase productivity of the enzyme. As shown in FIG. 5, EISQS was active in E. coli.


In some embodiments, the SQS comprises an amino acid sequence that is at least 70% identical to SEQ ID NO: 16. For example, the SQS may comprise an amino acid sequence that is at least 80%, or at least 85%, or at least 90%, or at least 95%, or at least 98%, or at least 99% identical to SEQ ID NO: 16. In some embodiments, the SQS comprises an amino acid sequence having from 1 to 20 amino acid modifications or from 1 to 10 amino acid modifications with respect to SEQ ID NO: 16, the amino acid modifications being independently selected from amino acid substitutions, deletions, and insertions. Amino acid modifications may be made to increase expression or stability of the enzyme in the microbial cell, or to increase productivity of the enzyme. As shown in FIG. 5, EsSQS was active in E. coli.


In some embodiments, the SQS comprises an amino acid sequence that is at least 70% identical to SEQ ID NO: 166. For example, the SQS may comprise an amino acid sequence that is at least 80%, or at least 85%, or at least 90%, or at least 95%, or at least 98%, or at least 99% identical to SEQ ID NO: 166. In some embodiments, the SQS comprises an amino acid sequence having from 1 to 20 amino acid modifications or from 1 to 10 amino acid modifications with respect to SEQ ID NO: 166, the amino acid modifications being independently selected from amino acid substitutions, deletions, and insertions. Amino acid modifications may be made to increase expression or stability of the enzyme in the microbial cell, or to increase productivity of the enzyme. As shown in FIG. 5, FbSQS was active in E. coli.


In some embodiments, the SQS comprises an amino acid sequence that is at least 70% identical to SEQ ID NO: 167. For example, the SQS may comprise an amino acid sequence that is at least 80%, or at least 85%, or at least 90%, or at least 95%, or at least 98%, or at least 99% identical to SEQ ID NO: 167. In some embodiments, the SQS comprises an amino acid sequence having from 1 to 20 amino acid modifications or from 1 to 10 amino acid modifications with respect to SEQ ID NO: 167, the amino acid modifications being independently selected from amino acid substitutions, deletions, and insertions. Amino acid modifications may be made to increase expression or stability of the enzyme in the microbial cell, or to increase productivity of the enzyme. As shown in FIG. 5, BbSQS was active in E. coli.


Amino acid modifications to the SQS enzyme can be guided by available enzyme structures and homology models, including those described in Aminfar and Tohidfar, In silico analysis of squalene synthase in Fabaceae family using bioinformatics tools, J. Genetic Engineer. and Biotech. 16 (2018) 739-747. The publicly available crystal structure for HsSQE (PDB entry: 6C6N) may be used to inform amino acid modifications. An alignment between AaSQS and HsSQS is shown in FIG. 27. The enzymes have 42% amino acid identity.


In some embodiments, the host cell expresses one or more enzymes that produce mogrol from squalene. For example, the host cell may express one or more squalene epoxidase (SQE) enzymes, one or more triterpenoid cyclases, one or more epoxide hydrolase (EPH) enzymes, one or more cytochrome P450 oxidases (CYP450), optionally one or more non-heme iron-dependent oxygenases, and one or more cytochrome P450 reductases (CPR). As shown in FIG. 2, the heterologous pathway can proceed through several routes to mogrol, which may involve one or two epoxidations of the core substrate. In some embodiments, the pathway proceeds through cucurbitadienol, and in some embodiments, does not involve a further epoxidation step. In some embodiments, cucurbitadienol intermediate is converted to 24,25-epoxycucurbitadienol (5) by one or or more epoxidase enzymes (such as that provided herein as SEQ ID NO: 221). In still other embodiments, the pathway largely proceeds through 2,3;24,25-dioxidosqualene, with only small or minimal production of cucurbitadienol intermediate. In some embodiments, one or more of SQE, CDS, EPH, CYP450, non-heme iron-dependent oxygenases, flavodoxin reductases (FPR), ferredoxin reductases (FDXR), and CPR enzymes are engineered to increase flux to mogrol.


In some embodiments, the heterologous enzyme pathway comprises two squalene epoxidase (SQE) enzymes. For example, the heterologous enzyme pathway may comprise an SQE that produces 2,3-oxidosqualene (intermediate (3) in FIG. 2). In some embodiments, the SQE will produce 2,3;22,23-dioxidosqualene (intermediate (4) in FIG. 2), and this conversion can be catalyzed by the same SQE enzyme, or an enzyme that differs in amino acid sequence by at least one amino acid modification. For example, the squalene epoxidase enzymes may include at least two SQE enzymes each comprising (independently) an amino acid sequence that is at least 70% identical to any one of SEQ ID NOS: 17 to 39, 168 to 170, and 177 to 183. By coexpression of an SQE enzyme engineered or screened for substrate specificity for 2,3-oxidosqualene, the di-epoxy intermediate can be produced, with low or minimal levels of cucurbitadienol. In these embodiments, P450 oxygenase enzymes hydroxylating C24 and C25 of the scaffold can be eliminated.


In some embodiments, the at least one SQE comprises an amino acid sequence that is at least 70%, or at least 80%, or at least 85%, or at least 90%, or at least 95%, or at least 98%, or at least 99% identical to SEQ ID NO: 39. For example, the SQE enzyme may comprise an amino acid sequence having from 1 to 20 amino acid modifications with respect to SEQ ID NO: 39, the amino acid modifications being independently selected from amino acid substitutions, deletions, and insertions.


As shown in FIG. 6, MlSQE has high activity in E. coli, particularly when coexpressed with AaSQS, where high levels of the single epoxylated product (2,3-oxidosqualene) were observed. Accordingly, coexpression of AaSQS (or an engineered derivative) with multiple copies of MlSQE engineered as described above, has good potential for bioengineering of the mogrol pathway. See FIG. 9. Amino acid modifications may be made to increase expression or stability of the SQE enzyme in the microbial cell, or to increase productivity of the enzyme.


In some embodiments, the host cell comprises two squalene epoxidase enzymes that each comprise an amino acid sequence that is at least 70% identical to Methylomonas lenta squalene epoxidase (SEQ ID NO: 39). For example, one of the SQE enzymes may have one or more amino acid modifications that improve specificity or productivity for conversion of 2,3-oxidosqualene to 2,3;22,23 dioxidosqualene, as compared to the enzyme having the amino acid sequence of SEQ ID NO: 39. In some embodiments, the amino acid modifications comprise one or more (or in some embodiments, 2, 3, 4, 5, 6, or 7) modifications at positions corresponding to the following positions of SEQ ID NO-39: 35, 133, 163, 254, 283, 380, and 395. For example, the amino acid at the position corresponding to position 35 of SEQ ID NO: 39 may be arginine or lysine (e.g., H35R). The position corresponding to position 133 of SEQ ID NO: 39 may be glycine, alanine, leucine, isoleucine, or valine (e.g., N133G). The amino acid at the position corresponding to position 163 of SEQ ID NO: 39 may be glycine, alanine, leucine, isoleucine, or valine (e.g., F163A). The amino acid at the position corresponding to position 254 of SEQ ID NO. 39 may be phenylalanine, alanine, leucine, isoleucine, or valine (e.g., Y254F). The amino acid at the position corresponding to position 283 of SEQ ID NO: 39 may be alanine, leucine, isoleucine, or valine (e.g., M283L). The amino acid at the position corresponding to position 380 of SEQ ID NO: 39 may be alanine, leucine, or glycine (e.g., V280L). The amino acid at the position corresponding to position 395 of SEQ ID NO 39 may be tyrosine, serine, or threonine (e.g., F395Y). Exemplary SQE enzymes in these embodiments are at least 70%, or at least 80%, or at least 90%, or at least 95% identical to SEQ ID NO: 39, but comprise the following sets of amino acid substitutions. H35R, F163A, M283L, V380L, F395Y; or H35R, N133G, F163A, Y254F, V380L, and F395Y, in each case numbered according to SEQ ID NO: 39. For example, the host cell may express an SQE comprising the amino acid sequence of SEQ. ID NO: 203 (referred to herein as MlSQE A4).


In still other embodiments, the squalene epoxidase comprises an amino acid sequence that is at least 70% identical to SEQ ID NO: 168). For example, the SQE may comprise an amino acid sequence that is at least 80%, or at least 85%, or at least 90%, or at least 95%, or at least 98%, or at least 99%/o identical to SEQ ID NO: 168. In various embodiments, the SQE comprises an amino acid sequence having from 1 to 20 amino acid modifications or from 1 to 10 amino acid modifications with respect to SEQ ID NO. 168, the amino acid modifications being independently selected from amino acid substitutions, deletions, and insertions. As shown in FIG. 6, BaESQE had good activity in E. coli. Amino acid modifications may be made to increase expression or stability of the enzyme in the microbial cell, or to increase productivity of the enzyme.


In some embodiments, the squalene epoxidase comprises an amino acid sequence that is at least 70% identical to SEQ ID NO: 169. For example, the SQE may comprise an amino acid sequence that is at least 80%, or at least 85%, or at least 90%, or at least 95%, or at least 98%, or at least 99% identical to SEQ ID NO: 169. In various embodiments, the SQE comprises an amino acid sequence having from 1 to 20 amino acid modifications or from 1 to 10 amino acid modifications with respect to SEQ ID NO. 169, the amino acid modifications being independently selected from amino acid substitutions, deletions, and insertions. As shown in FIG. 6, MsSQE had good activity in E. coli. Amino acid modifications may be made to increase expression or stability of the enzyme in the microbial cell, or to increase productivity of the enzyme.


In some embodiments, the squalene epoxidase comprises an amino acid sequence that is at least 70% identical to SEQ ID NO: 170. For example, the SQE may comprise an amino acid sequence that is at least 80%, or at least 85%, or at least 90%, or at least 95%, or at least 98%, or at least 99% identical to SEQ ID NO: 170. In various embodiments, the SQE comprises an amino acid sequence having from 1 to 20 amino acid modifications or from 1 to 10 amino acid modifications with respect to SEQ ID NO: 170, the amino acid modifications being independently selected from amino acid substitutions, deletions, and insertions. As shown in FIG. 6, MbSQE had good activity in E. coli. Amino acid modifications may be made to increase expression or stability of the enzyme in the microbial cell, or to increase productivity of the enzyme.


Amino acid modifications can be guided by available enzyme structures and homology models, including those described in Padyana A K, et al., Structure and inhibition mechanism of the catalytic domain of human squalene epoxidase, Nat. Comm. (2019) Vol. 10(97): 1-10; or Ruckenstulh et al., Structure-Function Correlations of Two Highly Conserved Motifs in Saccharomyces cerevisiae Squalene Epoxidase, Antimicrob. Agents and Chemo. (2008) Vol. 52(4): 1496-1499. FIG. 28 shows an alignment of HsSQE and MlSQE, which is useful for guiding engineering of the enzymes for expression, stability, and productivity in microbial host cells. The two enzymes have 35% identity.


In various embodiments, the heterologous enzyme pathway comprises a triterpene cyclase (TTC). In some embodiments, where the microbial cell coexpresses FPPS, along with the SQS, SQE, and triterpene cyclase enzymes, the microbial cell produces 2,3;22,23-dioxidosqualene. The 2,3;22,23-dioxidosqualene may be the substrate for downstream enzymes in the heterologous pathway. In some embodiments, the triterpene cyclase (TTC) comprises an amino acid sequence that is at least 70%, or at least 80%, or at least 90%, or at least 95% identical to an amino acid sequence selected from SEQ ID NOS: 40 to 55, 191 to 193, and 219 to 220. The TTC in various embodiments comprises an amino acid sequence that is at least 70% identical to the amino acid sequence of SEQ ID NO: 40. In some embodiments, the TTC comprises an amino acid sequence that is at least 80%, or at least 85%, or at least 900%, or at least 95%, or at least 98%, or at least 99%/o identical to SEQ ID NO: 40. For example, the TTC may comprise an amino acid sequence having from 1 to 20 amino acid modifications with respect to SEQ ID NO: 40, the amino acid modifications being independently selected from amino acid substitutions, deletions, and insertions.


In some embodiments, the TTC comprises an amino acid sequence that is at least 80%, or at least 85%, or at least 90%, or at least 95%, or at least 98%, or at least 99% identical to SEQ ID NO: 192. For example, the TTC may comprise an amino acid sequence having from 1 to 20 amino acid modifications with respect to SEQ ID NO: 192, the amino acid modifications being independently selected from amino acid substitutions, deletions, and insertions. The enzyme defined by SEQ ID NO: 192 shows improved specificity toward production of 24,25-epoxycucurbitadienol (FIG. 11).


In various embodiments, the heterologous enzyme pathway comprises at least two copies of a TTC enzyme gene, or comprises at least two enzymes having triterpene cyclase activity and converting 22,23-dioxidosqualene to 24,25-epoxycucurbitadienol. In such embodiments, product can be pulled to 24,25-epoxycucurbitadienol, with less production of cucurbitadienol.


In some embodiments, the heterologous enzyme pathway comprises at least one TTC that comprises an amino acid sequence that is at least 70% identical to one of SEQ ID NO: 191, SEQ ID NO: 192, and SEQ ID NO. 193. These enzymes may be optionally co-expressed with SgCDS. These enzymes exhibit high production of 24,25-epoxycucurbitadienol. FIG. 10. Thus, in some embodiments, at least one TTC comprises an amino acid sequence that is at least 80%, or at least 85%, or at least 90%, or at least 95%, or at least 98%, or at least 99% identical to one of SEQ ID NOS: 191, 192, and 193. In some embodiments, the TTC comprises an amino acid sequence having from 1 to 20 amino acid modifications with respect to one of SEQ ID NOS: 191, 192, and 193, the amino acid modifications being independently selected from amino acid substitutions, deletions, and insertions.


Amino acid modifications may be made to increase expression or stability of the enzyme in the microbial cell, or to increase productivity of the enzyme. Amino acid modifications can be guided by available enzyme structures and homology models, including those described in Itkin M., et al., The biosynthetic pathway of the nonsugar, high-intensity sweetener mogroside V from Siraitia grosvenorii, PNAS (2016) Vol 113(47): E7619-E7628. For example, the CDS may be modeled using the structure of human lanosterol synthase (oxidosqualene cyclase) (PDB 1W6K).


In various embodiments, cucurbitadienol (intermediate 9 in FIG. 2) is converted to 24,25-epoxycucurbitadienol (5) by one of more enzymes expressed in the host cell. For example, the heterologous pathway may comprise an enzyme having at least about 70%, or at least about 80%, or at least about 85%, or at least about 90%, or at least about 95%, or at least about 97%, 98%, or 99% sequence identity with SEQ ID NO: 221.


In some embodiments, the heterologous enzyme pathway comprises at least one epoxide hydrolase (EPH). The EPH may comprise an amino acid sequence that is at least 70% identical to amino acid sequence selected from SEQ ID NOS: 56 to 72, 184 to 190, and 212. In some embodiments, the EPH may employ as a substrate 24,25-epoxycucurbitadienol (intermediate (5) of FIG. 2), for production of 24,25-dihydroxycucurbitadienol (intermediate (6) of FIG. 2). In some embodiments, the EPH comprises an amino acid sequence that is at least 80%, or at least 85%, or at least 90%, or at least 95%, or at least 98%, or at least 99% identical to one of SEQ ID NOS: 56 to 72, 184 to 190, and 212. Thus, in some embodiments, the EPH comprises an amino acid sequence having from 1 to 20 amino acid modifications with respect to one of SEQ ID NOS: 56 to 72, 184 to 190, and 212, the amino acid modifications being independently selected from amino acid substitutions, deletions, and insertions.


In some embodiments, the heterologous pathway comprises at least one EPH enzyme converting 24,25-epoxycucurbitadienol to 24,25-dihydroxycucurbitadienol, the at least one EPH enzyme comprising an amino acid sequence that is at least 70% identical to one of: SEQ ID NO: 189, SEQ ID NO: 58, SEQ ID NO: 184, SEQ ID NO: 185, SEQ ID NO: 187, SEQ ID NO: 188, SEQ ID NO: 190, and SEQ ID NO: 212. See FIG. 12. In some embodiments, the EPH enzyme comprises an amino acid sequence that is at least 80%, or at least 85%, or at least 90%, or at least 95%, or at least 98%, or at least 99% identical to one of SEQ ID NOS: 189, 58, 184, 185, 187, 188, 190, and 212. For example, the EPH may comprise an amino acid sequence having from 1 to 20 amino acid modifications with respect to one of SEQ ID NOS: 189, 58, 184, 185, 187, 188, 190, and 212, the amino acid modifications being independently selected from amino acid substitutions, deletions, and insertions. Amino acid modifications may be made to increase expression or stability of the enzyme in the microbial cell, or to increase productivity of the enzyme.


In some embodiments, the heterologous pathway comprises one or more oxidases. The one or more oxidases may be active on cucurbitadienol or oxygenated products thereof as a substrate, adding (collectively) hydroxylations at C11, C24 and 25, thereby producing mogrol (see FIG. 2). Alternatively, the heterologous pathway may comprise one or more oxidases that oxidize C11 of C24,25 dihydroxycucurbitadienol to produce mogrol.


In some embodiments, at least one oxidase is a cytochrome P450 enzyme. Exemplary cytochrome P450 enzymes comprise an amino acid sequence that is at least 70% identical to an amino acid sequence selected from SEQ ID NOS: 73 to 91, 171 to 176, and 194 to 200. In some embodiments, at least one P450 enzyme comprises an amino acid sequence that is at least 80%, or at least 85%, or at least 90%, or at least 95%, or at least 98%, or at least 99% identical to one of SEQ ID NOS: 73 to 91, 171 to 176, and 194 to 200. For example, at least one cytochrome P450 enzyme comprises an amino acid sequence having from 1 to 20 amino acid modifications with respect to one of SEQ ID NOS: 73 to 91, 171 to 176, and 194 to 200, the amino acid modifications being independently selected from amino acid substitutions, deletions, and insertions.


In some embodiments, the microbial host cell expresses a heterologous enzyme pathway comprising a P450 enzyme having activity for oxidation at C11 of C24,25 dihydroxycucurbitadienol, to thereby produce mogrol. For example, in some embodiments, the cytochrome P450 comprises an amino acid sequence that is at least 70% identical to an amino acid sequence selected from SEQ ID NO: 194 and SEQ ID NO: 171. See FIGS. 13A-C, FIG. 14, and FIG. 15. In some embodiments, the microbial host cell expresses a cytochrome P450 enzyme that comprises an amino acid sequence that is at least 80%, or at least 85%, or at least 90%, or at least 95%, or at least 98%, or at least 99% identical to one of SEQ ID NOS: 194 and 171. In some embodiments, at least one cytochrome P450 enzyme comprises an amino acid sequence having from 1 to 20 amino acid modifications with respect to one of SEQ ID NOS: 194 and 171, the amino acid modifications being independently selected from amino acid substitutions, deletions, and insertions.


In some embodiments, the cytochrome P450 enzyme has at least a portion of its transmembrane region substituted with a heterologous transmembrane region. For example, particularly in embodiments in which the microbial cell is a bacterium, the CYP450 and/or CPR is modified as described in US 2018/0251738, the contents of which are hereby incorporated by reference in their entireties. For example, in some embodiments, the CYP450 enzyme has a deletion of all or part of the wild type P450 N-terminal transmembrane region, and the addition of a transmembrane domain derived from an E. coli or bacterial inner membrane, cytoplasmic C-terminus protein. In some embodiments, the transmembrane domain is a single-pass transmembrane domain. In some embodiments, the transmembrane domain is a multi-pass (e.g., 2, 3, or more transmembrane helices)transmembrane domain. Exemplary transmembrane domains are derived from E. coli zipA or sohB. Alternatively, the P450 enzyme can employ its native transmembrane anchor, or the well-known bovine 17a anchor. See FIG. 14.


In some embodiments, the microbial host cell expresses a non-heme iron oxidase. Exemplary non-heme iron oxidases comprise an amino acid sequence that is at least 70% identical to an amino acid sequence selected from SEQ ID NOS: 100 to 115. In some embodiments, the non-heme iron oxidase comprises an amino acid sequence that is at least 80%, or at least 85%, or at least 90%, or at least 95%, or at least 98%, or at least 99% identical to one of SEQ ID NOS: 100 to 115.


In various embodiments, the microbial host cell expresses one or more electron transfer proteins selected from a cytochrome P450 reductase (CPR), flavodoxin reductase (FPR) and ferredoxin reductase (FDXR) sufficient to regenerate the one or more oxidases. Exemplary CPR proteins are provided herein as SEQ ID NOS: 92 to 99 and 201.


In some embodiments, the microbial host cell expresses a cytochrome P450 reductase, and which may comprise an amino acid sequence that is at least 70%, or at least 80%, or at least 85%, or at least 90%, or at least 95%, or at least 98%, or at least 99% identical to one of SEQ ID NOS: 92 to 99 and 201. For example, in some embodiments, the microbial host cell expresses SEQ ID NO: 194 or a derivative thereof (as described above), and SEQ ID NO: 98 or a derivative thereof (i.e., having at least 70%, at least 80%, or at least 90% sequence identity thereto). In some embodiments, the microbial host cell expresses SEQ ID NO: 171 or a derivative thereof (as described above), and SEQ ID NO: 201 or a derivative thereof (i.e., having at least 70%, at least 80%, or at least 90% sequence identity thereto).


In various embodiments, the heterologous enzyme pathway produces mogrol, which may be an intermediate for downstream enzymes in the heterologous pathway, or in some embodiments is recovered from the culture. Mogrol may be recovered from host cells in some embodiments, and/or can be recovered from the culture media.


In some embodiments, the heterologous enzyme pathway further comprises one or more uridine diphosphate-dependent glycosyltransferase (UGT) enzymes, thereby producing one or more mogrol glycosides (or “mogrosides”). The mogrol glycoside may be pentaglycosylated, hexaglycosylated, or more (e.g., 7, 8, or 9 glycosylations), in some embodiments. In other embodiments, the mogrol glycoside has two, three, or four glucosylations. The one or more mogrol glycosides may be selected from Mog.II-E, Mog.III, Mog.III-A1, Mog.III-A2, Mog.III, Mog.IV, Mog.IV-A, siamenoside, isomog.V, Mog.V, or Mog.VI. In some embodiments, the host cell produces Mog.V or siamenoside.


In some embodiments, the host cell expresses a UGT enzyme that catalyzes the primary glycosylation of mogrol at C24 and/or C3 hydroxyl groups. In some embodiments, the UGT enzyme catalyzes a branching glycosylation, such as a beta 1,2 and/or beta 1,6 branching glycosylation at the primary C3 and C24 glucosyl groups. UGT enzymes observed to catalyze primary glycosylation of C24 and/or C3 hydroxyl groups are summarized in Table 1. UGT enzymes observed to catalyze various branching glycosylation reactions are summarized in Table 2.


In some embodiments, at least one UGT enzyme comprises an amino acid sequence that is at least 70% identical to an amino acid sequence selected from SEQ ID NOS: 116 to 165, 202 to 210, 211, and 213 to 218. For example, in some embodiments, the UGT enzyme comprises an amino acid sequence that is at least 80%, or at least 85%, or at least 90%, or at least 95%, or at least 98%, or at least 99% identical to one of SEQ ID NOS: 116 to 165, 202 to 210, 211, and 213 to 218 Thus, at least one UGT enzyme comprises an amino acid sequence having from 1 to 20 amino acid modifications with respect to one of SEQ ID NOS: 116 to 165, 202 to 210, 211, and 212 to 218, the amino acid modifications being independently selected from amino acid substitutions, deletions, and insertions.


For example, in some embodiments, the microbial cell expresses at least four UGT enzymes, resulting in glucosylation of mogrol at the C3 hydroxyl group, the C24 hydroxyl group, as well as a further 1,6 glucosylation at the C3 glucosyl group, and a further 1,6 glucosylation and a further 1,2 glucosylation at the C24 glucosyl group. The product of such glucosylation reactions is Mog.V.


In some embodiments, at least one UGT enzyme comprises an amino acid sequence having at least 70% sequence identity to one of SEQ ID NO: 164, 165, 138, 204 to 211, and 213 to 218.


In some embodiments, at least one UGT enzyme comprises an amino acid sequence that is at least 70% identical to UGT85C1 (SEQ ID NO: 165). UGT85C1 exhibits primary glycosylation at the C3 and C24 hydroxyl groups. Thus, in some embodiments, at least one UGT enzyme comprises an amino acid sequence that is at least 80%, or at least 85%, or at least 90%, or at least 95%, or at least 98%, or at least 99% identical to SEQ ID NO. 165. The at least one UGT enzyme may comprise an amino acid sequence having from 1 to 20 amino acid modifications with respect to SEQ ID NO: 165, the amino acid modifications being independently selected from amino acid substitutions, deletions, and insertions. Exemplary amino acid substitutions include substitutions at positions 41 (e.g., L41F or L41Y), 49 (e.g., D49E), and 127 (e.g., C127F or C127Y).


In some embodiments, at least one UGT enzyme comprises an amino acid sequence that is at least 70% identical to SEQ ID NO: 164, which exhibits activity for adding branching glycosylations, both 1-2 and 1-6 branching glycosylations. In various embodiments, at least one UGT enzyme comprises an amino acid sequence that is at least 80%, or at least 85%, or at least 90%, or at least 95%, or at least 98%, or at least 99% identical to SEQ ID NO: 164. In exemplary embodiments, at least one UGT enzyme comprises an amino acid sequence having from 1 to 20 amino acid modifications with respect to SEQ ID NO: 164, the amino acid modifications being independently selected from amino acid substitutions, deletions, and insertions. Exemplary amino acid substitutions are shown in Table 3. Exemplary amino acid substitutions include substitutions at one or more positions selected from 150 (e.g., S150F, S150Y), 147 (e.g., T147L, T147V, T147I, and T147A), 207 (e.g., N207K or N207R), 270 (e.g., K270E or K270D), 281 (V281L or V281I), 354 (e.g., L354V or L354I), 13 (e.g., L13F or L13Y), 32 (T32A or T32G or T32L), and 101 (K101A or K101G), with respect to SEQ ID NO: 164. An exemplary engineered UGT enzyme comprises the amino acid substitutions T147L and N207K, with respect to SEQ ID NO: 164.


In some embodiments, at least one UGT enzyme comprises an amino acid sequence that is at least 70% identical to SEQ ID NO: 138, which exhibits an activity to catalyze 1-6 branching glycosylations. In some embodiments, at least one UGT enzyme comprises an amino acid sequence that is at least 80%, or at least 85%, or at least 90%, or at least 95%, or at least 98%, or at least 99% identical to SEQ ID NO: 138. In exemplary embodiments, at least one UGT enzyme comprises an amino acid sequence having from 1 to 20 amino acid modifications with respect to SEQ ID NO: 138, the amino acid modifications being independently selected from amino acid substitutions, deletions, and insertions.


In some embodiments, at least one UGT enzyme comprises an amino acid sequence that is at least 70% identical to SEQ ID NO: 204, which catalyzes 1-6 branching glycosylation, particularly at the C3 primary glucosylation. For example, at least one UGT enzyme may comprise an amino acid sequence that is at least 80%, or at least 85%, or at least 90%, or at least 95%, or at least 98%, or at least 99% identical to SEQ ID NO: 204. In exemplary embodiments, at least one UGT enzyme comprises an amino acid sequence having from 1 to 20 amino acid modifications with respect to SEQ ID NO: 204, the amino acid modifications being independently selected from amino acid substitutions, deletions, and insertions.


In some embodiments, at least one UGT enzyme comprises an amino acid sequence that is at least 70% identical to SEQ ID NO: 205, which catalyzes 1-6 branching glycosylation, including at both the C3 and C24 primary glucosylations. For example, at least one UGT enzyme may comprise an amino acid sequence that is at least 80%, or at least 85%, or at least 90%, or at least 95%, or at least 98%, or at least 99% identical to SEQ ID NO: 205. In exemplary embodiments, at least one UGT enzyme comprises an amino acid sequence having from 1 to 20 amino acid modifications with respect to SEQ ID NO: 205, the amino acid modifications being independently selected from amino acid substitutions, deletions, and insertions.


In some embodiments, at least one UGT enzyme comprises an amino acid sequence that is at least 70% identical to SEQ ID NO: 206, which catalyzes 1-2 and 1-6 branching glycosylations. For example, at least one UGT enzyme may comprise an amino acid sequence that is at least 80%, or at least 85%, or at least 90%, or at least 95%, or at least 98%, or at least 99% identical to SEQ ID NO: 206. In exemplary embodiments, at least one UGT enzyme comprises an amino acid sequence having from 1 to 20 amino acid modifications with respect to SEQ ID NO: 206, the amino acid modifications being independently selected from amino acid substitutions, deletions, and insertions.


In some embodiments, at least one UGT enzyme comprises an amino acid sequence that is at least 70% identical to SEQ ID NO: 207, which catalyzes 1-6 branching glycosylations of the primary glucosylations. For example, at least one UGT enzyme may comprise an amino acid sequence that is at least 80%, or at least 85%, or at least 90%, or at least 95%, or at least 98%, or at least 99% identical to SEQ ID NO: 207. In exemplary embodiments, at least one UGT enzyme comprises an amino acid sequence having from 1 to 20 amino acid modifications with respect to SEQ ID NO: 207, the amino acid modifications being independently selected from amino acid substitutions, deletions, and insertions.


In some embodiments, at least one UGT enzyme comprises an amino acid sequence that is at least 70% identical to SEQ ID NO: 208, which catalyzes 1-2 and 1-6 branching glycosylations. For example, at least one UGT enzyme may comprise an amino acid sequence that is at least 80%, or at least 85%, or at least 90%, or at least 95%, or at least 98%, or at least 99% identical to SEQ ID NO: 208. In exemplary embodiments, at least one UGT enzyme comprises an amino acid sequence having from 1 to 20 amino acid modifications with respect to SEQ ID NO: 208, the amino acid modifications being independently selected from amino acid substitutions, deletions, and insertions.


In some embodiments, at least one UGT enzyme comprises an amino acid sequence that is at least 70% identical to SEQ ID NO: 209, which catalyzes 1-6 branching glycosylations of the primary glucosylations. For example, at least one UGT enzyme may comprise an amino acid sequence that is at least 80%, or at least 85%, or at least 90%, or at least 95%, or at least 98%, or at least 99% identical to SEQ ID NO: 209. In exemplary embodiments, at least one UGT enzyme comprises an amino acid sequence having from 1 to 20 amino acid modifications with respect to SEQ ID NO: 209, the amino acid modifications being independently selected from amino acid substitutions, deletions, and insertions.


In some embodiments, at least one UGT enzyme comprises an amino acid sequence that is at least 70% identical to SEQ ID NO: 210), which catalyzes 1-6 branching glycosylations of the primary glucosylations. For example, at least one UGT enzyme may comprise an amino acid sequence that is at least 80%, or at least 85%, or at least 90%, or at least 95%, or at least 98%, or at least 99% identical to SEQ ID NO: 210. In exemplary embodiments, at least one UGT enzyme comprises an amino acid sequence having from 1 to 20 amino acid modifications with respect to SEQ ID NO: 210, the amino acid modifications being independently selected from amino acid substitutions, deletions, and insertions.


In some embodiments, at least one UGT enzyme comprises an amino acid sequence that is at least 70%/identical to SEQ ID NO: 211, which catalyzes 1-2 branching glycosylation of the C24 primary glucosylation. For example, at least one UGT enzyme may comprise an amino acid sequence that is at least 80%, or at least 85%, or at least 90%, or at least 95%, or at least 98%, or at least 99% identical to SEQ ID NO: 211. In exemplary embodiments, at least one UGT enzyme comprises an amino acid sequence having from 1 to 20 amino acid modifications with respect to SEQ ID NO: 210, the amino acid modifications being independently selected from amino acid substitutions, deletions, and insertions.


In some embodiments, at least one UGT enzyme comprises an amino acid sequence that is at least 70% identical to SEQ ID NO: 213, which catalyzes 1-6 branching glycosylation of the primary glucosylation at C24. For example, at least one UGT enzyme may comprise an amino acid sequence that is at least 80%, or at least 85%, or at least 90%, or at least 95%, or at least 98%, or at least 99% identical to SEQ ID NO: 213. In exemplary embodiments, at least one UGT enzyme comprises an amino acid sequence having from 1 to 20 amino acid modifications with respect to SEQ ID NO: 213, the amino acid modifications being independently selected from amino acid substitutions, deletions, and insertions.


In some embodiments, at least one UGT enzyme comprises an amino acid sequence that is at least 70% identical to SEQ ID NO: 214, which catalyzes primary glucosylation at C24. For example, at least one UGT enzyme may comprise an amino acid sequence that is at least 80%, or at least 85%, or at least 90%, or at least 95%, or at least 98%, or at least 99% identical to SEQ ID NO: 214. In exemplary embodiments, at least one UGT enzyme comprises an amino acid sequence having from 1 to 20 amino acid modifications with respect to SEQ ID NO: 214, the amino acid modifications being independently selected from amino acid substitutions, deletions, and insertions.


In some embodiments, at least one UGT enzyme comprises an amino acid sequence that is at least 70% identical to SEQ ID NO: 215, which catalyzes 1-6 branching glucosylation at C24. For example, at least one UGT enzyme may comprise an amino acid sequence that is at least 80%, or at least 85%, or at least 90%, or at least 95%, or at least 98%, or at least 99% identical to SEQ ID NO: 215. In exemplary embodiments, at least one UGT enzyme comprises an amino acid sequence having from 1 to 20 amino acid modifications with respect to SEQ ID NO: 215, the amino acid modifications being independently selected from amino acid substitutions, deletions, and insertions.


In still other embodiments, at least one UGT enzyme comprises an amino acid sequence that is at least 70% identical to SEQ ID NO: 146, which provides for glucosylation of the C24 hydroxyl of mogrol or Mog.IE. In some embodiments, at least one UGT enzyme comprises an amino acid sequence that is at least 80%, or at least 85%, or at least 90%, or at least 95%, or at least 98%, or at least 99% identical to SEQ ID NO. 146. In some embodiments, at least one UGT enzyme comprises an amino acid sequence having from 1 to 20 or from 1 to 10 amino acid modifications with respect to SEQ ID NO: 146, the amino acid modifications being independently selected from amino acid substitutions, deletions, and insertions. Amino acid modifications may be made to increase expression or stability of the enzyme in the microbial cell, or to increase productivity of the enzyme for particular substrates.


In some embodiments, at least one UGT enzyme comprises an amino acid sequence that is at least 70% identical to SEQ ID NO: 202, which catalyzes primary glycosylation at the C3 and C24 hydroxyl. For example, at least one UGT enzyme may comprise an amino acid sequence that is at least 80%, or at least 85%, or at least 90%, or at least 95%, or at least 98%, or at least 99% identical to SEQ ID NO: 202. In exemplary embodiments, at least one UGT enzyme comprises an amino acid sequence having from 1 to 20 amino acid modifications with respect to SEQ ID NO: 202, the amino acid modifications being independently selected from amino acid substitutions, deletions, and insertions.


In some embodiments, at least one UGT enzyme comprises an amino acid sequence that is at least 70% identical to SEQ ID NO: 218, which catalyzes primary glycosylation at the C24 hydroxyl. For example, at least one UGT enzyme may comprise an amino acid sequence that is at least 80%, or at least 85%, or at least 90%, or at least 95%, or at least 98%, or at least 99% identical to SEQ ID NO: 218. In exemplary embodiments, at least one UGT enzyme comprises an amino acid sequence having from 1 to 20 amino acid modifications with respect to SEQ ID NO: 218, the amino acid modifications being independently selected from amino acid substitutions, deletions, and insertions.


In some embodiments, at least one UGT enzyme comprises an amino acid sequence that is at least 70% identical to SEQ ID NO: 217, which catalyzes primary glycosylation at the C24 hydroxyl. For example, at least one UGT enzyme may comprise an amino acid sequence that is at least 80%, or at least 85%, or at least 90%, or at least 95%, or at least 98%, or at least 99% identical to SEQ ID NO: 217. In exemplary embodiments, at least one UGT enzyme comprises an amino acid sequence having from 1 to 20 amino acid modifications with respect to SEQ ID NO: 217, the amino acid modifications being independently selected from amino acid substitutions, deletions, and insertions. Exemplary amino acid substitutions include substitutions at one or more positions (with respect to SEQ ID NO: 17) selected from 74 (e.g., A74E or A74D), 91 (I91F or I91Y), 101 (e.g., H101P), 241 (e.g., Q241E or Q241D), and 436 (e.g., I436L or I436A). In some embodiments, the UGT enzyme comprises the following amino acid substitutions with respect to SEQ ID NO: 217: A74E, 191F, and H101P.


In some embodiments, at least one UGT enzyme comprises an amino acid sequence that is at least 70% identical to SEQ ID NO: 216, which catalyzes primary glycosylation at the C24 hydroxyl. For example, at least one UGT enzyme may comprise an amino acid sequence that is at least 80%, or at least 85%, or at least 90%, or at least 95%, or at least 98%, or at least 99% identical to SEQ ID NO: 216. In exemplary embodiments, at least one UGT enzyme comprises an amino acid sequence having from 1 to 20 amino acid modifications with respect to SEQ ID NO: 216, the amino acid modifications being independently selected from amino acid substitutions, deletions, and insertions.


In some embodiments, at least one UGT enzyme comprises an amino acid sequence that is at least 70% identical to SEQ ID NO: 117, SEQ ID NO: 210, or SEQ ID NO: 122. For example, the enzyme defined by SEQ ID NO: 117 catalyzes branching glycosylations. In some embodiments, at least one UGT enzyme comprises an amino acid sequence that is at least 80%, or at least 85%, or at least 90%, or at least 95%, or at least 98%, or at least 99% identical to SEQ ID NO: 117, SEQ ID NO: 210, or SEQ ID NO: 122. In some embodiments, at least one UGT enzyme comprises an amino acid sequence having from 1 to 20 amino acid modifications with respect to SEQ ID NO: 117, 210, or 122, the amino acid modifications being independently selected from amino acid substitutions, deletions, and insertions.


In some embodiments, the microbial cell expresses at least one UGT enzyme capable of catalyzing beta 1,2 addition of a glucose molecule to at least the C24 glucosyl group (e.g., of Mog. IVA). Exemplary UGT enzymes in accordance with these embodiments include SEQ ID NO: 117, SEQ ID NO:147, SEQ ID NO: 148, SEQ ID NO: 149, SEQ ID NO: 150, or SEQ ID NO: 163, or derivatives thereof. Derivatives include enzymes comprising amino acid sequence that are least 70% identical to one or more of SEQ ID NO: 117, SEQ ID NO: 147, SEQ ID NO: 148, SEQ ID NO: 149, SEQ ID NO: 150, and SEQ ID NO: 163. In some embodiments, the UGT enzyme catalyzing beta 1,2 addition of a glucose molecule to at least the C24 glucosyl group comprises an amino acid sequence that is at least 80%, or at least 85%, or at least 90%, or at least 95%, or at least 98%, or at least 99% identical to one or more of SEQ ID NO: 117, SEQ ID NO: 147, SEQ ID NO: 148, SEQ ID NO: 149, SEQ ID NO. 150, and SEQ ID NO: 163. In some embodiments, at least one UGT enzyme comprises an amino acid sequence having from 1 to 20 or having from 1 to 10 amino acid modifications with respect to SEQ ID NO. 117, SEQ ID NO: 147, SEQ ID NO: 148, SEQ ID NO: 149, SEQ ID NO: 150, and SEQ ID NO: 163, the amino acid modifications being independently selected from amino acid substitutions, deletions, and insertions. Amino acid modifications may be made to increase expression or stability of the enzyme in the microbial cell, or to increase productivity of the enzyme for particular substrates.


In some embodiments, at least one UGT enzyme is a circular permutant of a wild-type UGT enzyme, optionally having amino acid substitutions, deletions, and/or insertions with respect to the corresponding position of the wild-type enzyme. Circular permutants can provide novel and desirable substrate specificities, product profiles, and reaction kinetics over the wild-type enzymes. A circular permutant retains the same basic fold of the parent enzyme, but has a different position of the N-terminus (e.g., “cut-site”), with the original N- and C-termini connected, optionally by a linking sequence. For example, in the circular permutants, the N-terminal Methionine is positioned at a site in the protein other than the natural N-terminus. UGT circular permutants are described in US 2017/0332673, which is hereby incorporated by reference in its entirety. In some embodiments, at least one UGT enzyme is a circular permutant of a UGT enzyme described herein, such as but not limited to SEQ ID NO: 146, SEQ ID NO: 164, or SEQ ID NO: 165, SEQ ID NO: 117, SEQ ID NO: 147, SEQ ID NO: 148, SEQ ID NO: 149, SEQ ID NO: 150, SEQ ID NO: 163, SEQ ID NO: 202, SEQ ID NO: 216, SEQ ID NO: 217, and SEQ ID NO: 218. In some embodiments, the circular permutant further has one or more amino acid modifications (e.g., amino acid substitutions, deletions, and/or insertions) with respect to the parent UGT enzyme. In these embodiments, the circular permutant will have at least about 70%, or at least about 80%, or at least about 90%, or at least about 95%, or at least about 98% identity to the parent enzyme, when the corresponding amino acid sequences are aligned (i.e., without regard to the new N-terminus of the circular permutant). An exemplary circular permutant for use according to some embodiments is SEQ ID NO: 206.


In some embodiments, the microbial host cell expresses at least three UGT enzymes: a first UGT enzyme catalyzing primary glycosylation at the C24 hydroxyl of mogrol, a second UGT enzyme catalyzing primary glycosylation at the C3 hydroxyl of mogrol, and a third UGT enzyme catalyzing one or more branching glycosylation reactions. In some embodiments, the microbial host cell expresses one or two UGT enzymes catalyzing beta 1,2 and/or beta 1,6 branching glycosylations of the C3 and/or C24 primary glycosylations. For example, the UGT enzymes may comprise three or four UGT enzymes selected from:


SEQ ID NO: 165 or a derivative thereof;


SEQ ID NO: 146 or a derivative thereof;


SEQ ID NO: 214 or a derivative thereof;


SEQ ID NO: 129 or a derivative thereof;


SEQ ID NO: 164 or a derivative thereof;


SEQ ID NO: 116 or a derivative thereof;


SEQ ID NO: 202 or a derivative thereof;


SEQ ID NO: 218 or a derivative thereof;


SEQ ID NO: 217 or a derivative thereof;


SEQ ID NO: 138 or a derivative thereof;


SEQ ID NO: 204 or a derivative thereof;


SEQ ID NO: 205 or a derivative thereof;


SEQ ID NO: 207 or a derivative thereof;


SEQ ID NO: 208 or a derivative thereof;


SEQ ID NO: 209 or a derivative thereof;


SEQ ID NO: 11 or a derivative thereof;


SEQ ID NO: 215 or a derivative thereof;


SEQ ID NO: 213 or a derivative thereof;


SEQ ID NO: 206 or a derivative thereof;


SEQ ID NO: 122 or a derivative thereof; and


SEQ ID NO: 210) or a derivative thereof. Derivatives have sequence identity to the reference enzyme as described herein.


In some embodiments, the microbial host cell has one or more genetic modifications that increase the production of UDP-glucose, the co-factor employed by UGT enzymes. These genetic modifications may include one or more, or two or more (or all) of ΔgalE, ΔgalT, ΔgalK, ΔgalM, ΔushA, Δagp, Δpgm, duplication of E. coli galU, expression of Bacillus subtilis UGPA, and expression of Bifidobacterium adolescentis SPL.


Mogrol glycosides can be recovered from the microbial culture. For example, mogrol glycosides may be recovered from microbial cells, or in some embodiments, are predominately available in the extracellular media, where they may be recovered or sequestered.


In various embodiments, the reaction is performed in a microbial cell, and UGT enzymes are recombinantly expressed in the cell. In some embodiments, mogrol is produced in the cell by a heterologous mogrol synthesis pathway, as described herein. In other embodiments, mogrol or mogrol glycosides (such as a monkfruit extract) are fed to the cells for glycosylation. In still other embodiments, the reaction is performed in vitro using purified UGT enzyme, partially purified UGT enzyme, or recombinant cell lysates.


As described herein, the microbial host cell can be prokaryotic or eukaryotic, and is optionally a bacterium selected from Escherichia coli, Bacillus subtilis, Corynebacterium glutamicum, Rhodobacter capsulatus, Rhodobacter sphaeroides, Zymomonas mobilis, Vibrio natriegens, or Pseudomonas putida. In some embodiments, the microbial cell is a yeast selected from a species of Saccharomyces, Pichia, or Yarrowia, including Saccharomyces cerevisiae, Pichia pastoris, and Yarrowia lipolytica. In some embodiments, the microbial host cell is E. coli.


The bacterial host cell is cultured to produce the triterpenoid product (e.g., mogroside). In some embodiments, carbon substrates such as C1, C2, C3, C4, C5, and/or C6 carbon substrates are employed for the production phase. In exemplary embodiments, the carbon source is glucose, sucrose, fructose, xylose, and/or glycerol. Culture conditions are generally selected from aerobic, microaerobic, and anaerobic.


In various embodiments, the bacterial host cell may be cultured at a temperature between 22° C. and 37° C. While commercial biosynthesis in bacteria such as E. coli can be limited by the temperature at which overexpressed and/or foreign enzymes (e.g., enzymes derived from plants) are stable, recombinant enzymes may be engineered to allow for cultures to be maintained at higher temperatures, resulting in higher yields and higher overall productivity. In some embodiments, the culturing is conducted at about 22° C. or greater, about 23° C. or greater, about 24° C. or greater, about 25° C. or greater, about 26° C. or greater, about 27° C. or greater, about 28° C. or greater, about 29° C. or greater, about 30° C. or greater, about 31° C. or greater, about 32° C. or greater, about 33° C. or greater, about 34° C. or greater, about 35° C. or greater, about 36° C. or greater, or about 37° C.


In some embodiments, the bacterial host cells are further suitable for commercial production, at commercial scale. In some embodiments, the size of the culture is at least about 100 L, at least about 200 L, at least about 500 L, at least about 1,000 L, or at least about 10,000 L, or at least about 100,000 L, or at least about 500,000 L, or at least about 600,000 L. In an embodiment, the culturing may be conducted in batch culture, continuous culture, or semi-continuous culture.


In various embodiments, methods further include recovering the product from the cell culture or from cell lysates. In some embodiments, the culture produces at least about 100 mg/L, or at least about 200 mg/L, or at least about 500 mg/L, or at least about 1 g/L, or at least about 2 g/L, or at least about 5 g/L, or at least about 10 g/L, or at least about 20 g/L, or at least about 30 g/L, or at least about 40 g/L of the terpenoid or terpenoid glycoside product.


In some embodiments, the production of indole (including prenylated indole) is used as a surrogate marker for terpenoid production, and/or the accumulation of indole in the culture is controlled to increase production. For example, in various embodiments, accumulation of indole in the culture is controlled to below about 100 mg/L, or below about 75 mg/L, or below about 50 mg/L, or below about 25 mg/L, or below about 10 mg/L. The accumulation of indole can be controlled by balancing protein expression and activity using the multivariate modular approach as described in U.S. Pat. No. 8,927,241 (which is hereby incorporated by reference), and/or is controlled by chemical means.


Other markers for efficient production of terpene and terpenoids, include accumulation of DOX or ME in the culture media. Generally, the bacterial strains may be engineered to accumulate less of these chemical species, which accumulate in the culture at less than about 5 g/L, or less than about 4 g/L, or less than about 3 g/L, or less than about 2 g/L, or less than about 1 g/L, or less than about 500 mg/L, or less than about 100 mg/L.


The optimization of terpene or terpenoid production by manipulation of MEP pathway genes, as well as manipulation of the upstream and downstream pathways, is not expected to be a simple linear or additive process. Rather, through combinatorial analysis, optimization is achieved through balancing components of the MEP pathway, as well as upstream and downstream pathways. Indole (including prenylated indole) accumulation and MEP metabolite accumulation (e.g., DOX, ME, MEcPP, and/or farnesol) in the culture can be used as surrogate markers to guide this process.


For example, in some embodiments, the bacterial strain has at least one additional copy of dxs and idi expressed as an operon/module; or dxs, ispD, ispF, and idi expressed as an operon or module (either on a plasmid or integrated into the genome), with additional MEP pathway complementation described herein to improve MEP carbon. For example, the bacterial strain may have a further copy of dxr, and ispG and/or ispH, optionally with a further copy of ispE and/or idi, with expressions of these genes tuned to increase MEP carbon and/or improve terpene or terpenoid titer. In various embodiments, the bacterial strain has a further copy of at least dxr, ispE, ispG and ispH, optionally with a further copy of idi, with expressions of these genes tuned to increase MEP carbon and/or improve terpene or terpenoid titer.


Manipulation of the expression of genes and/or proteins, including gene modules, can be achieved through various methods. For example, expression of the genes or operons can be regulated through selection of promoters, such as inducible or constitutive promoters, with different strengths (e.g., strong, intermediate, or weak). Several non-limiting examples of promoters of different strengths include Trc, T5 and T7. Additionally, expression of genes or operons can be regulated through manipulation of the copy number of the gene or operon in the cell. In some embodiments, expression of genes or operons can be regulated through manipulating the order of the genes within a module, where the genes transcribed first are generally expressed at a higher level. In some embodiments, expression of genes or operons is regulated through integration of one or more genes or operons into the chromosome.


Optimization of protein expression can also be achieved through selection of appropriate promoters and ribosomal binding sites. In some embodiments, this may include the selection of high-copy number plasmids, or single-, low- or medium-copy number plasmids. The step of transcription termination can also be targeted for regulation of gene expression, through the introduction or elimination of structures such as stem-loops.


Expression vectors containing all the necessary elements for expression are commercially available and known to those skilled in the art. See, e.g., Sambrook et al., Molecular Cloning: A Laboratory Manual, Second Edition, Cold Spring Harbor Laboratory Press, 1989. Cells are genetically engineered by the introduction into the cells of heterologous DNA. The heterologous DNA is placed under operable control of transcriptional elements to permit the expression of the heterologous DNA in the host cell.


In some embodiments, endogenous genes are edited, as opposed to gene complementation. Editing can modify endogenous promoters, ribosomal binding sequences, or other expression control sequences, and/or in some embodiments modifies trans-acting and/or cis-acting factors in gene regulation. Genome editing can take place using CRISPR/Cas genome editing techniques, or similar techniques employing zinc finger nucleases and TALENs. In some embodiments, the endogenous genes are replaced by homologous recombination.


In some embodiments, genes are overexpressed at least in part by controlling gene copy number. While gene copy number can be conveniently controlled using plasmids with varying copy number, gene duplication and chromosomal integration can also be employed. For example, a process for genetically stable tandem gene duplication is described in US 2011/0236927, which is hereby incorporated by reference in its entirety.


The terpene or terpenoid product can be recovered by any suitable process. For example, the aqueous phase can be recovered, and/or the whole cell biomass can be recovered, for further processing. The production of the desired product can be determined and/or quantified, for example, by gas chromatography (e.g., GC-MS). The desired product can be produced in batch or continuous bioreactor systems.


The similarity of nucleotide and amino acid sequences, i.e. the percentage of sequence identity, can be determined via sequence alignments. Such alignments can be carried out with several art-known algorithms, such as with the mathematical algorithm of Karlin and Altschul (Karlin & Altschul (1993) Proc. Natl. Acad. Sci. USA 90: 5873-5877), with hmmalign (HMMER package, http://hmmer.wustl.edu/) or with the CLUSTAL algorithm (Thompson, J. D., Higgins, D. G. & Gibson, T. J. (1994) Nucleic Acids Res. 22, 4673-80). The grade of sequence identity (sequence matching) may be calculated using e.g. BLAST, BLAT or BlastZ (or BlastX). A similar algorithm is incorporated into the BLASTN and BLASTP programs of Altschul et al (1990) J. Mol. Biol. 215: 403-410. BLAST polynucleotide searches can be performed with the BLASTN program, score=100, word length=12.


BLAST protein searches may be performed with the BLASTP program, score=50, word length=3. To obtain gapped alignments for comparative purposes, Gapped BLAST is utilized as described in Altschul et al (1997) Nucleic Acids Res. 25: 3389-3402. When utilizing BLAST and Gapped BLAST programs, the default parameters of the respective programs are used. Sequence matching analysis may be supplemented by established homology mapping techniques like Shuffle-LAGAN (Brudno M., Bioinformatics 2003b, 19 Suppl 1.154-162) or Markov random fields.


“Conservative substitutions” may be made, for instance, on the basis of similarity in polarity, charge, size, solubility, hydrophobicity, hydrophilicity, and/or the amphipathic nature of the amino acid residues involved. The 20 naturally occurring amino acids can be grouped into the following six standard amino acid groups:


(1) hydrophobic: Met, Ala, Val, Leu, Ile;


(2) neutral hydrophilic: Cys, Ser, Thr; Asn, Gin;


(3) acidic: Asp, Glu;


(4) basic: His, Lys, Arg;


(5) residues that influence chain orientation: Gly, Pro; and


(6) aromatic: Trp, Tyr, Phe.


As used herein, “conservative substitutions” are defined as exchanges of an amino acid by another amino acid listed within the same group of the six standard amino acid groups shown above. For example, the exchange of Asp by Glu retains one negative charge in the so modified polypeptide. In addition, glycine and proline may be substituted for one another based on their ability to disrupt α-helices. Some preferred conservative substitutions within the above six groups are exchanges within the following sub-groups: (i) Ala, Val, Leu and Ile; (ii) Ser and Thr; (ii) Asn and Gin; (iv) Lys and Arg; and (v) Tyr and Phe.


As used herein, “non-conservative substitutions” are defined as exchanges of an amino acid by another amino acid listed in a different group of the six standard amino acid groups (1) to (6) shown above.


Modifications of enzymes as described herein can include conservative and/or non-conservative mutations. In some embodiments, an Alanine is substituted or inserted at position 2, to increase stability.


In some embodiments “rational design” is involved in constructing specific mutations in enzymes. Rational design refers to incorporating knowledge of the enzyme, or related enzymes, such as its reaction thermodynamics and kinetics, its three dimensional structure, its active site(s), its substrate(s) and/or the interaction between the enzyme and substrate, into the design of the specific mutation. Based on a rational design approach, mutations can be created in an enzyme which can then be screened for increased production of a terpene or terpenoid relative to control levels. In some embodiments, mutations can be rationally designed based on homology modeling. As used herein, “homology modeling” refers to the process of constructing an atomic resolution model of one protein from its amino acid sequence and a three-dimensional structure of a related homologous protein.


In other aspects, the invention provides a method for making a product comprising a mogrol glycoside. The method comprises producing a mogrol glycoside in accordance with this disclosure, and incorporating the mogrol glycoside into a product. In some embodiments, the mogrol glycoside is siamenoside, Mog.V, Mog.VI, or Isomog.V. In some embodiments, the product is a sweetener composition, flavoring composition, food, beverage, chewing gum, texturant, pharmaceutical composition, tobacco product, nutraceutical composition, or oral hygiene composition.


The product may be a sweetener composition comprising a blend of artificial and/or natural sweeteners. For example, the composition may further comprise one or more of a steviol glycoside, aspartame, and neotame. Exemplary steviol glycosides comprises one or more of RebM, RebB, RebD, RebA, RebE, and RebI.


Non-limiting examples of flavors for which the products can be used in combination include lime, lemon, orange, fruit, banana, grape, pear, pineapple, mango, bitter almond, cola, cinnamon, sugar, cotton candy and vanilla flavors. Non-limiting examples of other food ingredients include flavors, acidulants, and amino acids, coloring agents, bulking agents, modified starches, gums, texturizers, preservatives, antioxidants, emulsifiers, stabilizers, thickeners and gelling agents.


Mogrol glycosides obtained according to this invention may be incorporated as a high intensity natural sweetener in foodstuffs, beverages, pharmaceutical compositions, cosmetics, chewing gums, table top products, cereals, dairy products, toothpastes and other oral cavity compositions, etc.


Mogrol glycosides obtained according to this invention can be used in combination with various physiologically active substances or functional ingredients. Functional ingredients generally are classified into categories such as carotenoids, dietary fiber, fatty acids, saponins, antioxidants, nutraceuticals, flavonoids, isothiocyanates, phenols, plant sterols and stanols (phytosterols and phytostanols), polyols; prebiotics, probiotics; phytoestrogens; soy protein; sulfides/thiols; amino acids; proteins; vitamins; and minerals. Functional ingredients also may be classified based on their health benefits, such as cardiovascular, cholesterol-reducing, and anti-inflammatory.


Mogrol glycosides obtained according to this invention may be applied as a high intensity sweetener to produce zero calorie, reduced calorie or diabetic beverages and food products with improved taste characteristics. It may also be used in drinks, foodstuffs, pharmaceuticals, and other products in which sugar cannot be used. In addition, highly purified target mogrol glycoside(s), particularly, Mog.V, Mog.VI, or Isomog.V, can be used as a sweetener not only for drinks, foodstuffs, and other products dedicated for human consumption, but also in animal feed and fodder with improved characteristics.


Examples of products in which mogrol glycoside(s) may be used as a sweetening compound include, but are not limited to, alcoholic beverages such as vodka, wine, beer, liquor, and sake, etc.; natural juices; refreshing drinks; carbonated soft drinks; diet drinks; zero calorie drinks; reduced calorie drinks and foods; yogurt drinks; instant juices; instant coffee; powdered types of instant beverages; canned products; syrups; fermented soybean paste; soy sauce; vinegar; dressings; mayonnaise; ketchups; curry; soup; instant bouillon; powdered soy sauce: powdered vinegar; types of biscuits; rice biscuit; crackers; bread; chocolates; caramel; candy; chewing gum; jelly; pudding; preserved fruits and vegetables; fresh cream; jam; marmalade; flower paste; powdered milk; ice cream; sorbet; vegetables and fruits packed in bottles; canned and boiled beans; meat and foods boiled in sweetened sauce; agricultural vegetable food products: seafood; ham; sausage; fish ham; fish sausage; fish paste; deep fried fish products; dried seafood products, frozen food products; preserved seaweed; preserved meat; tobacco: medicinal products; and many others.


During the manufacturing of products such as foodstuffs, drinks, pharmaceuticals, cosmetics, table top products, and chewing gum, the conventional methods such as mixing, kneading, dissolution, pickling, permeation, percolation, sprinkling, atomizing, infusing and other methods may be used.


As used in this specification and the appended claims, the singular forms “a”, “an” and “the” include plural referents unless the content clearly dictates otherwise. For example, reference to “a cell” includes a combination of two or more cells, and the like.


As used herein, the term “about” in reference to a number is generally taken to include numbers that fall within a range of 10% in either direction (greater than or less than) of the number.


EXAMPLES

The biosynthesis of mogrosides in fruit involves a number of consecutive glycosylations of the aglycone mogrol to the final sweet products, including mogroside V (Mog.V). Mog.V has a sweetening capacity that is about 250 times that of sucrose (Kasai et al., Agric Biol Chem (1989)). Mogrosides are reported to have health benefits as well (Li et al., Chin J Nat Med (2014)).


A variety of factors are promoting a surge in interest in mogrosides and monkfruit in general, including an explosion in demand for natural sweeteners, difficulties in scalable sourcing of the current lead natural sweetener, rebaudioside M (RebM) from the Stevia plant, the superior taste performance of Mog.V relative to other natural and artificial sweetener products on the market, and the medicinal potential of the plant and fruit.


Purified Mog.V has been approved as a high-intensity sweetening agent in Japan (Jakinovich et al., Journal of Natural Products (1990)) and the extract has gained GRAS status in the USA as a non-nutritive sweetener and flavor enhancer (GRAS 522). Extraction of mogrosides from the fruit can yield a product of varying degrees of purity, often accompanied by undesirable aftertaste. In addition, yields of mogroside from cultivated fruit are limited due to low plant yields and particular cultivation requirements of the plant. Mogrosides are present at ˜1% in the fresh fruit and ˜4% in the dried fruit. Mog.V is the main component, with a content of 0.5%-1.4% in the dried fruit. Moreover, purification difficulties limit purity for Mog.V, with commercial products from plant extracts being standardized to ˜50% Mog.V. A pure Mog.V product is desirable to avoid off flavors, and will be easier to formulate into products, since Mog.V has good solubility potential. It is therefore advantageous to produce sweet mogroside compounds, such as but not limited to Mog.V, via biotechnological processes.



FIG. 1 shows the chemical structures of Mog.V, Mog.VI, Isomog.V, and Siamenoside. Mog.V has five glucosylations with respect to the mogrol core, including glucosylations at the C3 and C24 hydroxyl groups, followed by 1-2, 1-4, and 1-6 glucosyl additions. These glucosylation reactions are catalyzed by uridine diphosphate-dependent glycosyltransferase enzymes (UGTs).



FIG. 2 shows routes to Mog.V production in vivo. The enzymatic transformation required for each step is indicated, along with the type of enzyme required. Numbers in parentheses correspond to the chemical structures in FIG. 3, namely: (1) farnesyl pyrophosphate; (2) squalene; (3) 2,3-oxidosqualene; (4) 2,3;22,23-dioxidosqualene, (5) 24,25-epoxycucurbitadienol; (6) 24,25-dihydrooxycucurbitadienol; (7) mogrol; (8) mogroside V; (9) cucurbitadienol.


Mogrosides can be produced by biosynthetic fermentation processes, as illustrated in FIG. 2, using microbial strains that produce high levels of methylerythritol 4-phosphate (MEP) pathway products, along with heterologous expression of mogrol biosynthesis enzymes and UGT enzymes that direct glucosylation reactions to Mog.V, or other desired mogroside compound. For example, in bacteria such as E. coli, isopentenyl pyrophosphate (IPP) and dimethylallyl pyrophosphate (DMAPP) can be produced from glucose, and are converted to farnesyl diphosphate (FPP) (1) by recombinant farnesyl diphosphate synthase (FPPS). FPP is converted to squalene (2) by a condensation reaction catalyzed by squalene synthase (SQS). Squalene is converted to 2,3-oxidosqualene (3) by an epoxidation reaction catalyzed by a squalene epoxidase (SQE). The pathway can proceed to 22,23-dioxidosqualene (4) by further epoxidation followed by cyclization to 24,25-epoxycucurbitadienol (5) by a triterpene cyclase, and then hydration of the remaining epoxy group to 24,25-dihydroxycucurbitadienol (6) by an epoxide hydrolase. A further hydroxylation catalyzed by a P450 oxidase produces mogrol (7).


The pathway can alternatively proceed by cyclization of (3) to produce cucurbitadienol (9), followed by epoxidation to (5), or multiple hydroxylations of cucurbitadienol to 24,25-dihydroxycucurbitadienol (6), or to mogrol (7).



FIG. 4 illustrates glucosylation routes to Mog.V. Glucosylation of the C3 hydroxyl produces Mog.I-E, or glucosylation of the C24 hydroxyl produces Mog.I-A1. Glucosylation of Mog.I-A1 at C3 or glucosylation of Mog.I-E1 at C24 produces Mog.III-E. Further 1-6 glucosylation of Mog.II-E at C3 produces Mog.III-A2. Further 1-6 glucosylation at C24 of Mog.IIE produces Mog.III. 1-2 glucosylation of Mog.III-A2 at C24 produces Mog.IV, and then to Mog.V with a further 1-6 glucosylation at C24. Alternatively, glucosylations may proceed through Mog.III, with a 1-6 glucosylation at C3 and a 1-2 glucosylation at C24, or through Siamenoside or Mog.IV with 1-6 glucosylations.


While biosynthetic enzymes from monkfruit (Siraitia grosvenorii) have been identified for production of mogrol (See, WO 2016/038617 and US 2015/0322473, which are hereby incorporated by reference in their entireties), many of these enzymes lack the productivity or physical properties desired for overexpression in microbial hosts, particularly for fermentation approaches that operate at higher temperatures than the natural climate of the plant. Accordingly, alternative or engineered enzymes are desired to improve production of mogrol using microbial fermentation, with mogrol acting as the substrate for glucosylation to produce Mog.V or other target mogroside.


Using an E. coli strain that produces high levels of the MEP pathway products IPP and DMAPP (see US 2018/0245103 and US 2018/0216137, which are hereby incorporated by reference), and with overexpression of ScFPPS, enzymes were screened for their ability to convert FPP to squalene (SQS activity), as well epoxidation of squalene to produce 2,3-oxidosqualene (SQE activity). The 2,3-oxidosqualene intermediate can by cyclized by a triterpene cyclase, such as CDS from Siraitia grosvenorii. As demonstrated in FIG. 5, several enzymes were identified with good activity in E. coli. In particular, SEQ ID NO: 11 showed high activity in E. coli at 37° C. culture conditions.


As shown in FIG. 6, co-expression of SQS (SEQ ID NO: 11) and SQE (SEQ ID NO: 39) in E. coli provided a substantial gain in titer of the 2,3-oxidosqualene intermediate. Other SQE enzymes were active in E. coli.



FIG. 7 shows coexpression of SQS, SQE, and TTC enzymes. CDS (or triterpene cyclase, or “TTC”) (SEQ ID NO: 40), when coexpressed with SQS (SEQ ID NO: 11) and SQE (SEQ ID NO: 39), resulted in high production of the triterpenoid product, cucurbitadienol (Product 3). These fermentation experiments were performed at 37° C. for 48 to 120 hours. FIG. 8 shows results for SQE engineering to produce high titers of 2,3;22,23-dioxidosqualene. Expression of SQS, SQE, and TTC whether on a bacterial artificial chromosome (BAC) or integrated, produce large amounts of cucurbitadienol. Point mutations in SQE (SEQ ID NO: 39) were screened to complement SQE (SEQ ID NO 39) to reduce levels of cucurbitadienol, with corresponding gain in titers of 2,3;22,23-dioxidosqualene. Two SQE mutants are shown in FIG. 8, SQE A4 and SQE C11. By complementing SQE (SEQ ID NO: 39) with a second engineered version with higher specificity/activity for 2,3-oxidosqualene, titers can be pushed toward 2,3;22,23-dioxidosqualene, as opposed to cucurbitadienol. This concept is demonstrated further in FIG. 9. SQE A4 (SEQ ID NO: 203) was co-expressed with SQE (SEQ ID NO: 39), SQS (SEQ ID NO: 11), and TTC (SEQ ID NO: 40). These fermentation experiments were performed at 37° C. for 48 hours in 96 well plates. Titers were plotted for each strain producing 2,3;22,23 dioxidosqualene. As shown in FIG. 9, the strain expressing SQE A4 (SEQ ID NO: 203) produced much more 2,3;22,23 dioxidosqualene.



FIG. 10 shows the coexpression of SQS, SQE, and TTC enzymes. TTC (SEQ ID NO 40), when coexpressed with SQS (SEQ ID NO: 11), SQE (SEQ ID NO: 39), and SQE A4 (SEQ ID NO: 203) in E. coli, resulted in production of cucurbitadienol and 24,25-epoxycucurbitadienol. Candidate enzymes for an additional or alternative TTC include SEQ ID NO: 40, SEQ ID NO: 191, SEQ ID NO: 192, and SEQ ID NO: 193. Each candidate TTC enzyme was expressed in this strain and screened for production of 24,25-epoxy-cucurbitadienol. These fermentation experiments were performed at 30° C. for 72 hours in 96 well plates. 24,25-epoxy-cucurbitadienol production was verified by GC-MS spectrum analysis. Concentrations were plotted relative to production of 24,25-epoxy-cucurbitadienol from an E. coli strain expressing SEQ ID NO: 40 as the only cyclase. As shown in FIG. 10, E. coli strains coexpressing SQS (SEQ ID NO: 11), SQE (SEQ ID NO: 39), SQE A4 (SEQ ID NO: 203), and TTC (SEQ ID NO: 40), with an additional TTC, produced higher levels of 24,25-epoxycucurbitadienol.



FIG. 11 shows substrate specificity for production of cucurbitadienol and 24,25-epoxycucurbitadienol with candidate TTC enzymes. Engineered E. coli strains producing oxidosqualene and dioxidosqualene were complemented with CDS homologs and CAS genes engineered for cucurbitadienol production. Strains were incubated at both 30° C. for 72 hours before extraction. The ratio of 24,25-epoxycucurbitadienol to cucurbitadienol varies from 0.15 for Enzyme 1 (SEQ ID NO: 40) to 0.58 for Enzyme 2 (SEQ ID NO: 192), pointing to improved substrate specificity toward the desired 24,25-epoxycucurbitadienol product for Enzyme 2.



FIG. 12 shows the screening of EPH enzymes for hydration of epoxycucurbitadienol to produce 24,25-dihydroxycucurbitadienol in E. coli strains coexpressing SQS (SEQ ID NO: 11), SQE (SEQ ID NO: 39), SQE A4 (SEQ ID NO 203), and TTC (SEQ ID NO: 40). EPH homologs were expressed in a strain producing 24,25-epoxycucurbitadienol for production of 24,25-dihydroxycucurbitadienol. Candidate EPH enzymes for this reaction include SEQ ID NO: 184, SEQ ID NO: 185, SEQ ID NO: 186, SEQ ID NO: 212, SEQ ID NO: 187, SEQ ID NO: 188, SEQ ID NO: 189, and SEQ ID NO: 190. These fermentation experiments were performed at 30° C. for 72 hours in 96 well plates. 24,25-dihydroxycucurbitadienol production was verified by GC-MS spectrum analysis. Titers were plotted for each strain producing 24,25-dihydroxycucurbitadienol. As shown in FIG. 12, the E. coli strains expressing the EPHs were able to produce 24,25-dihydroxycucurbitadienol. ToEPH and SgEPH3 in particular demonstrated high activity in E. coli FIG. 13A-C shows the coexpression of SQS, SQE, TTC, EPH, and P450 enzymes to produce mogrol. E. coli strains were constructed that express SQS (SEQ ID NO. 11), SQE (SEQ ID NO: 39), SQE A4 (SEQ ID NO: 203), TTC (SEQ ID NO: 40), EPH (SEQ ID NO: 58), and a P450 selected from SEQ ID NO: 194, SEQ ID NO: 197, and SEQ ID NO: 171, together with a cytochrome P450 reductase (9SEQ ID NO: 98 or SEQ ID NO: 201). These fermentation experiments were performed at 30° C. for 72 hours in 96 well plates. Mogrol production was verified by LC-QQQ spectrum analysis. As shown in FIG. 13A, the expression of SQS (SEQ ID NO: 11), SQE (SEQ ID NO: 39), SQE A4 (SEQ ID NO: 203), TTC (SEQ ID NO: 40), EPH (SEQ ID NO: 58), and the P450s SEQ ID NO: 194, SEQ ID NO: 197, and SEQ ID NO: 171 resulted in production of mogrol and oxo-mogrol. As shown in FIG. 13B and FIG. 13C, mogrol production was validated by LC-QQQ mass spectrum analysis using spiked authentic standard (FIG. 13B) and GC-FID chromatography versus an authentic standard (FIG. 13C), respectively.



FIG. 14 shows the screening of cytochrome P450s for oxidation at C11 of the 24,25-dihydroxycucurbitadienol-like molecule cucurbitadienol. In many cases, the native transmembrane domain was replaced with the transmembrane domain from E. coli sohB (SEQ ID NO: 195, SEQ ID NO: 198, and SEQ ID NO: 199), E. coli zipA (SEQ ID NO. 196), or bovine 17% (e.g. SEQ ID NO: 200) to improve interaction with the E. coli membrane. Each P450 was coexpressed with either SEQ ID NO: 201 or SEQ ID NO: 98, resulting in production of 11-hydroxycucurbitadienol. These fermentation experiments were performed at 30° C. for 72 hours in 96 well plates. 11-hydroxy-cucurbitadienol production was verified by GC-MS. Concentrations were plotted for strains producing 11-hydroxycucurbitadienol. As shown in FIGS. 14 and 15, the strains disclosed herein were capable of production of 11-hydroxy-cucurbitadienol.


Mogrol was used as a substrate for in vitro glucosylation reactions with candidate UGT enzymes, to identify candidate enzymes that provide efficient glucosylation of mogrol to Mog.V. Reactions were carried out in 50 mM Tris-HCl buffer (pH 7.0) containing beta-mercaptoethanol (5 mM), magnesium chloride (400 uM), substrate (200 uM), UDP-glucose (5 mM), and a phosphatase (1 U). Results are shown in FIG. 16A. Mog.V product is observed when the UGT enzymes of SEQ ID NO: 165, SEQ ID NO: 146, and SEQ ID NO: 117 are incubated together. A penta-glycosylated product is formed when the UGT enzymes of SEQ ID NO: 165, SEQ ID NO: 146, and SEQ ID NO: 164) are incubated together. FIG. 16B, Extracted ion chromatogram (EIC) for 1285.4 Da (mogroside V+H) of reactions containing enzymes of SEQ ID NO: 165+SEQ ID NO 146 and either SEQ ID NO: 117 (solid dark grey line) or SEQ ID NO: 164 (light grey line) when incubated with Mog.II-E. FIG. 16C, Extracted ion chromatogram (EIC) for 1285.4 Da (mogroside V+H) of reactions containing enzymes of SEQ ID NO: 165+SEQ ID NO: 146 and either SEQ ID NO: 117 (solid dark grey line) or SEQ ID NO: 164 (light grey line) when incubated with mogrol.



FIG. 4 and FIG. 17 show additional glycosyltransferase activities observed on particular substrates Coexpression of UGT enzymes can be selected to move product to the desired mogroside product.



FIG. 18 shows the bioconversion of mogrol into mogroside intermediates. Engineered E. coli strains (see US 2020/0087692, which is hereby incorporated by reference in its entirety) expressing UGT enzymes were incubated in 96-well plates with 0.2 mM mogrol. Product formation was examined after 48 hours. Reported values are those in excess of the empty vector control. Products were measured on LC-MS/MS with authentic standards. Only Enzyme 1 shows formation of Mog.IIE. Enzymes 1 to 5 are SEQ ID NOS: 202, 116, 216, 217, and 218, respectively.



FIG. 19A and FIG. 19B shows the bioconversion of Mog.IA (FIG. 19A) or Mog.IE (FIG. 19B) into Mog IIE. In the experiment, engineered E. coli strains (as above) expressing UGT enzymes, SEQ ID NO: 165, SEQ ID NO: 202, or SEQ ID NO: 116 were incubated in fermentation media containing 0.2 mM Mog.IA (FIG. 19A) or Mog.IE (FIG. 19B) in 96-well plates at 37° C. Product formation was examined after 48 hours. Products were measured on LC-MS/MS with authentic standards. The values of Mog.IIE levels in excess of the empty vector control were calculated. As shown in FIG. 19A, SEQ ID NO: 165 and SEQ ID NO: 202 were able to catalyze bioconversion of Mog.IA into Mog.IIE. Similarly, as shown in FIG. 19B, SEQ ID NO: 165, SEQ ID NO: 202, and SEQ ID NO: 116 were able to catalyze the bioconversion of Mog.IE into Mog.IIE.



FIG. 20 shows the production of Mog.II or siamenoside from Mog.II-E. In the experiment, engineered E. coli strains expressing UGT enzymes SEQ ID NO: 204, SEQ ID NO: 138 or SEQ ID NO: 206 were grown in fermentation media containing 0.1 mM Mog.II-E at 37° C. for 48 hr. Products were quantified by LCMS/MS with authentic standards of each compound. As shown in FIG. 20, all strains were able to catalyze bioconversion of Mog. IE to Mog.III. In addition, MbUGT1,2.2 also showed production of substantial amounts of siamenoside.



FIG. 21 shows the production of Mog.II-A2. 0.1 mM Mog.I-E was fed in vitro. In the experiment, engineered E. coli strains expressing UGT enzyme SEQ ID NO: 205 were incubated at 37° C. for 48 hr. Products were quantified by LC-MS/MS with authentic standards of each compound. As shown in FIG. 21, SEQ ID NO: 205 is able to catalyze bioconversion of Mog.IE to Mog.II-A2.


A summary of observed primary glycosylation reactions at C3 and C24 hydroxyls of mogrol are provided in Table 1. Specifically, 0.2 mM mogrol was fed to cells expressing various UGT enzymes. Reactions were incubated at 37° C. for 48 hrs. Products were quantified by LCMS/MS with authentic standards of each compound.













TABLE 1







UGT
C3 O-Glucosylation
C24 O-Glucosylation









SEQ ID NO: 165
Yes
Yes



SEQ ID NO: 146
No
Yes



SEQ ID NO: 214
No
Yes



SEQ ID NO: 202
Yes
Yes



SEQ ID NO: 129
Yes
No



SEQ ID NO: 116
Yes
Yes



SEQ ID NO: 218
No
Yes



SEQ ID NO: 216
No
Yes



SEQ ID NO: 217
No
Yes










A summary of branched glycosylation reactions are provided in Table 2. 0.2 mM Mog.IIE or Mog.IE was fed to cells expressing various UGT enzymes. Reactions were incubated at 37° C. for 48 hr. Products were quantified by LC-MS/MS with authentic standards of each compound. “Indirect” evidence means that consumption of substrate was observed.













TABLE 2





Name
C3 1-2
C3 1-6
C24 1-2
C24 1-6







SEQ ID NO: 205
No
Yes
No
Yes


SEQ ID NO: 204
No
Yes
No
No


SEQ ID NO: 122
No
Yes
Yes
Yes


SEQ ID NO: 211
No
No
Yes
No


SEQ ID NO: 138
No
Yes
No
Yes


SEQ ID NO: 207
No
Yes
No
Yes


SEQ ID NO: 209
No
Yes
No
Yes


SEQ ID NO: 208
Yes
Yes
Yes
Yes



(Indirect)

(Indirect)
(Indirect)


SEQ ID NO: 206
Yes
Yes
Yes
Yes



(Indirect)
(Indirect)




SEQ ID NO: 164
No
Yes
Yes
Yes


SEQ ID NO: 210
No
Yes
No
Yes


SEQ ID NO: 215
No
No
No
Yes


SEQ ID NO: 213
No
No
No
Yes









An exemplary E. coli strain producing Mog.V was created by expressing the following enzymes in an K E. coli strain engineered to produce high levels of MEP pathway products: SQS (SEQ ID NO: 11), SQE (SEQ ID NO: 39), SQE A4 (SEQ ID NO: 203), TTC (SEQ ID NO: 40), EPH (SEQ ID NO: 189), .sohB_CppCYP (SEQ ID NO: 199), AtUGT73C3 (SEQ ID NO: 202), UGT85C1 (SEQ ID NO: 165), and UGT94-289-1 (SEQ ID NO: 122). Production of Mog.V is demonstrated in FIG. 22A, B. Strains were incubated at 30° C. for 72 hours before extraction. Mog.V production was verified by LC-QQQ spectrum analysis versus an authentic standard FIG. 22A. FIG. 22B shows a chromatogram indicating Mog.V production from a biological sample with a spiked Mog.V authentic standard.


Biosynthesis enzymes can be further engineered for expression and activity in microbial cells, using known structures and primary sequences.



FIG. 26 is an amino acid alignment of CaUGT_1,6 and SgUGT94_289_3 using Clustal Omega (Version CLUSTAL O (1,2,4). These sequences share 54% amino acid identity. Coffea arabica UGT_1,6 is predicted to be a beta-D-glucosyl crocetin beta 1,6-glucosyltransferase-like (XP_027096357.1). Together with known UGT structures and primary sequences, CaUGT_1,6 can be further engineered for microbial expression and activity, including engineering of a circular permutant.



FIG. 27 is an amino acid alignment of Homo sapiens squalene synthase (HsSQS) (NCBI accession NP_004453.3) and AaSQS (SEQ ID NO: 11) using Clustal Omega (Version CLUSTAL O (1.2.4)). HsSQS has a published crystal structure (PDB entry: 1EZF). These sequences share 42% amino acid identity.



FIG. 28 is an amino acid alignment of Homo sapiens squalene epoxidase (HsSQE) (NCBI accession XP_011515548) and MlSQE (SEQ ID NO: 39) using Clustal Omega (Version CLUSTAL O (1.2.4)). HsSQE has a published crystal structure (PDB entry: 6C6N). These sequences share 35% amino acid identity.


The UGT enzyme of SEQ ID NO: 164 was engineered for improved glycosylation activity. Various amino acid substitutions were made to the enzyme, as informed by in silico analysis. The following amino acid substitutions in Table 3 were tested for further glycosylation of mog.IIE.












TABLE 3








Fold Improviment in UDP-Glucose



Substitution
Transferred



















G150F
13.2



T147L
13.0



N207K
10.9



K270E
10.0



V281L
9.1



L354V
8.6



L13F
7.5



T32A
5.6



K101A
5.3



C219E
4.9



V281Q
4.6



S43T
4.6



M394V
4.6



E74G
4.5



K270P
4.1



T256V
3.9



V175K
3.9



N283G
3.4



D285P
3.3



A377V
3.2



F217L
3.1



K204R
3.1



T303A
3.0



D95K
2.9



S14 II
2.7



K270T
2.7



V281A
2.5



A166 del.
2.2



G205S
2.1



N333S
2.0



K270M
2.0



F132L
2.0



L40F
1.9



A166K
1.9



V281K
1.8



R185S
1.7



F8L
1.7



F258Y
1.7



N35G
1.7



N133G
1.7



A77P
1.6



N207Y
1.6



K386D
1.6



Y163F
1.5



N399R
1.5



H18Y
1.5



A166S
1.3



K101E
1.3



Q418K
1.3



1191V
1.3



R182S
1.2



K101Q
1.2



S142F
1.2



T46N
1.2



T159E
1.2



T55P
1.2



K160D
1.2



T7K
1.2



A166T
1.1










An engineered UGT enzyme based on SEQ ID NO: 164 was prepared having substitutions T147L and N207K. The bioconversion of Mog.IIE to further glycosylated products is shown in FIG. 23. In the experiment, engineered E. coli strains expressing the engineered CaUGT_1,6 were inoculated with Mog.IIE substrate at 37° C. Product formation was examined after 48 hours. Products were measured on LC/MS-QQQ with authentic standards.


The UGT enzyme of SEQ ID NO: 165 was engineered for improved glycosylation activity. The following amino acid substitutions were identified as improving bioconversion of Mog.IA to Mog.IIE (Table 4):












TABLE 4








Fold Improvement in Mog.IA to Mog.IIE



Substitution
Bioconversion









CTL
1



L41F
1.29



D49E
1.36



C127F
1.48










An engineered UGT enzyme based on 85C1 was prepared having substitutions L41F, D49E, and C127F. The bioconversion of Mog.IA to Mog.IIE is shown in FIG. 24. In the experiment, engineered E. coli strains expressing the engineered 85C11 were inoculated with Mog.IA substrate at 37° C. Product formation was examined after 48 hours. Products were measured on LC/MS-QQQ with authentic standards. FIG. 24 shows the fold improvement of the engineered version compared to the control (85C1).


The UGT enzyme of SEQ ID NO: 217 (UGT73F24) was engineered for improved glycosylation activity. The following amino acid substitutions were identified as improving bioconversion of Mog.IE to Mog.IIE with UGT73F24 (Table 5):












TABLE 5








Fold Improvement in Mog.IE to Mog.IIE



Substitution
Production









CTL
1



A74E
1.88



I191F
2,01



H101P
2.38



Q241E
1.31



I436L
1.09










An engineered UGT enzyme based on UGT73F24 was prepared having substitutions A74E, 19F, and H101P. The bioconversion of Mog.IE to Mog.IIE is shown in FIG. 25. In the experiment, engineered E. coli strains expressing the engineered UGT73F24 were inoculated with Mog.IE substrate at 37° C. Product formation was examined after 48 hours. Products were measured on LC/MS-QQQ with authentic standards. FIG. 25 shows the fold improvement of the engineered version compared to the control (73F24).










SEQUENCES



Farnesyl Pyrophosphate Synthase (FPPS)



Saccharomyces cerevisiae FPPS



(SEQ ID NO: 1)



MASEKEIRRERFLNVFPKLVEELNASLLAYGMPKEACDWYAHSLNYNTPGGKLNRCLSVVDTYA






ILSNKTVEQLGQEEYEKVAILGWCIELLQAYFLVADDMMDKSITRRGQPCWYKVPEVGEIAIND





AFMLEAAIYKLLKSHFRNEKYYIDITELFHEVTFQTELGQLMDLITAPEDKVDLSKFSLKKHSF





IVTFKTAYYSFYLPVALAMYVAGITDEKDLKQARDVLIPLGEYFQIQDDYLDCFGTPEQIGKIG





TDIQDNKCSWVINKALELASAEQRKTLDENYGKKDSVAEAKCKKIFNDLKIEQLYHEYEESIAK





DLKAKISQVDESRGFKADVLTAFLNKVYKRSK





Squalene Synthase (SQS)



Siraitia grosvenorii SQSa



(SEQ ID NO: 2)



MGSLGAILRHPDDFYPLLKLKMAARHAEKQIPPEPHWGFCYTMLHKVSRSFALVIQQLAPELRN






AICIFYLVLRALDTVEDDTSIQTDIKVPILKAFHCHIYNRDWHFSCGTKDYKVLMDQFHHVSTA





FLELGKGYQEATEDITKRMGAGMAKFICKEVETVDDYDEYCHYVAGLVGLGLSKLFHASDLEDL





APDSLSNSMGLLLQKTNIIRDYLEDINEIPKSRMFWPREIWGKYADKLEDFKYEENSVKAVQCI





NDLVTNALNHVEDCLKYMSNLRDLSIFRFCAIPQIMAIGTLALCYNNVEVFRGVVKMRRGLTAK





VIDRTQTMADVYGAFFDFSVMLKAKVNSSDPNATKTLSRIEAIQKTCEQSGLLNKRKLYAVKSE





PMFNPTLIVILFSLLCIILAYLSAKRIPANQPV






Siraitia grosvenorii SQSb



(SEQ ID NO: 3)



MGSLGAILRHPDDFYPLLKLKMAARHAEKQIPPEPHWGFCYTMLHKVSRSFALVIQQLAPELRN






AICIFYLVLRALDTVEDDTSIQTDIKVPILKAFHCHIYNRDWHFSCGTKDYKVLMDQFHHVSTA





FLELGKGYQEAIEDITKRMGAGMAKFICKEVETVDDYDEYCHYVAGLVGLGLSKLFHASDLEDL





APDSLSNSMGLLLQKTNIIRDYLEDINEIPKSRMFWPREIWGKYADKLEDFKYEENSVKAVQCL





NDLVTNALNHVEDCLKYMSNLRDLSIFRFCAIPQIMAIGTLALCYNNVEVFRGVVKMRRGLTAK





VIDRTQTMADVYGAFFDFSVMLKAKVNNSDPNATKTLSRIEAIQKTCEQSGLLNKRKLYAVKSE





PMFNPTLIVILFSLLCIILAYLSAKRLPANQPV






Cucumis sativus



(SEQ ID NO: 4)



MGSLGAILKHPDDFYPLLKLKIAARHAEKQIPPEPHWGFCYTMLHKVSRSFALVIQQLKPELRN






AVCIFYLVLRALDTVEDDTSIQTDIKVPILKAFHCHIYNRDWHFSCGTKDYKVLMDEFHHVSTA





FLELGKGYQEAIEDITKRMGAGMAKFICKEVETVDDYDEYCHYVAGLVGLGLSKLFHAAELEDL





APDSLSNSMGLFLOKTNIIRDYLEDINEIPKSRMFWPREIWGKYADKLEDFKYEENSVKAVQCL





NDLVTNALNHVEDCLKYMSNLRDLSIFRFCAIPQIMAIGTLALCYNNVEVFRGVVKMRRGLTAK





VIDRTKTMADVYGAFFDFSVMLKAKVNSNDPNASKTLSRIEAIQKTCKQSGILNRRKLYVVRSE





PMFNPAVIVILFSLLCIILAYLSAKRLPANQSV






Cucumis melo



(SEQ ID NO: 5)



MGSLGAILKHPDDFYPLLKLKMAARHAEKQIPPESHWGFCYTMLHKVSRSFALVIQQLKPELRN






AVCIFYLVLRALDTVEDDTSIQTDIKVPILKAFHCHIYNRDWHFSCGTKDYKVLMDEFHHVSTA





FLELGKGYQEAIEDITKRMGAGMAKFICKEVETVDDYDEYCHYVAGLVGLGLSKLFHAAELEDL





APDSLSNSMGLFLQKTNIIRDYLEDINEIPKSRMFWPREIWGKYADKLEDFKYEENSVKAVQCL





NDLVTNALNHVEDCLKYMSNLRDLSIFRFCAIPQIMAIGTLALCYNNVEVFRGVVKMRRGLTAK





VIDRTKTMADVYGAFFDESVMLKAKVNSNDPNASKTLSRIEAIQQTCQQSGLMNKRKLYVVRSE





PMYNPAVIVILFSLLCIILAYLSAKRLPANQSV






Cucumis melo



(SEQ ID NO: 6)



MGSLGAILKHPDDFYPLLKLKMAARHAEKQIPPESHWGFCYTMLHKVSRSFALVIQQLKPBLRN






AVCIFYLVLRALDTVEDDTSIQTDIKVPILKAFHCHIYNRDWHFSCGTKDYKVLMDEFHHVSTA





FLELGKGYQEAIEDITKRMGAGMAKFICKEVETVDDYDEYCHYVAGLVGLGLSKLFHAAELEDL





APDSLSNSMGLFLQKTNIIRDYLEDINEIPKSRMFWPRBIWGKYADKLEDFKYEENSVKAVQCI





NDLVTNALNHVEDCPKYMSNLRDLSIFRFCAIPQIMAIGTLALCYNNVEVFRGVVEMRRGLTAK





VIDRTKTMADVYGAFFDFSVMLKAKVNSNDPNASKTLSRIEAIQQTCQQSGLMNKRKLYVVRSE





PMYNPAVIVILFSLLCIILAYLSAKRLPANQSV






Cucurbita moschata



(SEQ ID NO: 7)



MGSLGAILRHPDDIYPLLKLKMAARHAEKQIPPESHWGFCYTMLHKVSRSFALVIQQLKPELRN






AVCIFYLVLRALDTVEDDTSIQTDIKVPILKAPHCHIYNRDWHFSCGTKDYKVLMDEFHHVSTA





FLELGRGYQEAIEDITKRMGAGMAKFICKEVETVEDYDEYCHYVAGLVGLGLSKLFHASKSENL





APDSLSNSMGLFLQKTNIIRDYLEDINEIPKSRMFWPREIWSKYADKLEDFKYEKNSVKAVQCL





NDLVTNALTHVEDCLEYMSNLKDLSIFRFCAIPQIMAIGTLALCYNNVDVFRGVVKMRRGLTAK





VIYRTKTMADVYGAFFDFSVMLKAKVNSSDPNASKTLTRIEAIQKTCKQSGLLNKRELYAVRSE





PMCNPAAIVVLFSLLCIILAYLSAKLLPANQPV






Sechium edule



(SEQ ID NO: 8)



MGSLGAILSHPDDLYPLLKLKMAAKHAEKQIPPDPHWGFCFSMLHKVSRSFALVIQQLKPELRN






AVCIFYLVLRALDTVEDDTGIHPDIKVPILQAFHCHIYNRDWHFSCGTKHYKVLMDEFHHVSTA





FLELGKGYQEAIEDVTERMGAGMAKFICKEVETVDDYDEYCHYVAGLVGLGLSKLFHAAELEDL





APDSLSNSMGLFLQKTNIIRDYLEDINEIPKSRMFWPREIWNKYADKLEDFKYEENSVKAVQCL





NDLVTNALNHVEDCLKYMSNLKDLSTFRFCAIPQIMAIGTLALCYDNVEVFRGVVKMRRGLTAK





IIDRTKKIADVYGAFFDFSVMLKAKVNSSDPNAAKTLSRIEAIEKTCKESGLLNKRKLYVIRSE





PLFNPAVLVILFSLICILLAYLSAKRLPANQPV






Panax quinquefolius



(SEQ ID NO: 9)



MGSLGAILKHPDDFYPLLKLKFAARHAEKQIPPEPHWAFCYSMLHKVSRSFGLVIQQLGPQLRD






AVCIFYLVLRALDTVEDDTSIPTEVKVPILMAFHRHIYDKDWHFSCGTKEYKVLMDEFHHVSNA





FLELGSGYQEAIEDITMRMGAGMAKFICKEVETIDDYDEYCHYVAGLVGLGLSKLFHASGAEDL





ATDSLSNSMGLFLQKTNIIRDYLEDINEIPKSRMFWPRQIWSKYVDKLEDLKYEENSAKAVQCI





NDMVTDALVHAEDCLKYMSDLRDPAIFRFCAIPQIMAIGTLALCFNNTQVFRGVVKMRRGLTAK





VIDRTKTMSDVYGAFFDFSCLLKSKVDNNDPNATKTLSRLEAIOKTCKESGTLSKRKSYITESE





SGHNSALIAI IFIILAILYAYLSSNLLLNKQ






Malus domestica



(SEQ ID NO: 10)



MGALSTMLKHPDDIYPLLKLKIASRQIEKQIPAEPHWAFCYTMLQKVSRSFALVIQQLGTELRN






AVCLFYLVLRALDTVEDDTSVATDVKVPILLAFHRHIYDPDWHFACGTNNYKVLMDEFHHVSTA





FLELGTGYQEAIEDITKRMGAGMAKFILKEVETIDDYDEYCHYVAGLVGLGLSKLFHAAGKEDL





ASDSLSNSMGLFLQKTNIIRDYLEDINEIPKSRMFWPRQIWSKYVNKLEDLKYEENSEKAVQCL





NDMVTNALIHMEDCLKYMAALRDPAIFKFCAIPQIMAIGTLALCYNNIEVFRGVVKMRRGLTAK





VIDRTKSMDDVYGAFFDFSSILKSKVDKNDPNATKTLSRVEAVQKLCRDSGALSKRKSYIANRE





QSYNSTLIVALFIILAIIYAYLSASPRI






Artemisia annua



(SEQ ID NO: 11)



MSSLKAVLKHPDDFYPLLKLKMAAKKAEKQIPSQPHWAFSYSMLHKVSRSFALVIQQLNPQLRD






AVCIFYLVLRALDTVEDDTSIAADIKVPILIAFHKHIYNRDWHFACGTKEYKVLMDQFHHVSTA





FLELKRGYQEAIEDITMRMGAGMAKFICKEVETVDDYDEYCHYVAGLVGIGLSKLFHSSGTEIL





FSDSISNSMGLFLQKTNIIRDYLEDINEIPKSRMFWPREIWSKYVNKLEDLKYEENSEKAVQCL





NDMVTNALIHIEDCLKYMSQLKDPAIFRFCAIPQIMAIGTLALCYNNIEVFRGVVKLRRGLTAK





VIDRTKTMADVYQAFSDFSDMLKSKVDMHDPNAQTTITRLEAAQKICKDSGTLSNRKSYIVKRE





SSYSAALLALLFTILAILYAYLSANRPNKIKFTL






Glycine soja



(SEQ ID NO: 12)



MDQRSEDEFYPLLKLKIVARNAEKQIPPEPHWAFCYTMLHKVSRSFALVIQQLGIELRNAVCIF






YLVLRALDTVEDDTSIETDVKVPILIAFHRHIYDRDWHFSCGTKEYKVLMGQFHHVSTAFLELG





KNYQEAIEDITKRMGAGMAKFICKEVETIDDYDEYCHYVAGLVGLGLSKLFHASGSEDLAPDDL





SNSMGLFLQKTNIIRDYLEDINEIPKSRMFWPRQIWSEYVNKLEDLKYEENSVKAVQCLNDMVT





NALMHAEDCLTYMAALRDPPIFRFCAIPQIMAIGTLALCYNNIEVFRGVVKMRRGLTAKVIDRT





KTMADVYGAFFDFASMLEPKVDKNDPNATKTLSRLEAIQKTCRESGLLSKRKSYIVNDESGYGS





TMIVILVIMVSIIFAYLSANHHNS






Diospyros kaki



(SEQ ID NO: 13)



MGSLAAMLRHPDDVYPLVKLKMAARHAEKQIPPEPHWAFCYTMLHKVSRSFGLVIQQLGTELRN






AVCIFYLVLRALDTVEDDTSIATEVKVPILLAFHHHIYDRDWHFSCGTREYKVLMDEFHHVSTA





FLELGKGYQEAIEDITMRMGAGMAKFICKEVETIDDYDEYCHYvAGLVGLGLSKLFHASGLEDL





APDSLSNSMGLFLQKTNIIRDYLEDINEIPKSRMFWPROIWSKYvNKLEDLKYEKNSVKSvQCL





NDMVTNALIHVDDCLKYMSALRDPAIFRFCAIPQIMAIGTLALCYNNIEVFRGVVKMRRGLTAK





VIDQTKTISDVYGAFFDFSCMLKSKVEKNDPNSTKTLSRIEAIQKTCRESGTLSKRKSYILRSK





RTHNSTLIFVLFIILAILFAYLSANRPPINM






Euphorbia lathyris



(SEQ ID NO: 14)



MGSLGAILKHPDDFYPLLKLKMAAKHAEKQIPAQPHWGFCYSMLHKVSRSFSLVIQOLGTELRD






AVCIFYLVLRALDTVEDDTSIPTDVKVPILIAFHKHIYDPEWHFSCGTKEYKVLMDQIHHLSTA





FLELGKSYQEAIEDITKKMGAGMAKFICKEVETVDDYDEYCHYVAGLVGLGLSKLFDASGFEDL





APDDLSNSMGLFLQKTNIIRDYLEDINEIPKSRMFWPRQIWSKYVNKLEDLKYEENSVKAVQCL





NDMVTNALIHMDDCLKYMSALRDPAIFRFCAIPQIMAIGTLALCYNNVEVFRGVVKMRRGLTAK





VIDRTRTMADVYRAFFDFSCMMKSKVDRNDPNAEKTLNRLEAVQKTCKESGLLNKRRSYINESK





PYNSTMVILLMIVLAIILAYLSKRAN






Camellia oleifera



(SEQ ID NO: 15)



MGSLGAILKHPDDFYPLMKLKMAARRAEKNIPPEPHWGFCYSMLHKVSRSFALVIQQLDTELRN






AVCIFYLVLRALDTVEDDTSIATEVKVPILMAFHRHIYDRDWHFSCGTKEYKVLMDEFHHVSTA





FSELGRGYQEAIEDITMRMGAGMAKFICKEVETIDDYDEYCHYVAGLVGLGLSKLFHASGSEDL





ASDSLSNSMGLFLQVFLLTCIKTNIIRDYLEDINEIPKSRMFWPRQIWSKYVNKLEDLKDKENS





VKAVECLNDMVTNALIHVEDCLTYMSALRDPSIFRFCAIPQIMAIGTLALCYNNIEVFRGVVKM





RRGLTAKVIDRTKTMSDVYGGFFDFSCMLKSKVNKSDPNAMKALSRLEAIQKICRESGTLNKRK





SYIIKSEPRYNSTLVFVLFIILAILFAYL






Eleutherococcus senticosus



(SEQ ID NO: 16)



MGSLGAILKHPDDFYPLLKLKFAARHAEKQIPPEPHWAFCYSMLHKVSRSFGLVIQQLDAQLRD






AVCIFYLVLRALDTVEDDTSIPTEVKVPILMAFHRHIYDKDWHFSCGTKEYKVLMDEFHHVSNA





FLELGSGFQEAIEDITMRMGAGMAKFICKEVETIDDYDEYCHYVAGLVGLGLSKLFHASGAEDL





ATDSLSNSMGLFLQKTNIIRDYLEDINEIPKSRMFWPRQIWSKYVDKLENLKYEENSAKAVQCL





NDMVTNALLHAEDCLKYMSNLRDPAIFRFCAIPQIMAIGTLALCFNNIQVFRGVVKMRRGLTAK





VIDRTKTMSDVYGAFFDFSCLLKSKVDNNDPNATKTLSRLEAIQKTCKESGTLSKRKSYIIESK





SAHNSALIAIIFIILAILYAYLSSNLPNNQ






Flavobacteriales bacterium



(SEQ ID NO: 166)



MLNNSLFSRLEEIPALLKLKLGSKDYYKNNNSETLTCDNLRYCFDTLNKVSRSFATVIKQLPNE






LGNNVCVFYLILRALDSIEDDMNLPKELKIKLLREFHKKNYESGWNISGVGDKKEHVELLENYD





KVIQSFLAIDQKNQLIITDICRKVGAGMANFVKAEIESVEDYNLYCHHVAGLVGIGLSRMFISS





GLENDDFLNQDEISNSMGLFLQKTNIVRDYREDLDEGRMFWPKDIWHVYGSKINDFAINPTHDQ





SVLCLNHMLNNALTHATDCLAYLKHLRNENIFKFCAIPQVMAMATLCKIYSNPDVFIKNVKIRK





GLAAKLILNTTSMDEVIKVYKDMLLVIESKISSDNNPVSAETIQLLKQIREYFNDETLIVRKIA






Bacteroidetes bacterium



(SEQ ID NO: 167)



MLNSSLFSRLEEIPALLKLKLGSINNYKNNNSENLTSKNLRYCFDTLNKVSRSFASVIKQLPNE






LMVNVCLFYLILRALDSIEDDMNLPKDFKINLLREFLDKNYEPGWKISGVGDKKEYVELLENYD





KVIQVFLDIDPKNQLIITDICRKMGAGMAHFVEAEINSVKDYNLYCYHVAGLVGIGLSKMFLAS





GLENCDYLNQEEISSSMGLFLQKTNIVRDYKEDMEENRIFWPKEIWRTYASKFSDFSINPQHET





SISCLNHMVNDALGHVIDCLEYLRHLRNENIFKFCAIPOVMAMATLCKVYNNPDVFIKTVKIRK





GLAAKLILNTTSMDEVIKVYKGLLLDIENKIPLHNPTSDETLRLIKNIRSYCNNETMVVSKTA





Squalene Epoxidase



Siraitia grosvenorii SQE1



(SEQ ID NO: 17)



MVDQCALGWILASALGLVIALCFFVAPRRNHRGVDSKERDECVQSAATTKGECRFNDRDVDVIV






VGAGVAGSALAHTLGKDGRRVHVIERDLTEPDRIVGELLQPGGYLKLIELGLQDCVEEIDAQRV





YGYALFKDGKNTRLSYPLENFHSDVSGRSFHNGRFIQRMREKAASLPNVRLEQGTVTSLLEEKG





TIKGVQYKSKNGEEKTAYAPLTIVCDGCFSNLRRSLCNPMVDVPSYFVGLVLENCELPFANHGH





VILGDPSPILFYQISRTEIRCLVDVPGQKVPSIANGEMEKYLKTVVAPQVPPQIYDSFIAAIDK





GNIRTMPNRSMPAAPHPTPGALLMGDAFNMRHPLTGGGMTVALSDIVVLRNLLKPLKDLSDAST





LCKYLESFYTLRKPVASTINTLAGALYKVFCASPDQARKEMRQACFDYLSLGGIFSNGPVSLLS





GLNPRPLSLVLHFFAVAIYGVGRLLLPFPSVKGIWIGARLIYSASGIIFPIIRAEGVRQMFFPA





TVPAYYRSPPVFKPIV






Siraitia grosvenorii SQE2



(SEQ ID NO: 18)



MVDQCALGWILASVLGAAALYFLFGRKNGGVSNERRHESTKNIATTNGEYKSSNSDGDIIIVGA






GVAGSALAYTLGKDGRRVHVIERDLTEPDRIVGELLQPGGYLKLTELGLEDCVDDIDAQRVYGY





ALFKDGKDTRLSYPLEKFHSDVAGRSFHNGRFIQRMREKAASLPKVSLEQGTVTSLLEENGIIK





GVQYKTKTGQEMTAYAPLTIVCDGCFSNLRRSLCNPKVDVPSCFVGLVLENCDLPYANHGHVIL





ADPSPILFYRISSTEIRCLVDVPGQKVPSISNGEMANYLKNVVAPQIPSQLYDSFVAATDKGNI





RTMPNRSMPADPYPTPGALLMGDAFNMRHPLTGGGMTVALSDVVVLRDLLKPLRDLNDAPTLSK





YLEAFYTLRKPVASTINTLAGALYKVFCASPDQARKEMRQACFDYLSLGGIFSNGPVSLLSGLN





PRPISLVLHFFAVAIYGVGRLLIPFPSPKRVWIGARIISGASAIIFPIIKAEGVRQMFFPATVA





AYYRAPRVVKGR






Momordica charantia



(SEQ ID NO: 19)



MVDECALGWILAAALGAVIALCLEVAPKTNNQDGGVDSKATPECVQTTNGECRSDGDSDVIIVG






AGVAGSALAHTLGKDGRRVHVIERDLTEPDRIVGELLQPGGYLKLIELGLADCVEEIDAQRVYG





YALFKDGKNTRLSYPLEKFHSDVSGRSFHNGRFIQRMREKADSLPNVRLEQGTVTSLLEEKGTI





KGVQYKSKDGKEKTAYAPLTIVCDGCFSNLRRSLCNPMVDVPSCFVGLVLENCQLPFANHGHVV





LGDPSPILFYPISSTEIRCLVDVPGQKVPSISNGEMEKYLKTVVAPQVPPQIYDAFIAAIDKGN





IRTMPNRSMPAAPHPTPGALLMGDAFNMRHPLTGGGMTVALSDIVVLRNLLKPLKDLHDAPTLC





KYLESFYTLRKPVASTINTLAGALYKVFCASPDQARKEMRQACFDYLSLGGMFSNGPVSLLSGL





NPRPLSLVLHFFAVAIYGVGRLLFPFPSPKGIWIGARLIYSASGIIFPIIKAEGVRQMFFPATV





PAYYRSPPALKPVA






Cucurbita maxima



(SEQ ID NO: 20)



MVDYCAFGWILAAVLGLAIALSFFVSPRRNRRGGADSTPRSEGVRSSSTTNGECRSVDGDADVI






IVGAGVAGSALAHTLGKDGRLVHVIERDLTEPDRIVGELLQPGGYLKLIELGLQDCVEEIDAQK





VYGYALFKDGKNTQLSYPLEKFQSDVSGRSFHNGRFIQRMREKAASLPNVRLEQGTVTSLLEEK





GTIKGVQYKSKNGEEKTAYAPLTIVCDGCFSNLRRSLCKPMVDVPSCFVGLVLENCQLPFANHG





HVVLGDPSPILFYPISSTEIRCLVDVPGQKIPSISNGEMEKYLKTIVAPQVPPQIHDAFIAAID





KGNIRTMPNRSMPAAFQPrPGALLMGDAENMRHPLTGGGMIVALSDlVVLRNLLKPLKDLNDAL





TLCKYLESFYTLRKPVASTINTLAGALYKVFCASPDQARKEMRQACFDYLSLGGIFSNGPVSLL





SGLNPRPLSLVLHFFAVAIYGVGRLLLPFPSPKGIWIGARLVYSASGIIFPIIKAEGVRQMFFP





ATVPAYYRSPPVHKSIA






Cucurbita moschata



(SEQ ID NO: 21)



MVDYCAFGWILAAVLGLAIALSFFVSPRRNRRGGADSTPRSEGVRSSSTTNGECRSVDCDADVI






IVGAGVAGSALAHTLGKDGRLVHVIERDLTEPDRIVGELLQPGGYLKLIELGLQDCVEEIDAQK





VYGYALFKDGKNTQLSYPLEKFQSDVSGRSFHNGRFIQRMREKAASLPNVRLEQGTVTSLLEEK





GTIKGVQYKSENGBEKTAHAPLTTVCDGCFSNLRRSLCKPMVDVPSCFVGLVLENCQLPFANHG





HVVLGDPSPILFYPISSTEIRCLVDVPGQKVPSISNGEMEKYLKTIVAPQVPPQIHDAFIAAID





KGNIRTMPNRSMPAAPQPTPGALLMGDAFNMRHPLTGGGMTVALSDIVVLRNLLKPLKDLNDAP





TLCKYLESFYTLRKPVASTINTLAGALYKVFCASPDQARKEMRQACFDYLSLGGIFSNGPVSLL





SGLNPRPLSLVLHFFAVAIYGVGRLLLPFPSPKGIWIGARLVYSASGIIFPIIKAEGVRQMFFP





ATVPAYYRSPPVIKTIA






Cucurbita moschata



(SEQ ID NO: 22)



MMVDHCAFAWILDVVLGLVVAVTFFVAAPRRNRRGGTDSTASKDCVISTAIANGECKPDDADAE






VIIVGAGVAGSALAYTLGKDGRRVHVIERDLTEPDRIVGEFLQPGGYLKLIELGLGDCVEEIDA





QKLYGYALFKDGKNTRVSYPLGNFHSDVSGRSFHNGRFIQRMREKAASLPNVRLEQGTVTSLLE





TKGTIKGVQYKSKNGEEKTAYAPLTIVCDGCFSNLRRSLCKPMVDVPSCFVGLVLENCQLPFAN





HGHVVLGDPSPILFYPISSTEIRCLVDVPGQKVPSISNGDMEKYLKTVVAPQVPPQIHDAFIAA





IEKGNVRTMPNRSMPAAPHPTPGALLMGDAFNMRHPLTGGGMTVALSDIVVLRNLLKPLKDLND





ASTLCKYLESFYTLRKPVASTINTLAGALYKVFCASPDQARKEMRQACFDYLSLGGVFSNGPIS





LLSGLNPRPSSLVLHFFAVAIYGVGRLLLPFPSLKGIWIGARLIYSASGIILPIIKAEGVRQMF





FPATVPAYYRSPPVHKPIT






Cucumis sativus



(SEQ ID NO: 23)



MVDHCTFGWIFSAFLAFVIAFSFFLSPRKNRRGRGTNSTPRRDCLSSSATTNGECRSVDGDADV






IIVGAGVAGSALAHTLGKDGRRVHVIERDLTEPDRIVGELLQPGGYLKLIELGLQDCVEEIDAQ





KVYGYALFKDGKSTRLSYPLENFQSDVSGRSFHNGRFIQRMREKAAFLPNVRLEQGTVTSLLEE





KGTITGVQYKSKNGEQKTAYAPLTIVCDGCFSNLRRSLCNPMVDVPSCFVGLVLENCQLPYANL





GHVVLGDPSPILFYPISSTEIRCLVDVPGQKVPSISNGEMEKYLKTVVAPQVPPQIHDAFIAAI





EKGNIRTMPNRSMPAAPQPTPGALLMGDAFNMRHPLTGGGMTVALSDIVVLRNLLKPLKDLNDA





PTLCKYLESEYTLRKPVASTINTLAGALYKVFCASSDQARKEMRQACFDYLSLGGIESNGPVSL





LSGLNPRPLSLVLHFFAVAIYGVGRLLLPFPSPKGIWIGARLVYSASGIIFPIIKAEGVRQMFF





PATVPAYYRTPPVFNS






Cucurais melo



(SEQ ID NO: 24)



MVDHCAFGWIFSALLAFPIALSLFLSPWRNRRVRGTDSTPRSASVSSSATTNGECRSVDGDADV






VIVGAGVAGSALAHTLGKDGRRVHVIERDLTEPDRIVGELLQPGGYLKLIELGLQDCVEEIDAQ





KVYGYALFKDGKNTRLSYPLENFHSDVSGRSFHNGRFTQRMREKAASLPNVRLEQGTVTSLLEE





KGTITGVQYKSKNGBQKTAYAPLTIVCDGCFSNLRRSLCTPMVDVPSYFVGLVLENCQLPYANL





GHVVLGDPSPILFYPISSTEIRCLVDVPGQKVPSISNGEMEKYLKTVVAPQVPPQIHDAFIAAI





EKGNTRTMPNRSMPAAPQPTPGALLMGDAFNMRHPLTGGGMTVALSDIVVLRNLLKPLKDLNDA





PTLCKYLESFYTLRKPVASTINTLAGALYKVFCASPDQARKEMRQACFDYLSLGGIFSNGPVSL





LSGLNPRPLSLVLHFFAVAIYGVGRLLLPFPSLKGIWIGARLVYSASGIIFPIIKAEGVRQMFF





PATVPAYYRTPPVLNS






Cucurbits maxima



(SEQ ID NO: 25)



MMVEHCAYGWILAAVLGLVVAVTFFVAVPRRNRRGGTDSTASKDCVISPAIANGECEPEDADAD






ADVIIVGAGVAGSALAHTLGKDGRRVHVIERDLTEPDRIVGEFLQPGGHLKLIELCLGDCVEEI





DAQKLYGYALFKDGKNTRVSYPLGNFHSDVSGRSFHNGRFIQRMREKAASLPNVRLEQGTVTSL





LEKKGTIKGVQYKSKNGEEKTAYAPLTIVCDGCFSNLRRSLCKPMVDVPSCFVGLVLENCRLPF





ANHGHVVLGDPSPILFYPISSTEIRCLVDVPGQKVPSIPNGDMEKYLKTVVAPQVPPQIHDAFI





AAIEKGNIRTMPNRSMPAAPHPTPGALLMGDAFNMRHPLTGGGMTVALSDIVVLRNLLKPLKDL





NDAPTLCKYLESYYTLRKPVASTINTLAGALYKVFCASPDQARKEMRQACFDYLSLGGVFSNGP





ISLLSGLNPRPSCLVLHFFAVAIYGVGRLLLPFPSLKGIWIGARLIYSASGIILPIIKAEGVRQ





MFFPATVPAYYRSPPVHKPIT






Ziziphus jujube



(SEQ ID NO: 26)



MLDQCPLGWILASVLGLFVLCNLIVKNRNSKASLEKRSECVKSIATTNGECRSKSDDVDVIIVG






AGVAGSALAHTLGKDGRRLHVIERDLTEPDRIVGELLQPGGYLKLIELGLQDCVEEIDAQRVFG





YALFKDGKDTRLSYPLEKFHSDVSGRSFHNGRFIQRMREKSASLPNVRLEQGTVTSLLEEKGTI





KGVQYKTKTGQELTAFAPLTIVCDGCFSNLRRSLCNPKVDVPSCFVGLVLENCELPYANHGHVI





LADPSPILFYPISSTEVRCLVDVPGQKVPSISNGEMARYLKSVVAPQIPPQIYDAFIAAVDKGN





IRTMPNRSMPASPFPTPGALLMGDAFNMRHPLTGGGMTVALSDIVVLRDLLKPLGDLNDAATLC





KYLESFYTLRKPVASTINTLAGALYKVFCASPDQARKEMRQACFDYLSLGGIFSTGPVSLLSGL





NPRPLSLVLHFFAVAIYGVGRLLLPFPSPKRIWIGARLISGASGIIFPIIKAEGVRQMFFPATV





PAYYRAAPVE






Morus alba



(SEQ ID NO: 27)



MADPYTMGWILASLLGLFALYYLFVNNKNHREASLQESGSECVKSVAPVKGECRSKNGDADVII






VGAGVAGSALAHTLGKDGRRVHVIERDLAEPDRIVGELLQPGGYLKLIELGLQDCVEEIDSQRV





YGYALFKDGKDTRLSYPLEKFHSDVSGRSFHNGRFIQRMREKAASLPNVQLEQGTVTSLLEENG





TIKGVQYKTKTGQELTAYAPLTIVCDGCFSNLRRSLCIPKVDVPSCFVGLVLENCNLPYANHGH





VVLADPSPILFYPISSTEVRCLVDVPGQKVPSISNGEMAKYLKTVVASQIPPQIYDSFVAAVDK





GNIRTMPNRSMPAAPHPTPGALLMGDAFNMRHPLTGGGMTVALSDIVVLRDLLKPLRDLNDSVT





LCKYLESFYTLRKPVASTINTLAGALYKVFCASPDQARKEMREACFDYLSLGGVFSEGPVSLLS





GLNPRPLSLVCHFFAVAIYGVGRLLLPFPSPKRLWIGARLISGASGIIFPIIRAEGVRQMFFPA





TIPAYYRAPRPN






Juglans regia (JrSQE1)



(SEQ ID NO: 28)



MVDPYALGWSFASVLMGLVALYILVDKKNRSRVSSEARSEGVESVTTTTSGECRLTDGDADVII






VGAGVAGSALAHTLGKDGRRVHVIERDLTEPDRIVGELLQPGGYLKLIELGLEDCVEDIDAQRV





FGYALFKDGKNTRLSYPLEKFHSDVSGRSFHNGRFIQRMREKAASLLNVRLEQGTVTSLLEENG





TVKGVQYKTKDGNELTAHAPLTIVCDGCFSNLRRSLCNPQVDVPSSFVGLVLENCELPYANHGH





VILADPSPILFYPISSTEVRCLVDVPGKKVPSIANGEMEKYLKNMVAPQLPPEIYDSFVAAVDR





GNIRTMPNRSMPAAPHPTPGALLMGDAFNMRHPLTGGGMTVALSDIVVLRDLLKPLRDLNDAPT





LCKYLESFYTLRKPVASTINTLAGALYKVFCASPDRARKEMRQACFDYLSLGGVFSMGPVSLLS





GLNPRPLSLVLHFFAVAVYGVGRLLVPFPSPSRIWIGARLISGASAIIFPIIKAEGVRQMFFPA





TVPAYYRAPPVKRDH






Cucumis melo



(SEQ ID NO: 29)



MVDQCALGWILASVLGASALYLLFGKKNCGVLNERRRESLKNIATTNGECKSSNSDGDIIIVGA






GVAGSALAYTLAKDGRQVHVIERDLSEPDRIVGELLQPGGYLKLTELGLEDCVDDIDAQRVYGY





ALFKDGKDTRLSYPLEKFHSDVSGRSFHNGRFIQRMREKAASLPNVRLEQGTVTSLLEENGTIK





GVQYKNKSGQEMTAYAPLTIVCDGCFSNLRRSLCNPKVDVPSCFVGLILENCDLPYANHGHVII





ADPSPILFYPISSTEIRCLVDVPGQKVPSISNGEMANYLKNVVAPQIPPQLYNSFIAAIDKGNI





RTMPNRSMPADPYPTPGALLMGDAFNMRHPLTGGGMTVALSDIVVLRDLLKPLRDLNDAPTLCK





YLEAFYTLRKPVASTINTLAGALYKVFCASPDQARKEMRQACFDYLSLGGIFSNGPVSLLSGLN





PRPLSLVLHFFAVAIYGVGRLLIPFPSPKRVWIGARLISGASAIIFPIIKAEGVRQMFFPKTVA





AYYRAPPVVRER






Cucumis sativus



(SEQ ID NO: 30)



MVDQCALGWILASVLGASALYLLFGKKNCGVSNERRRESLKNIATTNGECKSSNSDGDIIIVGA






GVAGSALAYTLAKDGRQVHVIERDLSEPDRIVGELLQPGGYLKLTELGLEDCVDEIDAQRVYGY





ALFKDGKDTRLSYPLEKFHSDVSGRSFHNGRFIQRMREKAASLPNVRLEQGTVTSLLEENGTIR





GVQYKNKSGQEMTAYAPLTIVCDGCFSNLRRSLCNPKVDVPSCFVGLILENCDLPHANHGHVIL





ADFSPILFYPISSTEIRCLVDVPGQKVPSISNGEMANYLKNVVAPQIPPQLYNSFIAAIDKGMI





RTMPNRSMPADPYPTPGALLMGDAFNMRHPLTGGGMTVALSDIVVLRDLLKPLRDLNDAPTLCK





YLEAFYTLRKPVASTINTLAGALYKVFCASPDQARKEMRQACFDYLSLGGIFSNGPVSLLSGLN





PRPLSLVLHFFAVAIYGVGRLLIPFPSPKRVWIGARLISGASAIIFPIIKAEGVRQMFFPKTVA





AYYRAPPIVRER






Juglans regia (JrSQE2)



(SEQ ID NO: 31)



MVDQYALGLILASVLGFVVLYNLMAKKNRIRVSSEARTEGVQTVITTTNGECRSIEGDVDVIIV






GAGVAGSALAHTLGKDGRKVHVIERDLSEPDRIVGELLQPGGYLKLVELGLQDSVEDIDAQRVF





GYALFKDGKNTRLSYPLEKFHSDVSGRSFHNGRFIQRMREKAASLPNIRLEQGTVTSLLEENGT





IKGVQYKTKDGKELAAHAPLTIVCDGCFSNLRRSLCNPQVDVPSSFVGLVLENCELPYANHGHV





VLADPSPILFYPISSTEVRCLVDVPGQKVPSISNGEMAKYLKTMVAPQVPPEIYDSFVAAVDRG





NIRTMPNRSMPAAPQPTPGALLMGDAFNMRHPLTGGGMTVALSDIVVLRDLLRPLRDLNDAPTL





CKYLESFYTLRKPVASTINTLAGALYKVFCASPDRARNEMRQACFDYLSLGGVFSTGPvSLLSG





LNPRPLSLVLHFFAVAVYGVGRLLVPFPSPSRMWIGARLISGASAIIFPIIKAEGVRQMFFPAT





VPAYYRAPPVNCQARSLKPDALKGL






Theobroma cacao



(SEQ ID NO: 32)



MADSYVWGWILGSVMTLVALCGVVLKRRKGSGISATRTESVKCVSSINGKCRSADGSDADVIIV






GAGVAGSALAHTLGKDGRRVHVIERDLTEPDRIVGELLQPGGYLKLIELGLEDCVEEIDAQQVF





GYALFKDGKHTRLSYPLEKFHSDVSGRSFHNGRFIQRMREKSASLPNVRLEQGTVTSLLEEKGT





IRGVQYKTKDGRELTAFAPLTIVCDGCFSNLRRSLCNPKVDVPSCFVGLVLENCNLPYSNHGHV





ILADPSPILFYPISSTEVRCLVDVPGQKVPSIANGEMANYLKTIVAPQVPPEIYNSFVAAVDKG





NIRTMPNRSMPAAPYPTPGALLMGDAFNMRHPLTGGGMTVALSDIVVLRDLLRPLRDLNDAPTL





CKYLESEYTLRKPIASTINTLAGALYKVFCASPDQARKEMRQACFDYLSLGGVFSTGPISLLSG





LNPRPVSLVLHFFAVAIYGVGRLLLPFPSPKRIWIGARLISGASGIIFPIIKAEGVRQMFFPAT





VPAYYRAPPVE






Cucurbita moschata



(SEQ ID NO: 33)



MMVDHCAFAWTLDVVLGLVVAVTFFVAAPRRNRRGGTDSTASKDCVISTAIANGECKPDDADAE






VIIVGAGVAGSALAYTLGKDGRRVHVIERDLTEPDRIVGEFLQPGGYLKLIELGLGDCVEEIDA





QKLYGYALFKDGKNTRVSYPLGNFHSDVSGRSFHNGRFIQRMREKAASLPNVRLEQGTVTSLLE





TKGTTKGVQYKSKNGEEKTAYAPLTIVCDGCFSNLRRSLCKPMVDVPSCFVGLVLENCQLPFAN





HGHVVLGDPSPILFYPISSTEIRCLVDVPGQKVPSISNGDMEKYLKTVVAPQVPPQIHDAFIAA





IEKGNVRTMPNRSMPAAPHPTPGALLMGDAFNMRHPLTGGGMTVALSDIVVLRNLLKPLKDLND





ASTLCKYLESFYTLRKPVASTINTLAGALYKVFCASPDQARKEMRQACFDYLSLGGVFSNGPIS





LLSGLNPRPSSLVLHFFAVAIYGVGRLLLPFPSLKGIWIGARLIYSASGIILPIIKAEGVRQMF





FPATVPAYYRSPPVHKPIT






Phaseolus vulgaris



(SEQ ID NO: 34)



MLDTYVFGWIICAALSVFVIRNFVFAGKKCCASSETDASMCAENITTAAGECRSSMRDGEFDVL






IVGAGVAGSALAYTLGKDGRQVLVIERDLSEPDRIVGELLQPGGYLKLIELGLEDCVDKIDAQQ





VFGYALFKDGKHIRLSYPLEKFHSDVAGRSFHNGRFIQRMREKAASLPNVRLEQGTVTSLLEEK





GVIKGVQYKTKDSQELSVCAPFTIVCDGCFSNLRRSLCDPKVDVPSCFVGLVLENCELPCANHG





HVILGEPSPVLFYPISSTEIRCLVDVPGQKVPSISNGEMAKYLKTVIAPQVPHELHNAFIAAVD





KGSIRTMPNRSMPAAPYPTPGALLMGDAFNMRHPLTGGGMTVALSDIVVLRNLLRPLRDLNDAP





SLCKYLESFYTLRKPVASTINTLAGALYKVFCASSDPARKEMRQACFDYLSLGGQFSEGPISLL





SGLNPRPLTLVLHFFAVATYGVGRLLLPFPSPKRMWIGLRLISSASGIIMPIIKAEGVRQMFFP





ATVPAYYRNPPAA






Hevea brasiliensis



(SEQ ID NO: 35)



MKMADHYLLGWILASVMGLFAFYYIVYLLVKPEEDNNRRSLPQPRSDFVKTMTATNGECRSDDD






SDVDVIIVGAGVAGAALAHTLGKDGRRVHVIERDLTEPDRIVGELLQPGGYLKLIELGLEDCVE





EIDAQRVFGYALFKDGKHTQLAYPLEKFHSEVAGRSFHNGRFIQRMREKAASLPSVKLEQGTVT





SLLEEKGTIKGVLYKTKTGEELTAFAPLTIVCDGCFSNLRRSLCNPKVDVPSCFVGLVLENCRL





PYANNGHVILADPSPILFYPISSTEVRSLVDVPGQKVPSVSSGEMANYLKNVVAPQVPPEIYDS





FVAAVDKGNIRTMPNRSMPASPYPTPGALLMGDAFNMRHPLTGGGMTVALSDIVVLRDLLKPLR





DLHDAPTLCRYLESFYTLRKPVASTINTLAGALYKVFCASPDEARKEMRQACFDYLSLGGVFST





GPVSLLSGLNPRPLSLVLHFFAVAIYGVGRLLLPFPSPHRIWVGARLISGASGIIFPIIKAEGV





ROMFFPATVPAYYRAPPIKCN






Sorghum bicolor



(SEQ ID NO: 36)



MAAAAAAASGVGFQLIGAAAATLLAAVLVAAVLGRRRRRARPQAPLVEAKPAPEGGCAVGDGRT






DVIIVGAGVAGSALAYTLGKDGRRVHVIERDLTEPDRIVGELLQPGGYLKLIELGLEDCVEEID





AQRVLGYALFKDGRNTKLAYPLEKFHSDVAGRSFHNGRFTQRMRQKAASLPNVQLEQGTVTSLL





EENGTVKGVQYKTKSGEELKAYAPLTIVCDGCFSNLRRALCSPKVDVPSCFVGLVLENCQLPHP





NHGHVILANPSPILFYPISSTEVRCLVDVPGQKVPSIASGEMANYLKTVVAPQIPPEIYDSFIA





AIDKGSIRTMPNRSMPAAPHPTPGALLMGDAFNMRHPLTGGGMTVALSDIVVLRNLLKPLHNLH





DASSLCKYLESFYTLRKPVASTINTLAGALYKVFSASPDQARNEMRQACFDYLSLGGVFSNGPI





ALLSGLNPRPLSLVAHFFAVAIYGVGRLMLPLPSPKRMWIGARLISGACGIILPIIKAEGVRQM





FFPATVPAYYRAAPMGE






Zea mays



(SEQ ID NO: 37)



MRKNLEEAGCAVSDGGTDVIIVGAGVAGSALAYTLGKDGRRVHVIERDLTEPDRIVGELLQPGG






YLKLIELGLQDCVEEIDAQRVLGYALFKDGRNTKLAYPLEKFHSDVAGRSFHNGRFIQRMRQKA





ASLPNVQLEQGTVTSLLEENGTVKGVQYKTKSGEELKAYAPLTIVCDGCFSNLRRALCSPKVDV





PSCFVGLVLENCQLPHPNEGHVILANPSPILFYPISSTEVRCLVDVPCQKVPSIATGEMANYLK





TVVAPQIPPEIYDSFIAAIDKGSIRTMPNRSMPAAPHPTPGALLMGDAFNMRHPLTGGGMTVAL





SDIVVLRNLLKPLRNLHDASSLCKYLESFYTLRKPVASTINTLAGALYKVFSASPDQARNEMRQ





ACFDYLSLGGVFSNGPIALLSGLNPRPLSLVAHFFAVAIYGVGRLMLPLPSPKRMWIGARLISG





ACGIILPIIKAEGVRQMFFPATVPAYYRAAPTGEKA






Medicago sativa



(SEQ ID NO: 38)



MDLYNIGWILSSVLSLFALYNLIFSGKRNYHDVNDKVKDSVTSTDAGDIQSEKLNGDADVIIVG






AGIAGAALAHTLGKDGRRVHIIERDLSEPDRIVGELLQPGGYLKLVELGLQDCVDNIDAQRVFG





YALFKDGKHTRLSYPLEKFHSDVSGRSFHNGRFIQRMREKAASLPNVNMEQCTVISLLEEKGTI





KGVQYKNKDGQALTAYAPLTIVCDGCFSNLRRSLCNPKVDNPSCFVGLILENCELPCANHGHVI





LGDPSPILFYPISSTEIRCLVDVPGTKVPSISNGDMTKYLKTTVAPQVPPELYDAFIAAVDKGN





IRTMPNRSMPADPRPTPGAVLMGDAFNMRHPLTGGGMTVALSDIVVLRNLLKPMRDLNDAPTLC





KYLESFYTLRKPVASTINTLAGALYKVFSASPDEARKEMRQACFDYLSLGGLFSEGPISLLSGL





NPRPLSLVLHFFAVAVFGVGRLLLPFPSPKRVWIGARLLSGASGIILPIIKAEGIRQMFFPATV





PAYYRAPPVNAF






Methylomonas lenta



(SEQ ID NO: 39)



MKEEFDICIIGAGMAGATISAYLAPKGIKIALIDHCYKEKKRIVGELLQPGAVLSLEQMGLSHL






LDGFEAQTVKGYALLQGNEKTTIPYPSQHEGIGLHNGRFLQQIRASALENSSVTQIHGKALQLL





ENERNEIIGVSYRESITSQIKSIYAPLTITSDGFFSNFRAHLSNNQKTVTSYFIGLILKDCEMP





FPKHGHVFLSGPTPFICYPISDNEVRLLIDFPGEQLPRKNLLQEHLDTNVTPYIPECMRSSYAQ





AIQEGGFKVMPNHYMAAKPIVRKGAVMLGDALNMRHPLTGGGLTAVFSDIQILSAHLLAMPDFK





NTDLIHEKIEAYYRDRKRANANLNILANALYAVMSNDLLKTAVFKYLQCGGANAQESIAVLAGL





NRKHFSLIKQFCFLAVFGACNLLQQSISNIPKALKLLKDAFVIIKPLIKNELS






Bathymodiolus azoricus Endosymbiont



(SEQ ID NO: 168)



MHTTSEHNDLFDICIVGAGMAGATIATYLAPRGIKIALIDRDYAEKRRIVGELLQPGAVQTLKK






MGLEHLLEGFDAQPIYGYALFNKDCEFSIEYNQDKSTNYRGVGLHNGRFLQKIREDALKQPSIT





QIHGTVSELIEDENHVVTGVKYKEKYTRELKTVNAKLTITSDGFFSSFRKDLTNNVKTVTSFFV





GIILKDCELPYPHHGHVFLSAPTPFICYPISSTESRLLIDFPGDQAPKKEAVKHHIENNVIPFL





PKEFRLCLDQALRENDYKIMPNHYMPAKPVLKKGvVLLGDALNMRHPITGGGLTAVFNDVYLLS





THLLAMPDFNDTKLIHSKVNLYYNDRYHANTNVNIMANALYGVMSNDLLKQSVFEYLRKGGDNS





GGPISLLAGLNRNPTILIKHFFSVALLCLRNLFKAHKMSLTNAFYVIKDAFCIIVPLAINELRP





SSFLKKNIHN






Methyloprofundus sediment



(SEQ ID NO: 169)



MNTSPEHNDLFDICIVGVGMAGATIAAYLAPRGLKIALIDREYTEKRRIVGELLQPGAVQTLKK






MGLEHLLEGFDAQPIYGYALFNNDKEFSISYNSDDSTEYHGVGLHNGRFLQKIREDVFKNETVT





QIHGTVSELIEDKKGVVKGVTYREKHTREYKTVKAKLTVTSDGFFSNFRKDLSNNVKTVTSFFI





GLVLNDCNLPFPNHGHVFLSAPTPFICYPISSTETRLLIDYPGDKAPKKDEIREHILNKVAPFL





PEEFKECFANAMEDDDFKVMPNHYMPAKPVLKEGAVLLGDALNMRHPLTGGGLTAVFNDVYLLS





THLLAMPDFNDPKLLHEKLELYYQDRYHANTNVNIMANALYGVMSNDLLKQGVFEYLRKGGDNS





GGPITLLAGLNRNPTLLIKHFFSVAFLCICNLSGNNKMNFTNVFRVMKDAFCIIKPLAVNELRP





SSFYKKNIQL






Methylomicrobium buryatense



(SEQ ID NO: 170)



MESNFDICIIGAGMAGATIAAYLAPKGINIALIDHCYKEKKRIVGELLQPGAVLSLEQLGLGHL






LDGIDAQPVEGYALLQGNEQTTIPYPSPNHGMGLHNGRFLQQIRASALQNSSVTQIQGKALSLL





ENEQNEIIGVNYRDSVSNEIKSIYAPLTITSDGFFSNFRELLSNNEKTVTSYFIGLILKDCEIP





VPKHGHVFLSGPTPFICYPISSNEVRLLIDFPGGQFPRKAFLQAHLETNVTPYIPEGMQTSYRH





ALQEDRLKVMPNHYMAAKPKIRKGAVMLGDALNMRHPLTGGGLTAVFSDIEILSGHLLAMPDFN





NNDLIYQKIEAYYRDRQYANANLNILANALYGVMSNELLKNSVFKYLQRGGVNAKESIAILAGL





NKNHYSLMKQFFFVALFGAYTLVRENITNLPKATKILSDALTIIKPLAKNELSLVCIFSDYFKR






Ononis spinosa SQE1



(SEQ ID NO: 177)



MVDPYAVGWIICSLTTIVALYNFVFYRQNRSDKTTPTTTENITTATGDCRSLNPNGDVDIVIVG






AGVAGSALAYTLGKDGRRVLVIERDLNEPDRIVGELLQPGGYLKLIELGLEDCVEKIDAQQVFG





YALFKDGKHTRLSYPLEKFHSDIAGRSFHNGRFIQRMREKAASLPNVQLVQGTVTSLLEENGTI





KGVQYKTKDAQELSACAPLTIVCDGCFSNLRRNLCNPKVEVPSCFVGLVLENCELPCANHGHVI





LGDPSPVLFYPISSTEIRCLVDVPGQKVPSISNGEMAKYLKEVVAPQVPPELHDAFIAAVDKGN





IRTMPNRSMPAAPYPTPGALLMGDAFNMRHPLTGGGMTVALSDIVVLRNLLKPLRDLNDAPSLC





KYLESFYTLRKPVASTINTLAGALYKVFCASPDPARKEMRQACFDYLSLGGLFSEGPVSLLSGL





NPRPLSLVLHFFAVAIYGVGRLLLPFPSPKRIWIGVRLIASASGIILPIIKAEGIRQMFFPATV





PAYYRTPPAA






Ononis spinosa SOE2



(SEQ ID NO: 178)



MDLYLLGWILSSVLSLFALYCLVFDGNRSRANAEKQIQRGYSVTTDAGDVKSEKLNGDADVIIV






GAGIAGAALAETLGKDGRRVRVIERDLSEPDRIVGELLQPGGYLKLVELGLADCVDNIDAQKVE





GYALFKDGKHTRLSYPLEKFHADVSGRSFHNGRFIQRMREKAASLLNVNLEQGTVTSLLEEKGT





IKGVQYKNKDGQELTAYAPLTIVCDGCFSNLRRSLCNPKVDNPSCFVGLVLENCELPCANHGHV





ILGDPSPILFYPISSTEIRCLVDVPGQKVPSISNGDMTKYLKLTVAPQVPPELYDAFIAAVDKG





NIRTMPNKSMPADPCPTPGAVLMGDAFNMRHPLTGGGMTVALSDIVVLRNLLRPLRDLNDAPAL





CKYLESFYTLRKPVASTINTLAGALYKVFSSSPDQARREMRQACFDYLSLGGLFSEGPISLLSG





LNPRPLSLVLEFFAVAVFGVGRLLLPFPSPKRVWIGARLLSAASGIILPIIKAEGIRQMFFPVT





VPAYYRAPPTSQE






Medicagotruncatula SQE1



(SEQ ID NO: 179)



MIDPYGFGWITCTLITLAALYNFLFSRKNHSDSTTTENITTATGECRSFNPNGDVDIIIVGAGV






AGSALAYTLGKDGRRVLIIERDLNEPDRIVGELLQPGGYLKLIELGLDDCVEKIDAQKVFGYAL





FKDGKHTRLSYPLEKFHSDIAGRSFHNGRFILRMREKAASLPNVRLEQGTVTSLLEENGTIKGV





QYKTKDAQEFSACAPLTIVCDGCFSNLRRSLCNPKVEVPSCFVGLVLENCELPCADHGHVILGD





PSPVLFYPISSTEIRCLVDVPGQKVPSISNGEMAKYLKTVVAPQVPPELHAAFIAAVDKGHIRT





MPNRSMPADPYPTPGALLMGDAFNMRHPLTGGGMTVALSDIVVLRNLLKPLRDLNDASSLCKYL





ESFYTLRKPVASTINTLAGALYKVFCASPDPARKEMRQACFDYLSLGGLFSEGPVSLLSGLNPC





PLSLVLHFFAVAIYGVGRLLLPFPSPKRLWIGIRLIASASGIILPIIKAEGIRQMFFPATVPAY





YRAPPDA






Medicagotruncatula SQE2



(SEQ ID NO: 180)



MDLYNIGWILSSVLSLFALYNLIFAGKKNYDVNEKVNQREDSVTSTDAGEIKSDKLNGDADVII






VGAGIAGAALAHTLGKDGRRVHIIERDLSEPDRIVGELLQPGGYLKLVELGLQDCVDNIDAQRV





FGYALFKDGKETRLSYPLEKFHSDVSGRSFHGRFIQRMREKAASLPNVNMEQGTVISLLEEKGT





IKGVQYKNKDGQALTAYAPLTIVCDGCFSNLRRSLCNPKVDNPSCFVGLILENCELPCANHGHV





ILGDPSPILFYPISSTEIRCLVDVPGTKVPSISNGDMTKYLKTTVAPQVPPELYDAFIAAVDKG





NIRTMPNRSMPADPRPTPGAVLMGDAFNMRHPLTGGGMTVALSDIVVLRNLLKPMRDLNDAPTL





CKYLESFYTLRKPVASTINTLAGALYKVFSASPDEARKEMRQACFDYLSLGGLFSEGPISLLSG





LNPRPLSLVLHEFAVAVFGVGRLLLPFPSPKRVWIGARLLSGASGIILPIIKAEGIRQMFFPAT





VPAYYRAPPVNAF






Hypholomasublateritium SQE



(SEQ ID NO: 181)



MSKSRSNYDVIIVGAGIAGCALAHGLSTLSRATPLRIAIVERSLAEPDRIVGELLQPGGVMALQ






RLGMEGCLEGIDAVKVHGYCVVENGTSVHIPYPGVHEGRSFHHGRFIMKLREAARAARGVELVE





ATVTELIPREGGKGIAGVRVARKGKDGEEDTTEALGAALVVVADGCFSNFRAAVMGGAAVKPET





KSHFVGAILKDARLPIPNHGTVALVKGFGPVLLYQISEHDTRMLVDVKAPLPADLKVCAHILSN





IVPQLPAALHLPIQRALDAERLRRMPNSFLPPVEQGATRGAVLVGDAWNMRHPLTGGGMTVALN





DVCCLRDLLGSVGDLGDWRQVASTVNILSVALYDLFGADGELQVLRTGCFKYFERGGDCIDGPV





SLLSGIAPSPMLLAYHFFSVAFYSIYVIAVGAQNGSAKQVLAVPGALQYPALCVKGLRVFYTAC





VVFGPLLWTELRW






Hypholomasublateritium SQE2



(SEQ ID NO: 182)



MHPTHYDVVIVGAGVAGSSLAHALATLPREKPLQIALIERSFEEPDRIVGELLQPGGVDALKTL






KMTSSVEGIDAITVTGYILVESGDMVRTPYPKGKEGRSFHHGRFIMGLRRVALENPNVHPIEAT





AADLIECPCTGQVIGVRATSKTAPAPSSIDAQQTPPAPFSVYGDLVIVADGCFSNFRNVVMGKA





ACKATTKSYFVGTILKDAVLPVAGHGTVILPQGSGPVLLYQISEHDTRMLIDIQHPLPSDLRAH





ILTNILPQLPASIQGVVSDAPTKDRIRRMPNSFLPSVQQGSPLSKKGVILLGDSWNMRHPLTGG





GMTVALNDVVYLRSIFASIQNLDDWDEIRYALRHWHWGRKPLSSTINILSGTLYGLFEKDDDDY





RATRKGCFKYFQLGGKCIDDPVSLLSGLSPSPTLLSSHFFAVTLYAIWVVPTHPRVGSSMSANP





ADVKRVYDIPSADEYPQLTLKGIRMFSQACGVFLPVLWSEIRWWAPCESS






Hypholomasublateritium SQE3



(SEQ ID NO: 183)



MSKSRSNYDVIIVGAGIAGCALAHGLSTLSRATPLRIAIVERSLAEPDRIVGELLQPGGVMALQ






RLGMEGCLEGIDAVKVHGYCVVENGTSVHIPYPGVHEGRSFHHGRFIMKLREAARAARGVELVE





ATVTELIPREGGKGIAGVRVARKGKDGEEDTTEALGAALVVVADGCFSNFRAAVMGGAAVKPET





KSHFVGAILKDARLPIPNHGTVALVKGFGPVLLYQISEHDTRMLVDVKAPLFADLKAHILSNIV





PQLPAALHLPIQRALDAERLRRMPNSFLPPVEQGATRGAVLVGDAWNMRHPLTGGGMTVALNDV





VVLRDLLGSVGDLGDWRQVRRALHRWHWDRKPLASTVNILSVALYDLFGADGEELQVLRTGCFK





YFERGGDCIDGPVSLLSGIAPSPMLLAYHFFSVAFYSIYVMFAHPQPVAQSKAVGAQNGSAKQV





LAVPGALQYPALCVKGLRVFYTACVVFGPLLWTELRWWTAAEASRGRLLVMSLVPLLLLLGAAN





YGIPGMGLLGVL





M1SQE A4


(SEQ ID NO: 203)



MAKEEFDICIIGAGMAGATISAYLAPKGIKIALIDRCYKEKKRIVGELLQPGAVLSLEQMGLSH






LLDGFEAQTVKGYALLQGNEKTTIPYPSQHEGIGLHNGRFLQQIRASALENSSVTQIHGKALQL





LENERNEIIGVSYRESITSQIKSIYAPLTITSDGFASNFRAHLSNNQKTVTSYFIGLILKDCEM





PFPKHGHVFLSGPTPFICYPISDNEVRLLIDFPGEQLPRKNLLQEHLDTNVTPYIPECMRSSYA





QAIQEGGFKVMPNHYMAAKPIVRKGAVLLGDALNMRHPLTGGGLTAVFSDIQILSAHLLAMPDF





KNTDLIHEKIEAYYRDRKRANANLNILANALYAVMSNDLLKTAVFRYLQCGGANAQESTALLAG





LNRKHFSLIKQYCFLAVFGACNLLQQSISNIPKALKLLKDAFVIIKPLIKNELS





Cucurbitadienol Synthase (CDS), Triterpene Synthase (TTP)



Siraitiagrosvenorii CDS



(SEQ ID NO: 40)



MWRLKVGAESVGENDEKWLKSISNHLGRQVWEFCPDAGTQQQLLQVHKARKAFHDDRFHRKQSS






DLFITIQYGKEVENGGKTAGVKLKEGEEVRKEAVESSLERALSFYSSIQTSDGNWASDLGGPMF





LLPGLVIALYVTGVLNSVLSKHHRQEMCRYVYNHQNEDGGWGLHIEGPSTMFGSALNYVALRLL





GEDANAGAMPKARAWILDHGGATGITSWGKLWLSVLGVYEWSGNNPLPPEFWLFPYFLPFHPGR





MWCHCRMVYLPMSYLYGKRFVGPITPIVLSLRKELYAVPYHEIDWNKSRNTCAKEDLYYPHPKM





QDILWGSLHHVYEPLFTRWPAKRLREKALQTAMQHIHYEDENTRYICLGPVNKVLNLLCCWVED





PYSDAFKLHLQRVHDYLWVAEDGMKMQGYNGSQLWDTAFSIQAIVSTKLVDNYGPTLRKAHDFV





KSSQIQQDCPGDPNVWYRHIHKGAWPFSTRDHGWLISDCTAEGLKAALMLSKLPSETVGESLER





NRLCDAVNVLLSLQNDNGGFASYELTRSYPWLELINPAETFGDIVIDYPYVECTSATMEALTLE





KKLHPGHRTKEIDTAIVRAANFLENMQRTDGSWYGCWGVCFTYAGWFGIKGLVAAGRTYNNCLA





IRKACDFLLSKELPGGGWGESYLSCQNKVYTNLEGNRPHLVNTAWVLMALIEAGQAERDPTPLH





RAARLLINSQLENGDFPQQEIMGVFNKNCMITYAAYRNIFPIWALGEYCHRVLTE






Momordicacharantia



(SEQ ID NO: 41)



MWRLKVGAESVGENDEKWVKSISNHLGRQVWEFCPDAGTPQQLLQIEKARKAFQDNRFHRKQTS






DLLVSIQCEKGTTNGARVPGTKLKEGEEVRKEAVKSTLERALSFYSSIQTSDGNWASDLGGPME





LLPGLVIALCVTGALNSVLSKHHRQEMCRYLYNHQNEDGGWGLHIESPSTMFGSALNYVALRLL





GEDADGGEGRAMTKARAWILGHGGATAITSWGKLWLSVLGVYEWSGNNPLPPEFWLLPYFLPFE





PGRMWCHCRMVYLPMSYLYGKRFVGPITPVVLSLRKELYTVPYHEIDWNKSRNTCAKEDLYYPH





SKMQDILWGSIHHMYEPLFTHWPAKRLREKALKTAMQHIHYEDENTRYICLGPVNKVLNMLCCW





VEDPYSEAFKLHLQRVHDYLWVAEDGMKMQGYNGSQLWDTAFSVQAIISTKLVDNYGPTLRKAH





DYVKNSQIQQDCPGEPNVWFRHIHKGAWPFSTRDHGWLISDCTAEGLKASLMLSKLPSETVGEP





LERNRLCDAVNVLLSLQNDNGGFASYELTRSYPWLELINPAETFGDIVIDYPYVECTSATMEAL





ALFKKLHPGHRTKEIDTAIARAADFLENMQRTDGSWYGCWGVCETYAGWFGIKGLVAAGRAYSN





CLAIRKACDFLLSKELPGGGWGESYLSCQNKVYTNLEGNRPHLVNTAWVLMALIEAGQGERDPA





PLHRAARLLINSQLENGDFPQEEIMGVFNKNCMITYAAYRNIFPIWALGEYCHRVLTE






Cucurbita maxima



(SEQ ID NO: 42)



MWRLKVGAESVGEKDEKKVKSVSNKLGRQVWEFCADAAADTPHQLLQIQMARNHFHHNRFHRKC






SSDLFLAIQYEKEIAKGAKGGAVKVKEGSEVGKEAVKSTLERALGFYSAVQTSDGNWASDLGGP





MFLLPGLVIALHVTGVLMSVLSKHKRVEMCRYLYNKQNEDGGWGLHIEGTSTMFGSALNYVALR





LLGEDADGGDGGAMTKARAWILERGGATAITSWGKLWLSVLGVYEWSGNNPLPPEFWLLPYSLP





FHPGRMWCHCRMVYLPMSYLYGKRFVGPITPKVLSLRQELYTIPYHEIDWNKSRNTCAKEDLYY





PHPKMQDILWGSIYHVYEPLFTRWPGKRLREKALQAAMKHIHYEDENSRYICLGPVNKVLNMLC





CWVEDPYSDAFKLHLQRVHDYLWVAEDGMRMQGYNGSQLWDTAFSIQAIVATKLVDSYAPTLRK





AHDFVKDSQIQEDCPGDPNVWFRHIHKGAWPFSTRDHGWLISDCTAEGLKASLMLSKLPSTMVG





EPLEKNRLCDAVNVLLSLQNDNGGFASYELTRSYPWLELINPAETFGDIVIDYPYVECTAATME





ALTLFKKLHPGHRTKEIDTAIGKAANFLEKMQRADGSWYGCWGVCFTYAGWFGIKGLVAAGRTY





NSCLAIRKACEFLLSKELPGGGWGESYLSCQNKVYTNLEGNKPHLVNTAWVLMALIBAGQGERD





PAPLHRAARLLMNSQLENGDFVQQEIMGVFNKNCMITYAAYRNIFPIWALGEYCHRVLTE






Citrulluscolocynthis (CcCDS1)



(SEQ ID NO: 43)



MWRLKVGAESVGEKEEKWLKSISNHLGRQVWEFCADQPTASPNHLQQIDNARKHFRNNRFHRKQ






SSDLFLAIQNEKEIANGTKGGGIKVKEEEDVRKETVKNTVERALSFYSAIQTNDGNWASDLGGP





MFLLPGLVIALYVTGVLNSVLSKHHRQEMCRYLYNHQNEDGGWGLHIEGTSTMFGSALNYVALR





LLGEDADGGEGGAMTKARGWILDRGGATAITSWGKLWLSVLGVYEWSGNNPLPPEFWLLPYCLP





FHPGRMWCHCRMVYLPMSYLYGKRFVGPITPIVLSLRKELYTIPYHEIDWNKSRNTCAKEDLYY





PHPKMQDILWGSIYHLYEPLETRWPGKRLREKALQMAMKHIHYEDENSRYICLGPVNKVLNMLC





CWVEDPYSDAFKFHLQRVPDYLWIAEDGMRMQGYNGSQLWDTAFSVOAIISTKLIDSFGTTLKK





AHDFVKDSQIQQDFPGDPNVWFRHIHKGAWPFSTRDHGWLISDCTAEGLKASLMLSKLPSKIVG





EPLEKSRLCDAVNVLLSLQNENGGFASYELTRSYPWLELINPAETFGDIVIDYPYVECTSATME





ALTLFKKLHPGHRTKEIDTAVAKAANFLENMQRTDGSWYGCWGVCFTYAGWFGIKGLVAAGRTY





STCVAIRKACDFLLSKELPGGGWGESYLSCQNKVYTNLEGNRPHLVNTAWVLMALIEAGQAERD





PAPLHRAARLLINSQLENGDFPQEEIMGVFNKNCMITYAAYRNIFPIWALGEYFHRVLTE






Citrulluscolocynthis (CcCDS2)



(SEQ ID NO: 44)



MWRLKVGAESVGEKBEKWLKSISNHLGRQVWEFCAHQPTASPNHLQQIDNARNHFRNNRFHRKQ






SSDLFLAIQNEKEIANVTKGGGIKVKEEEDVRKETVKNTVERALSFYSAIQTNDGNWASDLGGP





MFLLPGLVIALYVTGVLNSVLSKHHRQEMCRYLYNHQNEDGGWGLHIEGTSTMFGSALNYVALR





LLGEDADGGEGGAMTKARSWILDRGGATAITSWGKLWLSVLGVYEWSGNNPLPPEFWLLPYCLP





FHPGRMWCHCRMVYLPMSYLYGKRFVGPITPIVLSLRKELYTIPYHBIDWNRSRNTCAKEDLYY





PHPKMQDILWGSIYHLYEPLFTRWPGKRLREKALQMAMKHIHYEDENSRYICLGPVNKVLNMLC





CWVEDPYSDAFKFHLQRVPDYLWVAEDGMRMQGYNGSQLWDTAFSVQAIISTKLIDSFGTTLKK





AHDFVKDSQIQQDCPGDPNVWFRHIHKGAWPFSTRDHGWLISDCTAEGLKASLMLSKLPSKIVG





EPLEKSRLCDAVNVLLSLQNENGGFASYELTRSYPWLELINPAETFGDIVIDYPYVECTSATME





ALTLFKKLHPGRRTKEIDIAVARAANFLENMQRTDGSWYGCWGVCFTYAGWFGIKGLVAAGRTY





NSCVAIRKACDFLLSKELPGGGWGESYLSCQNKVYTNLEGNRPHLVNTAWVLMALIEAGQAERD





PAPLHRAARLLINSQLENGDFPQEEIMGVENKNCMITYAAYRNIFPIWALGEYFHRVLTE






Cucurbitamoschata



(SEQ ID NO: 45)



MWRLKVGAESVGEKDEKWVKSVSNHLGRQVWEFCADAAAAATPRQLLQIQNARNHFHRNRFHRK






QSSDLFLAIQYEKEIAEGGKGGAVKVKEEEEVGKEAVKSTLERALSFYSAVQTSDGNWASDLGG





PMFLLPGLVIALYVTGVLNSVLSKHHRVEMCRYLYNHQNEDGGWGLHIEGTSTMFGSALNYVAL





RLLGEDADGGDDGAMTKARAWILERGGATAITSWGKLWLSVLGVYEWSGNNFLPPEFWLLPYSL





PFHPGRMWCHCRMVYLPMSYLYGKRFVGPITPKVLSLRQELYTVPYHEIDWNKSRNTCAKEDLY





YPHPKMQDILWGSIYHVYEPLFTRWPGKRLREKALQTAMKHIHYEDENSRYICLGPVNKVLNML





CCWVEDPYSDAFKLHLQRVHDYLWVAEDGMRMQGYNGSQLWDTAFSIQAIVATKLVDSFAPTLR





KAHDFVKDSQIQEDCPGDPNVWFRHIHKGAWPFSTRDHGWLISDCTAEGLKASLMLSKLPSTMV





GEPLEKNRLCDAVNVLLSLQNDNGGFASYELTRSYPWLELINPAETFGDIVIDYPYVECTAATM





FALTLFKKTHPGHRTKETDTAVGKAANFLEKMORADGSWYGCWGVCFTYAGWFGTKGTVAAGRT





YNSCLAIRKACEFLLSKELPGGGWGESYLSCQNKVYTNLEGNKPHLVNTAWVLMALIEAGQGER





DPAPLHRAARLLMNSQLENGDFVQQEIMGVFNKNCMITYAAYRNIFPIWALGEYCHRVLTE






Cucumissativus



(SEQ ID NO: 46)



MWRLKVGKESVGEKEEKWIKSISNHLGRQVWEFCAENDDDDDDEAVIHVVANSSKHLLQQQRRQ






SSFENARKQFRNNRFHRKQSSDLFLTIQYEKEIARNGAKNGGNTKVKEGEDVKKEAVNNTLERA





LSFYSAIQTSDGNWASDLGGPMFLLPGLVIALYVTGVLNSVLSKHHRQEMCRYIYNHQNEDGGW





GLHIEGSSTMFGSALNYVALRLLGEDANGGECGAMTKARSWILERGGATAITSWGKLWLSVLGV





YEWSGNNPLPPEFWLLPYSLPFHPGRMWCHCRMVYLPMSYLYGKRFVGPITHMVLSLRKELYTI





PYHEIDWNRSRNTCAQEDLYYPHPKMQDILWGSIYHVYEPLFNGWPGRRLREKAMKIAMEHIHY





EDENSRYIYLGPVNKVLNMLCCWVEDPYSDAFKFHLQRIPDYLWLAEDGMRMQGYNGSQLWDTA





FSIQAILSTKLIDTFGSTLRKAHHFVKHSQIQEDCPGDPNVWFRHIHKGAWPFSTRDHGWLISD





CTAEGLKASLMLSKLPSKIVGEPLEKNRLCDAVNVLLSLQNENGGFASYELTRSYPWLELINPA





ETFGDIVIDYSYVECTSATMEALALFKKLHPGHRTKEIDAALAKAANFLENMQRTDGSWYGCWG





VCFTYAGWFGIKGLVAAGRTYNNCVAIRKACHFLLSKELPGGGWGESYLSCQNKVYTNLEGNRP





HLVNTAWVLMALIEAGQGERDPAPLHRAARLLINSQLENGDFPQQEIMGVFNKNCMITYAAYRN





IFPIWALGEYSHRVLTE






Cucumis melo



(SEQ ID NO: 47)



MWRLKVGKESVGEKEEKWIKSISNHLGRQVWEFCSGENENDDDEAIAVANNSASKFENARNHFR






NNRFHRKQSSDLFLAIQCEKEIIRNGAKNEGTTKVKEGEDVKKEAVKNTLERALSFYSAVQTSD





GNWASDLGGPMFLLPGLVIALYVTGVLNSVLSKHHRQEMCRYIYNHQNEDGGWGLHIEGSSTMF





GNWASDLGGPMFLLPGLVIALYVTGVLNSVLSKHHRQEMCRYIYNHQNEDGGWGLHIEGSSTMF





NTCAKEDLYYPHPKMQDILWGSIYHVYEPLFSGWPGKRLREKAMKIAMEHIHYEDENSRYICLG





PVNKVLKMLCCWVEDPYSDAFKFHLQRIPDYLWLAEDGMRMQGYKGSQLWDTAFSIQAIISTKL





IDTFGPTLRKAHHFVKHSQIQEDCPGDPNVWFRHIHKGAWPFSTRDHGWLISDCTAEGLKASLM





LSKLPSKIVGEPLEKNRLCDAVNVLLSLQNENGGFASYELTRSYPWLELINPAETFGDIVIDYS





YVECTSATMEALALFKKLHPGHRTKEIDAAIAKAANFLENMQKTDGSWYGCWGVCFTYAGWFGI





KGLVAAGRTYNNCVAIRKACNFLLSKELPGGGWGESYLSCQNKVYTNLEGNKPHLVNTAWVMMA





LIEAGQGERDPAPLHRAARLLINSQLESGDFPQQEIMGVFNKNCMITYAAYRNIFPIWALGEYS





HRVLDM






Citrulluslanatus subsp. vulgaris



(SEQ ID NO: 48)



DGMWASDLGGPMFLLPGLVIALYVTGVLNSVLSKHHRQEMCRYLYNHQNEDGGWGLHIEGTSTM






PGSALNYVALRLLGEDADGGEGGAMTKARSWILDRGGATAITSWGKLWLSVLGVYEWSGKNPLP





PEFWLLPYCLPFHPGRMWCHCRMVYLPMSYLYGKRFVGPITPIVLSLRKELYTIPYHEIDWNRS





RNTCAKEDLYYPHPKMQDILWGSIYHLYEPLFTRWPGKRLREKALQMAMKHIHYEDENSRYICL





GPVNKVLNMLCCWVEDPYSDAFKFHLQR7PDYLWVAEDGMRMQGYNGSQLWDTAFSVQAIISTK





LIDSFGTTLKKAHDFVKDSQIQQDCPGDPNVWFRHIHKGAWPFSTRDHGWLISDCTAEGLKASL





MLSKLPSEIVGEPLEKSRLCDAVNVLLSLQNENGGFASYELTRSYPWLELINPAETFGDIVIDY





PYVECTSATMEALTLFKKLHPGRRTKEIDIAVARAANFLEMMQRTDGSWYGCWGVCFTYAGWFG





IKGLVAAGRTYNSCVAIRKACDFLLSKELPGGGWGESYLSCQNKVYTNLEGNRPHLVMTAWVLM





ALIEAGQAERDPAPLHRAARLLINSQLEKGDFPQEEIMGVFNKNCMITYAAYRNIFPIWALGEY





FHRVLTE






Theobromacacao



(SEQ ID NO: 49)



MWRLKIGKESVGDNGAWLRSSNDHVGRQVWEFCPESGTPEELSKVEMARQSFSTDRLLKKHSSD






LLMRIQYAKENQFVTNFPQVKLKEFEDVKEEATLTTLRRALNFYSTIQADDGHWPGDYGGPMFL





LPGLVITLSVTGRLNAVLSKEHQYEMCRYLYNHQNRDGGWGLHIEGPSTMFGTVLNYVTLRLLG





EGFEGGQGAVEKACEWILEHGSATAITSWGKMWLSVLGAYEWSGNNPLPPEVWLCPYFLPIHPG





RMWCHCRMVYLPMSYLYGKRFVGPIITPILSLRKELYAVPYHEVDWNKARNTCAKEDLYYPHPL





VQDILWASLHYLYEPIFTRWPGKSLREKALRTVMQHIEYEGENTRYICIGPVNKVLNMLSCSWE





DPYSESFKLHLPRILDYLWIAEDGMKMQGYNGSQLWDTAFAVQAIISTGLADEYGPILRKAHDF





IKYSQVLEDCPGDLNFWYRHISKGAWPFSTVDHGWPISDCTSEGLKAVLLLSTLPSESVGEPLH





MMRLYDAVMVILSLQNVDGGFPTYELTRSYQWLELIMPAETFGDIVIDYPYVECTSAAIQALIS





FKKLFPEHRMEEIENCIGRAVEFIEKIQAADGSWYGSWGVCFTYAGWFGIKGLSAAGRTYNNSS





NIRKACDFLLSKELATGGWGESYLSCQNKVYTNLEGARPHIVNTSWALLALIEAGQAERDPTPL





HRAARILINSQMEDGDFPQEEIMGVFNKNCMISYSAYRNIFPIWALGEYTCRVLRAP






Ziziphusjujube



(SEQ ID NO: 50)



MWKLKIGAETVGEGGSDGWLRSVNSHLGRQVWEFHPELGTPEELRQIQDARDAFFNHRFHKQHS






SDLLMRIQFAKENPCVANPPQVKVKDTDEVTEESVTTTLRRAINFYSTIQAHDGHWAGDYGGPM





FLLPGLVITLSVTGALNAVLSKEHQCEMCRYIYNRQNEDGGWGLHIEGPSTMFGTVLNYVSLRL





LGEGAEDGLGTIENARKWILDHGGATAITSWGKMWLSVLGVYEWSGNNPLPPEVWLCPYTLPFK





PGRMWCHCRMVYLPMSYLYGKRFVGPITPTIRSLRKELYTAPYHEIDWNRARNECAKEDLYYPH





PLVQDVLWASLHYVYEPIFMRWPAKKLREKALSTVMQHIHYEDENTRYICIGPVNKVLMMLCCW





VEDPMSEAFKLHLPRISDYLWIAEDGMKMQGYNGSQLWDTAFAVQAIVSTDLAEEYGPTIRKAH





EYIKNSQVLEDCPGDLNFWYRHISKGAWPFSTADHGWPISDCTAEGLKAVLLLSQLSSETVGDS





LDVKRLFNAVNVILSLQNGDGGFATYELTRSYQWLELINPAETFGDIVIDYPYVECTSAALEAL





TLFKKSYPGHRREEVENCITNAAMFIENIQAKDGSWYGSWGVCFTYAGWFGIKGLVASGRTYEN





CPSIRKACDFLLSKELPSGGWGESYLSCQNKVYTNLKDNKPHIVNTAWAMLALIVARQAERDPM





PLHRAARILIKSQMHDGDFPQEEIMGVFNKNCMISYAAYRNIFPIWALGEYRLHVLRSL






Prunusavium



(SEQ ID NO: 51)



MWKLKIGAETVGEGGYQWLKSVNNHLGRQVWEFNPELGSPEELQRIEDARKAFWDNRFERRHSS






DLLMRIQFEKENQCVTNLPQLKVKYEEEVTEEVVKTTLRRAISFYSTIQAHDGHWPGDYGGPME





LLPGLVITLSITGALNDVLSKEHQHEMCRYLYNHQNKDGGWGLHIEGPSTMFGTALNYVTLRLF





GEGADDCEGAMELARKWILDHGGVTKITSWGKMWLSVLCTYEWSGNNPLPPEVWLCPYSLPFHP





GRMWCHCRMVYLPMSYLYGKRFVGPITPTIRSLRKELYGVPYHEVDWNQARNLCAKEDLYYPHP





MVQDILWASLHYVYEPVFTRWPAKKLRENALQTVMQHIHYEDENTRYICIGPVNKVLNMLCCWA





EDPNSDAFKLHLPRIPDYLWVAEDGMKMQGYNGSQSWDTSFAVQAIISTNLAEEFCPTLRKAHE





YIKDSQVLEDCPGDLNFWYRHISKGAWPFSTADHGWPISDCTAEGLKAVLLLSKLPTGTVGESL





DMKQLYDAVNVMLSLQNEDGGFATYELTRSYQWLELINPAETFGDIVIDYPYVECTSAAIQALT





MFRKLYPGHRREEIESCIARAAKFIEKIQATDGSWYGSWGVCFTYAGWFGIKGLAAAGRTYKDC





SSIRKACDFLLSKELPSGGWGESYLSCQNKVYTNLKDNRPHIVHTAWAMLALIGAGQAKRDPTP





LHRAARVLINSQMENGDFPQ






Brassica napus



(SEQ ID NO: 52)



MWKLKIAEGGSPWLRTTNNH7GRQFWEFDPNLGTPEELAAVEEARKSFRENRFAKKHSSDLLMR






LQFSRESLSRPVLPQVNIKDSDDVTEKMVETTLKRGVDFYSTIQASDGHNAGDYGGPMFLLPGL





IITLSITGALNTVLSEQHKAEMRRYLHNHQNEDGGWGLHIEGPSTMFGSVLNYVTLRLLGEGPN





DGDGAMEKGRDWILRHGGATNITSWGKMWLSVLGAFEWSGMNPLPPEIWLLPYILPIHPGRMWC





HCBMVYLPMSYLYGKRFVGPITSTVLSLRKELFTVPYHEVDWNEARNLCAKEDLYYPHPLVQDI





LWASLHKIVEPVLTRWPGSNLREKALRTTLEHIHYEDENTRYICIGPVNKVLNMLCCWVEDPNS





EAFKLHLPRIHDYLWVAEDGIKMQGYNGSQLWDTSFAVQAVLATNFREEYGPVLKKAHSYVKNS





QVSEDCPGDLSYWYRHISKGAWPFSTADHGWPISDCTAEGLKAALLLSKVPKEIVGEPVDTKRL





YDAVNVIISLQNADGGFATYELTRSYPWLELINPAETFGDIVIDYPYVECTSAAIQALIAFRKL





YPGHRKKEVDECIEKAVKFIESIQESDGSWYGSWAVCFTYGTWEGVKGLEAAGKTLKNSPTVAK





ACEFLLSKQLPSGGWGESYLSCQDKVYSNLDGNRSHVVNTAWALLSLIGAGQVEVDQKPLHRAA





RYLINAQMESGDFPQQEIMGVFNRNCMITYAAYRNIFPIWALGEYRSKVLLQQGE






Spinacia oleracea



(SEQ ID NO: 53)



MQFAQENSSNVVLPQVKVKDEDEITEETVATTLRRALSYQSTIQAHDGHWPGDYGGPMFLMPGL






VIALSVTGALNAVLSKEHQKEMCRYLYNHQNKDGGWGLHIEGHSTMFGTVLTYVTLRLLGEGVD





DGDGAMERGRKWTLEHGSATATTSWGKMWLSVLGVFEWAGNNPMPPETWLLPYILPVHPGRMWC





HCRMVYLPMSYLYGKREVGPITPTVLSLRRELFDVPYHEIDWDRARNECAKEDLYYPHPLVQDI





LWASLHKAVEPILMRWPGKKLREKALSTVMEHIHYEDENTRYICIGPVNKVLNMLCCWVEDPNS





EAFKLHLPRIPDFLWVAEDGMKMQGYNGSQLWDTTEMVQAILATNLGEEYGGTLRKAHNFIKDS





QVREDCPGDLSYWYRHISKGAWPFSTADHGWPISDCTAEGLKAALLLSKVPSDIVGEPLEVKRL





YDSVNVLLSLQNGDGGFATYELTRSYPWLELINPAETFGDIVIDYPYVECTSAAIQALVSFKRL





YPGHRREEIENCIKKAAKFIEDIQAADGSWYGSWAVCFTYATWFGIKGLVAAGKNYDNCPAIRK





ACDFLLSKQLSNGGWGESYLSCQNKVYSNIEGNKAHVVNTGWAMLALIGAGQAKRDPMPLHRAA





KVLINSQMPNGDFPQQEIMGVFNRNCMITYAAYRNIFPTWALGEYRTQVLQK






Trigonella foenum-graecum



(SEQ ID NO: 54)



MWKLKIAEGGSPWLRTTNNHVGRQIWEFDPNLGTPEQIREVEEARENFWKNRFEQKHSSDLLMR






IQLAKENPMGEVIPKVRVKDVEDVNEESVTTTLRRALNFYSTLQSRDGHWPGDYGGPMFLMPGL





VIALSITGALNAVLTDEHQKEMRRYLYNHQNKDGGWGLHIEGPSTMFGSVLCYVTLRLLGEGPN





DGEGEMEKARDWILEHGGATYITSWGKMWLSVLGVFEWSGNNPLPPEIWLLPYMLPIHPGRMWC





HCRMVYLPMSYLYGKRFVGPITPTVLSLRRELFDVPYHEIDWDRARNECAKEDLYYPHPLVQDI





LWASLHKFVEPIFMNWPGKKLREKAVETVMEHVHYEDENTRYICIGPVNKVLNMLCCWVEDPNS





EAFKLHLPRIPDFLWIAEDGMKMQGYNGSQLWDTTEMVQAILATNLGEEYGGTLRKAHNFIKDS





QVLEDCPGDLSKWYRHISKGAWPFSTADHGWPISDCTAEGLKAVLLLSKIGPEIVGEPLDAKGE





YDAVNVIISLQNEDGGLATYELTRSYKWLEIINPAETFGDIVIDYTYVECTSAAIQALSTFRKL





YPGHRREEIQHCIEKAAAFIEKIQASDGSWYGSWGVCFTYGTWFGVKGLIAAGKSFSNCLSIRK





ACDFLLSKQLPSGCWGESYLSCQNKVYSNLESNRSHVVNTGWAMLALIEAEQAKRDPTPLHHAA





VCLINSQMENGDFPQEEIMGVFNKNCMITYAAYRNIFPIWALGEYRRHVLQA






Ricinus communis



(SEQ ID NO: 55)



MWKLRIAEGSGNPWLRTTNDHIGRQVWEFDSSKIGSPEELSQIENARQNFTKNRFIHKHSSDLL






MRIQFSKENPICEVLPQVKVKESEQVTEEKVKITLRRALNYYSSIQADDGHWPGDYGGPMELMP





GLIIALSITGALNAILSEEHKREMCRYLYNHQNRDGGWGLHIEGPSTMFGSVLCYVSLRLLGEG





PNEGEGAVERGRNWILKHGGATAITSWGKMWLSVLGAYEWSGNNPLPPEMWLLPYILPVHPGRM





NCHCRMVYLPMSYLYGKRFVGPITPTVLSLRKELYTVPYHEIDWNQARNQCAKEDLYYPHPMLQ





DVLWATLHKFVEPILMHWPGKRLREKAIQTAIEHIHYEDENTRYICIGPVNKVLNMLCCWVEDP





NSEAFKLHLPRLYDYLWLAEDGMKMQGYNGSQLWDTAFAVQAIVSTNLIEEYGPTLKKAHSFTK





KMQVLENCPGDLNFWYRHISKGAWPFSTADHGWPISDCTAEGIKALMLLSKIPSEIVGEGLNAN





RLYDAVNVVLSLQNGDGGFPTYELSRSYSWLEFINPAETFGDIVIDYPYVECTSAAIQALTSFR





KSYPEHQREEIECCIKKAAKFMEKIQISDGSWYGSWGVCFTYGTWFGIKGLVAAGKSFGNCSSI





RKACDFLLSKQCPSGGWGESYLSCQKKVYSNLEGDRSHVVNTAWAMLSLIDAGQAERDPTPLHR





AARYLINAQMENGDFPQQEIMGVFNRNCMITYAAYRDIFPIWALGEYRCRVLKAS






Pisum sativum cycloartenol synthase (PsCAS_mut)



(SEQ ID NO: 191)



MAWKLKVAEGGTPWLRTLNNHVGRQVWEFDPHSGSPQDLDDIETARRNFHDNRFTHKHSDDLLM






RLQFAKENPMNEVLPKVKVKDVEDVTEEAVATTLRRGLNFYSTIQSHDGHWPGDLGGPMFLMPG





LVITLSVTGALNAVLTDEHRKEMRRYLYNHQNKDGGWGLHIEGPSTMFGSVLCYVTLRLLGEGP





NDGEGDMERGRDWILEHGGATYITSWGKMWLSVLGVFEWSGNNPMPPEIWLLPYALPVHPGRMW





CHCRMVYLPMSYLYGKRFVGPITPTVLSLRKELPTVPYHDIDWNQARNLCAKEDLYYPHPLVQD





ILWATLHKFVEPVFMNWPGKKLREKAIKTAIEHIHYEDENTRYICIGPVNKVLNMLCCWVEDPN





SEAFKLHLPRIYDYLWVAEDGMKMQGYNGSQLWDTAFAAQALISTNLIDEFGPTLKKAHAFIKN





SQVSEDCPGDLSKWYRHISKGAWPFSTADHGWPISDCTAEGLKAVLLLSKIAPEIVGEPLDSKR





LYDAVNVILSLQNENGGLATYELTRSYTWLEIINPAETFGDIVIDCPYVECTSAAIQALATFGK





LYPGHRREEIQCCIEKAVAFIEKIQASDGSWYGSWGVCFTYGTWFGIKGLIAAGKNFSNCLSIR





KACEFLLSKQLPSGGWAESYLSCQNKVYSNLEGNRSHVVNTGWAMLALIEAEQAKRDPTPLHRA





AVCLINSQLENGDFPQEEIMGVFNKNCMITYAAYRCIFPIWALGEYRRVLQAC






Cucurbitapepo subsp. pepo cycloartenol synthase (CpCAS mut)



(SEQ ID NO: 192)



MAWQLKIGADTVPSDPSNAGGWLSTLNNHVGRQVWHFHPELGSPEDLQQIQQARQHFSDHRFEK






KHSADLLMRMQFAKENSSFVNLPQVKVKDKEDVTEEAVTRTLRRAINFYSTIQADDGHWPGDLG





GPMFLIPGLVITLSITGALNAVLSTEHQREICRYLYNHQNKDGGWGLHIEGPSTMFGSVLNYVT





LRLLGEEAEDGQGAVDKARKWILDHGGAAAITSWGKMWLSVLGVYEWAGNNPLPPELWLLPYLL





PCHPGRMWCHCRMVYLPMCYLYGKRFVGPITPIIRSLRKELYLVPYHEVDWNKARNQCAKEDLY





YPHPLVQDILWATLHHVYEPLFMHWPAKRLREKALQSVMQHIHYEDENTRYICIGPVNKVLNML





CCWAEDPHSEAFKLHIPRIYDYLWIAEDGMKMQGYNGSQLWDTAFAVQAIISTELAEEYETTLR





KAHKYIKDSQVLEDCPGDLQSWYRHISKGAWPFSTADHGWPISDCTAEGLKAVLLLSKLPSEIV





GKSIDEQQLYNAVNVILSLQNTDGGFATYELTRSYRWLELMNPAETFGDIVIDYPYVECSSAAI





QALAAFKKLYPGHRRDEIDNCIAEAADFIESIQATDGSWYGSWGVCFTYGGWFGIRGLVAAGRR





YNNCSSLRKACDFLLSKELAAGGWGESYLSCQNKVYTNIKDDRPHIVNTGWAMLSLIDAGQSER





DPTPLHRAARVLINSQMEDGDFPQEEIMGVFNKNCMISYSAYRNIFPTWALGEYRSRVLKPLK






Zosteramarina cycloartenol synthase (ZmCAS mut)



(SEQ ID NO: 193)



MAWKLKVAEGRDARLRTINGHVGROIWEFDPDLGTDNERAEVEAVREKFRNNRFEKKHSSDLLM






RLQLAKENPVSSYLTQVKLEENEDITEEAVTMTLRRALNFHSSIQSFDGHWAGDLGGPMFLMPG





LVISLYITGVLNTVLSSEHQREMCRYLYNHQNEDGGWGLHIEGPSTVFGSTLTYITLRLLGENV





EDGDGAMEKGRKWILDHGGATYITSWGKMWLSVLGVFDWSGNNPLPPEMWLLPYFLPVHPGRMW





CHCRMVYLPMSYLYGKRFVGKITPLVLSLRNEIYTVSYNQIDWNKARNLCAKEDLYYPHPMVQD





LLWATLHKEVEPLLMHWPGTLLREKALNTTMQHLHYEDESTRYICIGPVNKVLNMLCCWVDDPD





SEAFKLHLPRISDYLWIAEDGMKCQGYNGSQLWDTAFAVQAYIATNLSDEFGPVLTKAHEYIKN





SQVPDDCSGDLSFWYRHISKGAWPFSTGDHGWPISDCTAEGLKASLLLSRISPEVVGKPLNAKR





FYDAVNVILSLMNSDGSFATYELTRSYTWLEMINPAETFGDIVIDYPYVECTSAAIQSLVAFTK





LYPGHRREEIDECITKAAKFIESIQKKDGSWYGSWAVCFTYGLWFGIKGLIAAGKTYKNSSAIR





KACEFLLSKQLASGGWGESYLSCQDKVYTNLEGNRAHAVNTGWAMLSLIDAGQAERDPSPLHRA





ARVLINSQMGNGDFPQEEIMGVFNRNCMISYSAYRNIFPIWALGEYRCKVLASKGHE






Artemisiaannua (AaCASmut)



(SEQ ID NO: 219)



MAWKLKIAEGGDPWLRTTNDHIGRQIWEFDPTLGSVEELAEIEKLRKTFRDNRFEKKHSADLLM






RSQFAKENSVSVFPPKVNIKDVEDITEDKVTNVLRRAIGFHSTLQADDGHWPGDLGGPMFLLPG





LVITLSITGALNAVLSKEHKREMCRYLYNHQNIDGGWGLHIEGHSTMFGSALNYVTLRLLGEGA





NDGEGAMEKGRKWILDHGGATAITSWGKFWLSVLGVFEWPGNNPLPPEMWLLPYFLPVHPGRMW





CHCRMVYLPMSYLYGKRFVGPITSTVLALRKELFTVPYHDIDWNEARNLCAKEDLYYPHPLIQD





VLWATLDKFVEPVLMSWPGKKLREKALRTAMEHIHYEDENTRYICIGPVNKVLNMLCCWVEDPN





SEAFKLHLPRIQDYLWIAEDGMKMQGYNGSQLWDAAFTVQAIMSTNLIEEFGPTLKKGHIFIKK





SQVLDNCYGDLDYWYRHISKGAWPFSTADHGWPISDCTAEGLKAALLLSKLPSEIVDEPLDAKR





FYDAVNVILSLMNADGSFATYELTRSYSWLELINPAETFGDIVIDYPYVECTSAAIQALVAFKR





LYPGHRRDEVQGCIDKAAAFLEKIQEADGSWYGSWAVCFTYGTWFGVKGLVAAGKNYSNCSSIR





KACNFLLSKQLASGGWGESYLSCVDKVYTNLEGNRSHVVNTGWAMLALIDAEQAKRDPTPLHRA





ARVL.INSQMENGEFPQQEIMGVFNRNCMITYAAYRNIFPIWALGEYRCRVLKVET






Citrulluscolocynthis (CcCDS2)



(SEQ ID NO: 220)



MAWRLKVGAESVGEKEEKWLKSISNHLGRQVWEFCAHQPTASPNHLQQIDNARNHFRNNRFHRK






QSSDLELAIQNEKEIANVTKGGGIKVKEEEDVRKETVKNTVERALSFYSAIQTNDGNWASDLGG





PMFLLPGLVIALYVTGVLNSVLSKHHRQEMCRYLYNHQNEDGGWGLHIEGTSTMFGSALNYVAL





RLLGEDADGGEGGAMTKARSWILDRGGATAITSWGKLWLSVLGVYEWSGNNPLPPEFWLLPYCL





PFHPGRMWCHCRMVYLPMSYLYGKRFVGPITPIVLSLRKELYTIPYHEIDWNRSRNTCAKEDLY





YPHPKMQDILWGSIYHLYEPLETRWPGKRLREKALQMAMKHIHYBDENSRYICLGPVNKVLNML





CCWVEDPYSDAFKFHLQRVPDYLWVAEDGMRMQGYNGSQLWDTAFSVQAIISTKLIDSFGTTLK





KAHDFVKDSQIQQDCPGDPNVWFRHIHKGAWPFSTRDHGWLISDCTAEGLKASLMLSKLPSKIV





GEPLEKSRLCDAVNVLLSLQNENGGFASYELTRSYPWLELINPAETFGDIVIDYPYVECTSATM





EALTLFKKLHPGHRTKEIDIAVARAANFLENMQRTDGSwYGCWGVCFTYAGWEG1KGLVAAGRT





YNSCVAIRKACDFLLSKELPGGGWGESYLSCQNKVYTNLEGNRPHLVNTAWVLMALIEAGQAER





DPAPLHRAARLLINSQLENGDFPQEEIMGVFNKNCMITYAAYRNIFPIWALGEYFHRVLTE





Epoxide Hydrolase



Siraitiagrosvenorii EPH1 (SgEPH1)



(SEQ ID NO: 56)



MEKIEHSTIATNGINMHVASAGSGPAVLFLHGFPELWYSWRHQLLYLSSLGYRAIAPDLRGFGD






TDAPPSPSSYTAHHIVGDLVGLLDQLGVDQVFLVGDWGAMMAWYFCLFRPDRVKALVNLSVHFT





PRNPAISPLDGFRLMLGDDFYVCKFQEPGVAEADFGSVDTATMFKKFLTMRDPRPPIIPNGFRS





LATPEALPSWLTEEDIDYFAAKFAKTGFTGGFNYYRAIDLTWELTAPWSGSEIKVPTKFIVGDL





DLVYHFPGVKEYIHGGGFKKDVPFLEEVVVMEGAAHFINQEKADEINSLIYDFIKQF






Siraitiagrosvenorii EPH2 (SqEPH2)



(SEQ ID NO: 57)



MEKIEHTTISTNGINMHVASIGSGPAVLFLHGFPELWYSWRHQLLELSSMGYRAIAPDLRGFGD






TDAPPSPSSYTAHHIVGDLVGLLDQLGIDQVFLVGHDWGAMMAWYFCLFRPDRVKALVNLSVHE





LRRHPSIKFVDGFRALLGDDFYFCQFQEPGVAEADFGSVDVATMLKKFLTMRDPRPPMIPKEKG





FRALETPDPLPAWLTEEDIDYFAGKFRKTCFTGGFNYYRAFNLTWELTAPWSGSEIKVAAKFIV





GDLDLVYHFPGAKEYIHGGGFKKDVPLLEEVVVVDGAAHFINQERPAEISSLIYDFIKKE






Siraitiagrosvenorii EPH3 (SgEPH3)



(SEQ ID NO: 58)



MDQIEHITINTNGIKMHIASVGTGPVVLLLHGFPELWYSWRHQLLYLSSVGYRAIAPDLRGYGD






TDSPASPTSYTALHIVGDLVGALDELGIEKVFLVGHDWGAIIAWYFCLFRPDRIKALVNLSVQE





IPRNPAIPFIEGFRTAFGDDFYMCRFQVPGEAEEDFASIDTAQLFKTSLCNRSSAPPCLPKEIG





FRAIPPPENLPSWLTEEDINYYAAKFKQTGFTGALNYYRAFDLTWELTAPWTGAQIQVPVKFIV





GDSDLTYHFPGAKBYIHNGGFKKDVPLLEEVVVVKDACHFINQERPQEINAHIHDFINKE






Momordicacharantia



(SEQ ID NO: 59)



MEKIEHSTIAANGITIHVASVGSGPAVLLLHGFPELWYSWRHQLLFLASKGYRAIAPDLRGFGD






SDAPPSPSSYTPLHIVGDLVALLDHLGIDLVFLVGHDWGAMMAWHFCLLRPDRVKALVNLSVHE





MPRNPAMSPLDGMRLLLGDDFYVCRFQEPGAAEADFGSVDTATMMKKFLTMRDPRPPIIPNGFR





SLETPQALPPWLTEEDIDYFAAKFAKTGFTGGFNYYRAIGRTWELTAPWTGSKIKVPAKFIVGD





LDMVYHLPDAKEYIHGGGFKEDVPLLEEVVVIEGAAHFINQEKPDEISSLIYDFIKKF






Cucurbitamoschata



(SEQ ID NO: 60)



MEKIEHSTIATNGINMHVASIGSGPPVLFLHGFPELWYSWRHQLLFLASKGFRAIAPDLRGFGD






SDVPPSPSSYTPFHIIGDLIGLLDHLGIEQVFLVGHDWGAMMAWYFCLFRPDRVKALVNLSVHY





NPRNPAISPLSRTRQFLGDDFYICKFQTPGVAEADFGSVDTATMMKKFLTIRDPSPPIIPNGFK





TLKTPETLPSWLTEEDIDYFASKFTKTGFTGGFNYYRAIEQTWELTGPWSGAKIKVPTKYVVGD





VDMVYHLPGAKQYIHGGGFKKDVPLLEEVVVMEGAAHFINQEKADEISAHIYDFIIKF






Cucurbita maxima



(SEQ ID NO: 61)



MENIEHTIVPTNGINMHIASIGSGPAVLFLHGFPELWYSWRHQLLFLASNGFRAIAPDLRGFGD






TDVPPSPSSYTAHHIVGDLIGLLDHLGIDRVFLVGHDWGAMMAWYFCLFRPDRVRALVNLSVHY





LHRHPSIKFVDGFRAFLGDDFYFCQFQEPGVAEADFGSVDTATMLKKELTMRDPRPPMIPKEKG





FRALETPDPLPSWLTEEDVDYFASKFSKTGFTGGFNYYRAFDLSWELTAPWSGSQVKVPAKFIV





GDLDLVYHFPGAKEYIHGGREKEDVPFLEEVVVIEGAAHFINQERADEISSLIYEEINKE






Prunus persica



(SEQ ID NO: 62)



MEKIEHTTVSTNGINMHIASIGTGPVVLFLHGFPELWYSWRHQLLSLSSLGYRCIAPDLRGFGD






TDAPPSPASYSALHIVGDLIGLLDHLGIDQVFLVGHDWGAVIAWWFCLFRPDRVKALVNMSVAF





SPRNPKRKPVDGFRALFGDDYYICRFQEPCEIEKEFAGYDTTSIMKKFLTGRSPKPPCLPKELC





LRAWKTPETLPPWLSEEDLNYFASKFSKTGFVGGLNYYRALNLTWELTGPWTGLQVKVPVKFIV





GDLDITYHIPGVKNYIHNGGFKRDVPFLQEVVVIEDGAHFINQERPDEISRHVYDFIQKF






Morus notabilis



(SEQ ID NO: 63)



MEKIEHSTVHTNGINMHVASVGTGPAILFLHGFPELWYSWRHQMISLSSLGYRCIAPDLRGYGD






TDAPPSPTSYTSLHIVGDLVGLIDHLVIEKLFLVGHDWGAMIAWYFCLFRPDRIKALVNLSVPE





FPRNPKINFVDGFRAELGDDFYICRFQEPGESEADFSSDTVAVFRRILANRDPKPPLIPKEIGF





RGVYEDPVALPSWLTEDDINHFANKFNETGFTGGLNYYRALNLTWELTAAWTGARVQVPTKFIM





GDLDLVYYFPGMKEYILNGGFKRDVPLLQELVIIEGAAHFINQEKPDEISSHIHHFIQKF






Ricinus communis



(SEQ ID NO: 64)



MEKIEHTTVATNGINMHVAAIGTGPEILFLHGFPELWYSWRHQLLSLSSRGYRCIAPDLRGYGD






TDAPESLTGYTALHIVGDLIGLLDSMGIEQVFLVGHDWGAMMAWYLCMFRPDRIKALVNTSVAY





MSRNPQLKSLELFRTVYGDDYYVCRFQEPGGAEEDFAQVDTAKLIRSVFTSRDPNPPIVPKEIG





FRSLPDPPSLPSWLSEEDVNYYADKFNKKCFTGGLNYYRNIDQNWELTAPWDGLQIKVPVKFVI





GDLDLTYHFPGIKDYIHNGGFKQVVPLLQEVVVMEGVAHFINQEKPEEISEHIYDFIKKE






Citrus unshiu



(SEQ ID NO: 65)



MEKIEHTTVGTNGINMHVASIGTGPVVLFIHGFPELWYSWRNQLLYLSSRGYRAIAPDLRGYGD






TDAPPSVTSYTALHLVGDLIGLLDKLGIHQVFLVGHDWGALIAWYFCLFRPDRVKALVNMSVPF





PPRNPAVRPLNNFRAVYGDDYYICRFQEPGEIEEEFAQIDTARLMKKFLCLRIAKPLCIPKDTG





LSTVPDPSALPSWLSEEDVNYYASKFNQKGFTGPVNYYRCSDLNWELMAPWTGVQLEVPVKFIV





GDQDLVYNNKGMKEYIHNGGFKKYVPYLQEVVVMEGVAHFINQEKAEEVGAHIYEFIKKF






Hevea brasiliensis



(SEQ ID NO: 66)



MEKIEHITVFTNGINMHIASIGTGPEILFLHGFPELWYSWRHQLLSLSSLGYRCIAPDLRGYGD






TDAPQSVNQYTVLHIVGDLVGLLDSLGIQQVFLVGHDWGAFIAWYFCIFRPDRIKALVNTSVAF





MPRNPQVKPLDGLRSMFGDDYYICQFQKPGKAEEDFAQVNTAKLIKLLFTSRDPRPPHFLKEVG





LKALQDPPSQQSWLTEEDVNFYAAKFNQKGFRGGLNYYQNINMNWELAAAWTGVQIKVPVKFII





GDLDLTYHFPGIKEYIHNGGFKKDVPLLQDVWMEGVAHFLNQEKPEEVSKHIYDFIKKF






Handroanthus impetiginosus



(SEQ ID NO: 67)



MDKIQHKIIQTNGINIHVAEIGDGPAVLFLHGFPELWYSWRHQMLFLSSRGYRAIAPDLRGYGD






SDAPPCATSYTAEHLLGDLVGLLDAMGLDRVFLVGHDWGAVMAWYPOLLKPDRLKALVNLSVVF





QPRNPKRKPVESMRAKLGDDYYICRFQEPGEAEEEFARVDTARLIKKLLTTRNPAPPRLPKEVG





FGCLPHKPITMPSWLSEEDVQYYAAKENQKGETGGLNYYRAMDLSWELAAPWTGVQIKVPVKFI





VGDLDITYNTPGVKEYIHKGRFKQHVPFLQELVILEGVAHFLNQEKPDEINQHIYDFIHKF





Camelina sativa


(SEQ ID NO: 68)



MEKIEHTTVSTNGINMHVASIGSGPVILFLHGFPDLWYSWRHQLLSFAALGYRAIAPDLRGYGD






SDAPPSPESYTILHIVGDLVGLLDSLGVDRVFLVGHDWGAIVAWWLCMIRPDRVKALVNTSVVE





NPRNPSVKPVDKFRDLFGDDYYVCRFQETGEIEEDFAQVDTKKLITRFFVSRNPRPPCIPKSVG





FRGLPDPPSLPAWLTEQDVSFYGDKFSQKGFTGGLNYYRAMNLSWELTAPWAGLQIKVPVKFIV





GDLDITYNIPGTKEYIHGGGLKKHVPFLQEVWMEGVGHFLQQEKPDEVTDHIYGFFEKFRTRE





TSSL






Coffea canephora



(SEQ ID NO: 69)



MDKIQHRQVPVNGINLHVAEIGDGPAILFLHGFPELWYSWRHQLLSLSAKGYRALAPDLRGYGD






SDAPPSPSNYTALHIVGDLVGLLDSLGLDRVFLVGHDWGAVMAWYFCLLRPDRIKALVNMSVVF





TPRNPKRKPLEAMRARFGDDYYICRFQEPGEAEEEFARVDTARIIKKFLTSRRPGPLCVPKEVG





FGGSPHNPIQLPSWLSEDDVNYFASKFSQKGFTGGLNYYRAMDLNWELTAPWTGLQIKVPVKFI





VGDLDVTFTTPGVKEYIQKGGFKRDVPFLQELVVMEGVAHFVNQEKPEEVSAHIYDFIQKF






Punica granatum



(SEQ ID NO: 70)



MEKIQHTTVRTNGINMHVATAGSGPDSILEVHGFPELWYTWRHQMVSLAALGYRTIAPDLRGYG






DTDAPPSHESYTAFHIVGDLVGLLDSMGIEKVFLVGHDWGAAIAWYFCLFRPDRIKALVNMSVV





FHPRNPNRKPVDGLRAILGDDYYICRFQAPGEIEEDFARADTANIIKFFLVSRNPRPPQIPKEG





FSCLANSRQMDLPSWLSEEDINYYASKFSEKCFTGGLNYYRVMNLNWELTAPFTCLQIKVPAKE





MVGDLDITYNTPGTKEFIHNGGLKKHVPFLQEVVVMEGVAHFINQEKPEEVTAHIYDFIKKE






Arabidopsislyrata subsp. lyrata



(SEQ ID NO: 71)



MEKIEHTTVSTNGINMHVASIGSGPVILFLHGFPDLWYSWRHQLLSFAALGYRAIAPDLRGYGD






SDAPPSRESYTILHIVGDLVGLLNSLGVDRVFLVGHDWGAIVAWWLCMIRPDRVNALVNTSVVF





NPRNPSVKPVDAFRALFGDDYYICRFQEPGEIEEDFAQVDTKKLITRFFISRNPRPPCIPKSVG





FRGLPDPPSLPAWLTEEDVSFYGDKFSQKGFTGGLNYYRALNLSWELTAPWAGLQIKVPVKFIV





GDLDITYNIPGTKEYIHEGGLKKHVPFLQEVVVLEGVGHFLHQEKPDEITDHIYGFFKKFRTRE





TASL






Rhinolophus sinicus



(SEQ ID NO: 72)



MDKIEHTTVSTNGINMHVASIGSGPVILFLHGFPDLWYSWRHQLLSFAGLGYRAIAPDLRGYGD






SDSPPSHESYTILHIVGDLVGLLDSLGVDRVFLVGHDWGAVVAWWLCMIRPDRVNALVNTSVVF





NPRNPSVKPVDAFKALFGEDYYVCRFQEPGEIEEDFAQVDTKKLINRFFTSRNPRPPCIPKTLG





FRGLPDPPALPAWLTEQDVSFYADKFSQKGFTGGLNYYRAMNLSWELTAPWAGLQIKVPVKFIV





GDLDITYNIPGTKEYIHEGGLKKHVPFLQEVVVMEGVGHFLHQEKPDEVTDHIYGFFKKE






Gossypiumraimondii (GrEPH)



(SEQ ID NO: 184)



MAEKIEHTTVTTNGIKMHVASIGSGPIILFLHGFPELWYTWRHQLLSLSSLGYRCVAPDLRGYG






DSDAPPSPESYTVFHIVGDLVGLLDALGVDKVFLVGHDWGAMIAWNFCLFRPDRIKALVNLSIP





YHPRNPKVKTVDGYRALFGDDFYICRFQVPGEAEAHFAQMDTAKVMKKFLTTRDPNPPCIPRET





GLKALPDPPALPSWLSEDEINYFATKFSQKGFTGGLNYYRAMNLNWELMAPWTGLQIQVPVKFI





VGDLDITYHIPGVKEYLQNGGFKKNVPFLQELVVMEGVAHFINQEKPQEISMHIYDFIKKF






Gossypiumhirsutum (GhEPH)



(SEQ ID NO: 185)



MAEKIEHTTVTTNGIKMHVASIGSGPIILFLHGFPELWYTWRRQLLSLSSLGYRCVAPDLRGYG






DSDAPPSPESYTVFHVVGDLVGLLDALGVDKVFLVGHDWGAMIAWNFCLFRPDRIKALVNLSVP





YHPRNPKVKTVDGYRALFGDDFYICRFQVPGEAEAHFAQMDTAKVLKKFLTTRDPNPPCIPKET





GLKALPDPPALPSWLSEDEINYFATKFNQKGFTGGLNYYRAMNLNWELMAPWTGLQIQVPVKFI





VGDLDITYHIPGVKEYLQNGGFKKNVPFLQELVVMEGVAHFINQEKPQEISMHIYDFVKKE






Siraitiagrosnevorii (SgEPH4)



(SEQ ID NO: 186)



MAENIEHTTVQTNGIKMHVAAIGTGPPVLLLHGFPELWYSWRHQLLYLSSAGYRAIAPDLRGYG






DTDAPPSPSSYTALHIVGDLVGLLDVLGIEKVFLIGHDWGAIIAWYFCLERPDRIKALVNLSVQ





FFPRNPTTPFVKGFRAVLGDQFYMVRFQEPGKAEEEFASVDIREFFKNVLSNRDPQAPYLPNEV





KFEGVPPPALAPWLTPEDIDVYADKFAETGFTGGLNYYRAFDRTWELTAPWTGARIGVPVKFIV





GDLDLTYHFPGAQKYIHGEGFKKAVPGLEEVVVMEDTSHFINQERPHEINSHIHDFFSKFC






Cucumismelo (CmEPH1)



(SEQ ID NO: 187)



MADKIQHSTISTNGINIHFASIGSGPVVLFLHGFPELWYSWRHQLLFLASKGFRAIAPDLRGFG






DSDAPPSPSSYTPHHTVGDLTGLLDHLGIDQVFLVGHDWGAMMAWYFCLFRPDRVKALVNTSVH





YTPRNPAGSPLAVTRRYLGDDFYICKFOEPGVAEADFGSVDTATMMKKFLTMRDPRPAIIPNGE





KTLLETPEILPSWLTEEDIEYFASKFSKTGETGGFNYYRALDITWELTGPWSRAQIKVPTKEIV





GDLDLVYNFPGAKEYIHGGGFKKDVPLLEDVVVIEGAAHFINQEKPDEISSLIYDFITKE






Cucumismelo (CmEPH2)



(SEQ ID NO: 188)



MAEKIEHTTIPTNGINMHVASIGSGPAVLFLHGFPQLWYSWRHQLLFLASKGFRALAPDLRGFG






DTDAPPSPSSYTFLHIIGDLIGLLDHLGLEKVFLVGHDWGAMIAWYFCLFRPDRVKALVNLSVY





YIKRHPSISFVDGFRAVAGDNFYICQFQEAGVAEADFGRVDTATMMKKFMGMRDPEAPLIFTKE





KGFSSMETPDPLPCWLTEEDIDFFATKFSKTGFTGGFNYYRALNLSWELTAAWNGSKIEVPVKE





IVGDLDLVYHFPGAKQYIHGGEFKKDVPFLBEVVVIKDAAHFIHQEKPHQINSLIYHFINKFST





STSPA






Tremaorientals (ToEPH)



(SEQ ID NO: 189)



MAEKIEHTTINTNGVNLHVASIGTGPAVLFLHGFPELWYSWRHQMLALSSLGYRAIAPDLRGYG






DSDAPPSPESYSSLHIVGDLVGLIDQLGIDQIFLVGHDWGAVIAWQFCLFRFDRVKALVNMSVP





FRPRHPTRKPIETFRALFGDDYYVCRFQAPGEVEEDFASDDTANLLKKFYGGRNPRPPCVPKEI





GFKGLKAPELPSWLSEEDLNYFAEKFNQRGFTGGLNYYRALDLTWELTAAWTGVQVKVPTKEIV





GDLDITYHIPGAKEYINEGGLKKDVPYLQEVVVMEGVAHFVNQEKAEEVSAHIHDFIKKF






Arachishypogaea (AhEPH)



(SEQ ID NO: 190)



MAEKTEHTWVNTNGIKMHVASIGSGPAVLFLHGFPELWYSWRHQLLSLSAQCYRCIAPDLRGYG






DTDAPPSPSSYSALHIVSDLVGLLDALRIDQVFLVGHDWGAAMAWYFCLFRPDRIKALVNMSVV





FRPRNPKWKPLQSLRAMLGDDYYICRFQKPGEAEEEFARAGTSRIIKTFLVSRDPRPPCVPKEI





GFGGSPNLQLALPSWLTEEDVNYYASKFDQKGFTGGLNYYRAIDLTWELTAPWTGVQIKVPVKE





IVGDLDVTYNTPGVKEYIHGGGFKKEVPFLQELVVMEGVAHFINQERPDEISAHIHDFIKKF






Mycobacteriumtuberculosis (MtEPH)



(SEQ ID NO: 212)



MASQVHRILNCRGTRIHAVADSPPDQQGPLVVLLHGFPESWYSWRHQIPALAGAGYRVVAIDQR






GYGRSSKYRVQKAYRIKELVGDVVGVLDSYGAEQAFVVGHDWGAPVAWTFAWLHPDRCAGVVGI





SVPFAGRGVIGLPGSPFGERRPSDYHLELAGPGRVWYQDYFAVQDGIITEIEEDLRGWLLGLTY





TVSGEGMMAATKAAVDAGVDLESMDPIDVIRAGPLCMAEGARLKDAFVYPETMPAWFTEADLDF





YTGEFERSGFGGPLSFYHNIDNDWHDLADQQGKPLTPPALFIGGQYDVGTIWGAQAIERAHEVM





PNYRGTHMIADVGHWIQQEAPEETNRLLLDFLGGLRP





Cytochrome P450



Siraitiagrosvenorii CYP87D18



(SEQ ID NO: 73)



MWTVVLGLATLFVAYYIHWINKWRDSKFNGVLPPGTMGLPLIGETIQLSRPSDSLDVHPFIQKK






VERYGPIFKTCLAGRPVVVSADAEFNNYIMLQEGRAVEMWYLDTLSKFFGLDTEWLKALGLIHK





YIRSITLNHFGAEALRERFLPFIEASSMEALHSWSTQPSVEVKNASALMVFRTSVNKMFGEDAK





KLSGNIPGKFTKLLGGFLSLPLNFPGTTYHKCLKDMKEIQKKLREVVDDRLANVGPDVEDFLGQ





AFKDKESEKFISEEFIIQLLFSISFASFESISTTLTLILKLLDEHPEVVKELEVEHEAIRKARA





DPDGPITWEEYKSMTFTLQVINETLRLGSVTPALLRKTVKDLQvKGKIIPEGWTIMLVTASRHR





DPKVYKDPHIFNPWRWKDLDSITIQKNFMPFGGGLRHCAGAEYSKVYLCTFLHILCTKYRWTKL





GGGTIARABIL SFE DGLHVKFTPKE






Cucumis melo



(SEQ ID NO: 74)



MWTILLGLATLAIAYYIHWVNKWKDSKENGVLPPGTMGLPLIGETIQLSRPSDSLDVHPFIQSK






VKRYGPIFKTCLAGRPVVVSTDAEFNHYIMLQEGRAVEMWYLDTLSKFFGLDTEWLKALGLIHK





YIRSITLNHFGAESLRERFLPRIEESARETLHYWSTQPSVEVKESAAAMVFRTSIVKMFSEDSS





KLLTAGLTKKFTGLLCGFLTLPLNVPGTTYHKCIKDMKEIQKKLKDILEERLAKCVSIDEDFLC





QAIKDKESQQFISEEFIIQLLFSISFASFESISTTLTLILNFLADHPDVAKELEAEHEAIRKAR





ADPDGPITWEEYKSMNFTLNVICETLRLGSVTPALLRKTTKEIQIKGYTIPEGWTVMLVTASRH





RDPEVYKDPDTFNPWRWKELDSITIQRNFMPFGGGLRHCAGAEYSKVYLCTFLHILETKYRWRK





LKGGKIARAHILRFEDGLYVNFTPKE






Cucurbita maxima



(SEQ ID NO: 75)



MWTIVVGLATLAVAYYIHWINKWKDSKFNGVLPPGTMGLPLIGETLQLSRPSDSLDVHPFIKKK






VKRYGSIFKTCLAGRPVVVSTDAEFNNYIMLQEGRAVEMWYLDTLSKFFGLDTEWLKALGFIHK





YIRSITLNHFGAESLRERFLPRIEESAKETLCYWATQPSVEVKDSAAVMVFRTSMVKMVSKDSS





KLLTGGLTKKFTGLLGGFLTLPINVPGTTYNKCMKDMKEIQKKLREILEGRLASGAGSDEDFLG





QAVKDKGSQKFISDDFIIQLLFSISFASFESISTTLTLLLNYLADHPDVVKELEAEHEAIRNAR





ADPDGPITWEEYKSMTFTLHVIFETLRLGSVTPALLRKTTKELQINGYTIPEGNTVMLVTASRE





RDPAVYKDPHTFNPWRWKELDSITIQKNFMPFGGGLRHCAGAEYSKVYLCTFLHILFTKYRWTK





LKGGKVARAHILSFEDGLHMKFTPRE






Cucumis sativus



(SEQ ID NO: 76)



MWTILLGLATLAIAYYIHWVNKWKDSKFNGVLPPGTMGLPLIGETIQLSRPSDSLDVHPFIQRK






VKRYGPIFECTCLAGRPWVSTDAEFNHYIMLQEGRAVEMWYLDTLSKFFGLDTEWLKALGLIHK





YIRSITLNHFGAESLRERFLPRIEESARETLHYWSTQTSVEVKESAAAMVFRTSIVKMFSEDSS





KLLTEGLTKKFTGLLGGFLTLPLNLPGTTYHKCIKEMKQIQKKLKDILEERLAKGVKIDEDFLG





QAIKDKESQQFISEEFIIQLLFSISFASFESISTTLTLIINFLADHPDVVKELEAEHEAIRKAR





ADPDGPITWEEYKSMNFTLNVICETLRLGSVTPALLRKTTKEIQIKGYTIPEGWTVMLVTASRH





RDPEVYKDPDTFNPWRWKELDSITIQKNFMPFGGGLRHGAGAEYSKVYLCTFLHILFTKYRWRK





LKGGKIARAHILRFEDGLYVNFTPKE






Cucurbita moschata



(SEQ ID NO: 77)



MWAIVVGLATLAVAYYIHWINKWRDSRFNGVLPPGTMGLPLVGETLQLARPSDSLDVHPFIRRR






VKRYGSIFKTCLAGRPVVVSTDAEFNNYIMLQEGRAVEMWYLDTLSKFFGLDTEWLKALGFIHK





YIRSITLNHFGAESLRERFLPRIEESAKETLRYWATQPSVEVKDSAAVMVFRTSMVKMVSEDSS





KLLTGGLTKKFTGLLGGFLTLPINVPGTTYNKCMKDMKEIQKKLREILEGRLASGAGSDEDFLG





QAIKDKGSQQFISDDFIIQLLFSISFASFESISTTLTLVLNYLADHPDVVKELEAEHEAIRNAR





ADPDGPITWEEYKSMTETLHVIFETLRLGSVTPALLRKTTKELQINGYTIPEGWTVMLVTASRH





RDPAVYKDPHTFNPWRWKELDSITIQKNFMPFGGGLRHCAGAEYSKVYLCTFLHILETKYRWTK





LKGGRVARAHILSFEDGLHVRFTPRE






Prunus avium



(SEQ ID NO: 78)



MWTLVGLSLVALLVIYFTHWIIKWRNPKCNGVLPPGSMGLPLIGETLNLIIPSYSLDLHPFIKR






RLQRYGPIFRTSLAGRPVVVTADPEFNNYIFQQEGRMVELWYLDIFSKIFVHEGDSKTNAIGMV





HKYVRSIFLNEFGAERLKEKLLPQIEEFVNKSLCAWSSKASVEVKHAGSVMVFNFSAKQMISYD





AEKSSDDLSEKYTKIIDGLMSFPLNIPGTAYYNCSKHQKNVTTMLRDMLKERRISPETRRGDFL





DQLSIDMEKEKFLSEDFSVQLVFGGLFATFESISAVIALAFSLLADHPSVVEELTAEHEAILKN





RENPNSSITWDEYKSMTFTLQVINEILRLGNVAPGLLRRALKDIPVKGFTIPEGWTIMVVTSAL





QLSPNTFEDPLEFNPWRWKDLDSYAVSRNFMPFGGGMRQCAGAEYSRVFLATFLHVLVTRYRWT





TIKAARIARNPILGFGDGIHIKFEEKRT






Populus trichocarpa



(SEQ ID NO: 79)



MWAIGLVVVAIVVIYYTHMIFKWRSPKIEGVLPPGSMGWPLIGETLQEISPGKSLDLHPEVKKR






MEKYGPIFKTSLVGRPIIVSTDYEMNKYILQHEGTLVELWYLDSFAKFFALEGETRVNAIGTVH





KYLRSITLNHFGVESLKESLLPKIEDMLHTNLAKWASQGPVDVKQVISVMVFNFTANKIFGYDA





ENSKEKLSENYTKILNSFISLPLNIPGTSFHKCMQDREKMLKMLKDTLMERLNDPSKRRGDFLD





QAIDDMKTEKFLTEDFIPQLMFGILFASFESMSTTLTLTFKFLTENPRVVEELRAEHEAIVKKR





ENPNSRLTWEEYRSMTFTQMVVNETLRISNIPPGLFRKALKDFQVKGYTVPAGWTVMLVTPATQ





LNPDTFKDPVTFNPWRWQELDQVTISKNFMPFGGGTRQCAGAEYSKLVLSTFLHILVTNYSFTK





IRGGDVSRTPIISFGDGIHIKFTARA






Primus persica



(SEQ ID NO: 80)



MWTLVGLSLVGLLVIYFTHWIIKWRNPKCNGVLPPGSMGLPFIGETLNLIIPSYSLDLHPFTKK






RLQRYGPIFRTSLAGRQVVVTADPEFNNYLFQQEGRMVELWYLDTFSKIFVHEGESKTNAVGMV





HKYVRSIFLNHFGAERLKEKLLPQIEEFVNKSLCAWSSKASVEVKHAGSVMVFNFSAKQMISYD





AEKSSDDLSEKYTKIIDGLMSFPLNIPGTAYYNCLKHQKNVTTMLRDMLKERQISPETRRGDFL





DQISIDMEKEKFLSEDFSVQLVFGGLFATFESISAVLALAFSLLAEHPSVVEELTAEHEAILKN





RENLNSSLTWDEYKSMTFTLQVINEILRLGNVAPGLLRRALKDIPVKGFTIPEGWTIMVVTSAL





QLSPNTFEDPLEFNPWRWKDLDSYAVSKNFMPFGGGMRQCAGAEYSRVFLATFLHVLVTKYRWT





TIKAARIARNPILGFGDGIHIKFEEKKT






Populus euphratica



(SEQ ID NO: 81)



MWTFVLCVVAVLVVYYIHWINKWRNPTCNGVLPPGSMGLPLLGETLELLLPSYSLDLHPFLKKR






IQRYGPIFRTNILGRPAVVSADPEINSYIFQNEGKLVEMWYMDTFSKLFAQSGESRTNAFGIIE





KYARSLTLTHFGSESLKERLLPQVENIVSKSLQMWSSDASVDVKPAVSIMVCDFTAKQLFGYDA





ENSSDKISEKFTKVIDAFMSLPLNIPGTTYHKCLKDKDSTLSILRNTLKERMNSPAESRGGDFL





DQIIADMDKEKFLTEDFTVNLIFGILFASFESISAALTLSLKLIGDHPSVLEELTVEHEAILKN





RENPDSPLTWAEYNSMTFSLQVINETLRLGNVAPGLLRRALQDMQVKGYTIPAGWVIMVVNSAL





HLNPATFKDPLEFNPWRWKDFDSYAVSKNLMPFGGGRRQCAGSEFTKLFMAIFLHKLVTKYRWN





IIKQGNIGRNPILGEGDGIHISFSPKDI






Juglans regia



(SEQ ID NO: 82)



MWKVGLCVVGVIVVWFTRWINKWRNPKCNGILPPGSMGPPLIGESLQLIIPSYSLDLHPFIKKR






VQRYGPIFRTSVVGQPMVVSTDVEFNHYLAKQEGRLVHFWYLDSFAEIFNLEDENAISAVGLIH





KYGRSIVLNHFGTDSLKKTLLSQIEEIVNKTLQTWSSLPSVEVKHAASVMAFDLTAKQCFGYDV





ENSAVKMSEKFLYTLDSLISFPFNIPGTVYHKCLKDKKEVLNMLRNIVKERMNSPEKYRGDFLD





OTTADMNKESFLTQDFIVYLLYGLLFASFESISASLSLTLKTLARHPAVLQQLTAFHEAILKNR





DNPNSSLTWDEYKSMTETFQVINEALRLGNVAPGLLRRALKDIEFKGYTIPAGWTIMLANSAIQ





LNPNTYEDPLAFNPWRWQDLDPQIVSKNFMPFGGGIRQCAGAEYSKTFLATFLHVLVTKYRWTK





VKGGKMARNPILWFADGIHINFALKHN






Pyrus x bretschneideri



(SEQ ID NO: 83)



MWDVVGLSFVALLVIYLTYWITQWKNPKCNGVLPPGSMGLPLIGETLNLLIPSYSLDLHPFIRK






RLERYGPIFRTSLAGKPVLVSADPEFNNYVLKQEGRMVEEWYLDTFSKIFMQEGGNGTNQIGVI





HKYARSIFLNEFGAECIKEKLLTQIEGSINKHLRAWSNQESVEVKKAGSIMALNFCAEHMIGYD





AETATENLGEIYHRVFQGLISFPLNVPGTAYHNCLKIHKKATTMLRAMLRERRSSPEKRRGDFL





DQIIDDLDQEKFLSEDFCIHLIFGGLFAIFESISTVLTLFFSLLADHPAVLQELTAEHEALLKN





REDPNSALTWDEYKSMTFTLQVINETLRLVNTAPGLLRRALKDIPVKGYTIPAGWTILLVTPAL





HLTSNTFKDHLEFNPWRWKDLDSLVISKNFMPFGSGLRQCAGAEFSRAYLSTFLHVLVTKYRWT





TIKGARISRRPMLTFGDGAHIKFSEKKN






Morus notabilis



(SEQ ID NO: 84)



MWNTICLSVVGLVVIWISNWIRRWRNPKCNGVLPPGSMGEPLIGETLPLIIPTYSLDLHPFIKN






RLQRYGSIFRTSIVGRPVVISADPEFNNFLFQQEGSLVELYYLDTFSKIFVHEGVSRTNEFGVV





HKYIRSIFLNHFGAERLKEKLLPEIEQMVNKTLSAWSTQASVEVKHAASVLVLDFSAKQIISYD





AKKSSESLSETYTRIIQGFMSFPLNIPGTAYNQCVKDQKKIIAMLRDMLKERRASPETNRGDFL





DQISKDMDKEKFLSEDFVVQLIFGGLFATFESVSAVLALGFMLLSEHPSVLEEMIAEHETILKN





REHPNSLLAWGEYKSMTFTLQVINETLRLGNVAPGLLRKALKDIRVKGFTIPKGWAIMMVTSAL





QLSPSTFKNPLEFNPWRWKDLDSLVISKNFMPFGRGMRQCAGAEYSRAFMATFFHVLLTKYRWT





TIKVGNVSRNPILRFGNGIHIKFSKKN






Jatropha curcas (JcP450.1)



(SEQ ID NO: 85)



MWIIGLCFASLLVIYCTHFFYKWRNPKCKGVLPPGSMGLPIIGETLQLIIPSYSLDHHPFIQKR






IQRYGPIFRTNLVGRPVIVSADPEVNQYIFQQEGNSVEMWYLDAYAKIFQLDGESRLSAVGRVH





KYIRSITLNNFGIENLKENLLPQIQDLVNQSLQKWSNKASVDVKQAASVMVFNLTAKQMFSYGV





EKNSSEEMTEKFTGIFNSLMSLPLNIPGTTYHKCLKDREAMLKMLRDTLKQRLSSPDTHRGDFL





DQAIDDMDTEKFLTGDCIPQLIFGILLAGFETTATTLTLAFKFLAEHPLVLEELTAEHEKILSK





RENLESPLTWDEYKSMTFTHHVINETLRLANFLPGLLRKALKDIQVKNYTIPAGWTIMVVKSAM





QLNPEIYKDPLAFNPWRWKDLDSYTVSKNFMPFGGGSRQCAGADYSKLFMTIFLHVLVTKYRWR





KIKGGDIARNPILGFGDGLHIEVSAKN






Hevea brasiliensis



(SEQ ID NO: 86)



MLTVVLLLVGFFIIYYTYWISKWRNPNCNGVLPPGSMGFPLIGETLQLLIPSYSLDLHPFIKKR






IHRYGPIFRSNLAGRPVIVSADPEFNYYILSQEGRSVEIWYLDTFSKLFRQQGESRTNVAGYVH





KYLRGAFLSQIGSENLREKLLLHIQDMVNRTLCSWSNQESVEVKHSASLAVCDFTAKVLFGYDA





EKSPDNLSETFTRFVEGLISFPLNIPRTAYRQCLQDRQKALSILKNVLTDRRNSVENYRGDVLD





LLLNDMGKEKFLTEDFICLIMLGGLFASFESISTITTLLLKLFSAHPEVVQELEAEHEKILVSR





HGSDSLSITWDEYKSMTFTHQVINETLRLGNVAPGLLRRAIKDVQFKGYTIPSGWTIMMVTSAQ





QVNPEVYKDPLVFNPWRWKDFDSITVSKNFTPFGGGTRQCVGAEYSRLTLSLFIHLLVTKYRWT





KIKEGEIRRAPMLGFGDGIHFKFSEKE






Jatropha curcas (JcP450.2)



(SEQ ID NO: 87)



MKRAIYICLARITKQGLSLIEMLMTELLFGAFFIIFLTYWINRWRNPKCNGVLPPGSMGLPLLC






ETLQLLIPRYSLDLHPFIRKRIQRYGPIFRSNVAGRPIVETADPELNHYIFIQERRLVELWYMD





TFSNLFVLDGESRPTGATGYIHKYMRGLFLTHFGAERLKDKLLHQIQELIHTTLQSWCKQPTIE





VKHAASAVICDFSAKFLFGYEAEKSPFNMSERFAKFAESLVSFPLNIPGTAYHQSLEDREKVMK





LLKNVLRERRNSTKKSEEDVLKQILDDMEKENFITDDFIIQILFGALFAISESIPMTIALLVKF





LSAQPSVVEELTAEHEEILKNKKEKGLDSSITWEDYKSMTFTLQVINETLRIANVAPGLLRRTL





RDIHYKGYTIPAGWTIMVLTSSRHMNPEIYKDPVEFNPWRWKDLDSQTISKNFTPFGGGTRQCA





GAEYSRAFISMFLHVLVTKYRWKNVKEGKICRGPILRIEDGIHIKLYEKH






Chenopodium quinoa



(SEQ ID NO: 88)



MWPTMGLYVATIVAICFILLELKRRNSREKQVVLPPGSKGFPLIGETLQLLVPSYSLDLPSFTR






TRIQRYGPIFKTRLVGRPVVMSADPGFNRYIVQQEGKSVEMWYLDTFSKLFAQDGEARTTAAGL





VHKYLRNLTLSHFGSESLRVNLLPHLESLVRNTLLGWSSKDTIDVKESALTMTIEFVAKQLFGY





DSDKSKEKIGEKFGNISQGLFSLPLNIPGTTYHSCLKSQREVMDMMRTALKDRLTTPESYRGDF





LDHALKDLSTEKFLSEEFILQIMFGLLFASSESTSMTLTLVLKLLSENPHVLKELEAEHERIIK





NKESPDSPLTWAEVKSMTFTLQVINESLRLGNVSLGILRRTLKDIEINGYTIPAGWTIMLVTSA





CQYNSDIYKDPLTFNPWRWKEMQPDVIAKNFMPFGGGTRQCAGAEFAKVLMTIFLHNLVTNYRW





EKIKGGEIVRTPILGFRNALRVKLTKKN






Spinacia oleracea



(SEQ ID NO: 89)



MVLLPGSKGFPFIGETLQLLLPSYSLDLPSEIRTRIQRYGPIEQTRLVGRPVVVSADPGFNRYI






VQQEGKMVEMWYLDTFSKIFAQQGEGRTNAAGLVHKYLRNITFTHFGSQTLRDKLLPHLEILVR





KTLHGWTSQESIDVKEAALTMTIEFVAKQLFGYDSDKSKERIGDKFANISQGLLSFPLNIPGTT





YHSCLKSQREVMDMMRKTLKERLASPDTCQGDFLDHALKDLNTDKFLTEDFILQIMFGLLFASS





ESTSITLTLILKFLSENPHVLEELEVEHERILKNRESPDSPLTWAEVKSMTFTLQVINESLRLG





NVSLGLLRRTLKDIEINGYTIPAGWTIMLVTSACQYNSDVYKDPLTFNPWRWKEMQPDVIAKNE





MPFGGGTRQCAGAEFAKVLMTIFLHVLVTTYRWEKIKGGEIIRTPILGFRNGLHVKLIKKARLS






Manihot esculenta



(SEQ ID NO: 90)



MEMWSVWLYIISLIIIIATHWTYRWRNPKCNGKLPPGSMGIPPIGETIQFLIPSKSLDVPNFIK






KRMNKYGPLFRTNLVGRPVIVSSDPDFNYYLLQREGKLVERWYMDSFSKLLHHDVTQIIIKHGS





IHKYLRNLVLGHFGPEPLKDKLLPQLESAISQRLQDWSKQPSIEAKSASSAMIFDFTAKILFSY





EPEKSGENIGEIFSNFLQGLMSIPLNIPGTAFHRCLKNQKRAIQMITEILKERRSNPEIHKGDF





LDQIVEDMKKDSFWTEEFATYMMFGLLLASFETISSTLALAIIFLTDNPPVVQKLTEEHEAILK





ARENRDSGLSWKEYKSLSYTHQVVNESLRLASVAPGILRRAITDIQVDGYTIPKGWTIMVVPAA





VQLNPNTFEDPLVFNPSRWEDMGAVAMAKNFIAFGGGSRSCAGAEFSRVLMSVFVHVFVTNYRW





TKIKGGDMVRSPALGFGNGFHIRVSEKQL






Olea europaea var. sylvestris



(SEQ ID NO: 91)



MAALDLSTVGYLIVGLLTVYITHWIYKWRNPKCNGVLPPGSMGLPLIGETIQLVIPNASLDLPP






FIKKRMKRYGPIFRTNVAGRPVIITADPEFNHFLLRQDGKLVDTWSMDTFAEVFDQASQSSRKY





TRHLTLNHFGVEALREKLLPQMEDMVRTTLSNWSSQESVEVKSASVTMAIDYAARQIYSGNLEN





APLKISDLFRDLVDGLMSFPINIPGTAHHRCLQTHKKVREMMKDIVKTRLEEPERQYGDMLDHM





IEDMKKESFLDEDFIVQLMFGLFFVTSDSISTTLALAFKLLAEHPLVLEELTAEHEAILKKREK





SESHLTWNDYKSMTETLQVINEVLRLGNIAPGFFRRALQDIPVNGYTIPSGWVIMIATAGLHLN





SNQFEDPLKFNPWRWKVCKVSSVIAKCFMPFGSGMKQCAGAEYSRVLLATFTHVLTTKYRWAIV





KGGKIVRSPIIRFPDGFHYKIIEKTN






Cucurbitapepo subsp. pepo



(SEQ ID NO: 171)



MWAIVVGLATLAVAYYIHWINKWKDSKFNGVLPPGTMGLPLVGETLQLARPSDSLDVHPFIKKK






VKRYGPIFKTCLAGRPVVVSTDAEFNNYIMLQEGRAVEMWYLDTLSKFFGLDTEWLKALGFIHK





YIRSITLNHFGAESLRERFLPRIEESAKETLRYWATQFSVEVKDSAAVMVFRTSMVKMvSEDSS





KLLTGGLTKKFTGLLGGFLTLPINVPGTTYNKCMKDMKEIQKKLREILEGRLASGGGSDEDFLG





QAIKDKGSQQFISDDFIIQLLFSISFASFESISTTLTLVLNYLADHPDVVKELEAEHEAIRNAR





ADPDGPITWEEYKSMTFTLHVIFETLRLGSVTPALLRKTTKELQINGYTIPEGWTVMLVTASRH





RDPAVYKDPHTFNPWRWKELDSITIQKNFMPFGGGLRHCAGAEYSKVYLCTFLHILFTKYRWTK





LKGGKVARAHILSFEDGLHVKFTPKE






Capsellarubella CYP705A38



(SEQ ID NO: 172)



MATLMTIDLQNCFIFTILSLLCYYLLFKKQKGSRAGCVLPPSPPSLPIIGHLHLLLSNLTHKSL






QNISTKFGSFLYLRVVNLPIVLVSSPSVAYEIYKTHDVNVSSRVATSLGDSLFLGSSGFITAPY





GDYWKFMKKMVATKLLRPQAIEQSRGGRAEELQMFYENLLDKAMKKESIEVSKEAMKLTNNIIC





RMSMGRSCSDENGEAERVRELLVKSTALTKKIFFANMFPRIPLFKKEIMGVSSEFDDLLERLLV





EHEERVEEHENKDMMDLLLEAYRDENAEYKISRKQIKSLFVEIFLGGTDTSAQTVQWILAELIN





KPNILERIREEIDSVVGKSRLMKETDLPNLPYLQATVKEGLRMHPPSPLLVRTFQESCEVKGFY





MPEKTMLVINVYALMRDPDTWEDPNEFKPERFLLSSRSRQEDEKEQGMMKYLPFGAGRRGCPGS





NLAYLFVGIAVGVMVQCFDWKIKEDKVNMEETTAGMNLAMAHPFKCTPVVRNDPLTLNLENPSS






Brassicarapa CYP705A37v2



(SEQ ID NO: 173)



MIVDFQNCSIEILLCEETELCYSVEEEFKKTNDLGPSPPSLPIIGHLHHELSGLPHKAFQKIST






KYGPLLHLHIFSFPIVLVSSPTMAHEIFTTHDLNISSRNTPAIDESLLFGPSGFTVAPYGDYVK





FIKKLLATKLLRPRAIEKSRGVRAEELKQFYLKVQDKALKKESIEIGKETMKFTNNMICRMSIG





RSFSEENGEVETLRELIIKSFALSKQILFVNVLRRPLEMLGLMSLFKKDIMDVSRGFDELLERV





LAEHEEKREEDQDMDMMDLLLEACRDENAEYKITRNQIKSLFVEIFLGGTDTSAHTTQWTMAEL





VNNPNILGRLRDEIDLVVGKERLIQETDLPNLPYLQAVVKEGLRLHPPAPLLVRMFDKKCVIKD





FFKVPEKTTLVVNVYGVMRDPDSWEDPNEFKPERFLTSKQEEDKVLKYLPFAAGRRGCPATNVG





YIFVGTSIGMMVQCFDWSIKEKVSMEEVYAGMSLSMAHPPTCTPVSRLSL






Siraitia qrosvenorii



(SEQ ID NO: 174)



MDFFSAFLLLLLTVLILLQIRTRRRNLPPSPPSLPIIGHLHLLKRPIHRNFHKIAAEYGPIFSL






RFGSRLAVIVSSLDIAEECFTKNDLIFANRPRLLISKHLGYNCTTMATSPYGDHWRNLRRLAAI





EIFSTARLNSSLSIRKDEIQRLLLKLHSGSSGEFTKVELKTMFSELAFNALMRIVAGKRYYGDE





VSDEEEAREFRGLMEEISLHGGASHWVDFMPLLKWIGGGGFEKSLVRLKRTDKEMQALIEERR





NKKVLERKNSLLDRLLELQASEPEYYTDQIIKGLVLVLLRAGTDTSAVTLNWAMAQLLNNPELL





AKAKAELDTKIGQDRPVDEPDLPNLSYLQAIVSETLRLHPAAPMLLSHYSSADCTVAGYDIPRG





IlLLVNAWALHRDPKLWDDPTSFRPERELGAANELQSKKLLAEGLGRRSCPGDTMALREVGLAL





GLLIQCYQWKKCGDEKVDMGEGGGITIHKAKPLEAMCKARPAMYKLLLNALDKI






Camelina sativa



(SEQ ID NO: 175)



MATMMIFDFQNCFIFIILCFVSLLCYTILFKKQESSRTGCVLPPSPPSLPIIGHLHLLLSSLTH






KSLHNISSKFGPFLYLRVVNLPIVLVSSASVAYEIYKTQDVNVSSRVATSLGDSLFLGSSGFIT





APYGDYWKFMKKMVATKLLRPQAIEQSRGGRAEELQGLYENLLDKRMKKESIEISKEAMKFTNN





IICRMSMGRSCSDENGEAEIVRELLVKSTALTKKIFFANMFPRIPLFKKEIMGVSNQFDELLER





LLVEHEERVEEHENKDMMDLLLEAFRDEHAEYKISRKQIKSLFVEIFLGGTDTSAQTVQWIMAE





LINKPSIIEKIREBIDSVVGKTRLIKETDLPKLPYLQVVVKEGLRMHPPSPLVVRTFQESCEVK





GFYMPEKTMLVINVYALMRDPESWEDPNEFKPERFLPSSKSRQDEEKEQGLKYLPFGAGRRGCP





GSNLAYLFVGLAVGVMVQCFDWKIKEDKVNMEETTAGMNLAMAHPFKCTPVVRIDPLTFNLKSP





SP






Raphanus sativus



(SEQ ID NO: 176)



MAPMTIDFQTCFIFILLSFFSFFCYFFFFKKTNDLGPSPPSLPIIGHLHHFLSVLPHKAFQQIS






TKYGPLLHLRIFSFPIVLVSSATMAYEIFTTHDLNISSRNAPAIDESLVFGSSGFIVSPYGDYV





KFIKKLLATKLLRPRAIEKSRGVRAEELKQFYLKLHDKALKKESIEIGNETMKFTNNMICGMSM





GRSCSEENGETETVRGLINKSFALSRKILFVNVLRRPLEKLGLLSLFKKDILDVSNRFDELLER





ILLEHEEKPEEEQDMDMMDLLLEASRDENAEYKITRNQIKALFVEIFMGGTDTSAHTTQWTMAE





LVNNPNSLEKLRDEIDMVVGKSRLIQETDLPNLPYLQAVVKEGLRLHPPAPLLVRMFEKKCVIK





DFFNVPEKTTLVVNLYGVMRDPDSWEDPNEFKPERFLTSKQEEEKTLKYLPFAAGRRGCPATNV





AYIFVGISIGMMVQCFDWSIKDKVSMEEVYAGMSLSMAHPPKFTPVSRLSL






Cucumis sativus (CsCYP87D20)



(SEQ ID NO: 194)



MAWTILLGLATLAIAYYIHWVNKWKDSKFNGVLPPGTMGLPLIGETIQLSRPSDSLDVHPFIQR






KVKRYGPIFKTCLAGRPVVVSTDAEFNHYIMLQEGRAVEMWYLDTLSKFFGLDTEWLKALGLIE





KYIRSITLNHFGAESLRERFLPRIEESARETLHYWSTQTSVEVKESAAAMVFRTSIVKMFSEDS





SKLLTEGLTKKFTGLLGGFLTLPLNLPGTTYHKCIKDMRQIQKKLKDILEERLAKGVKIDEDFL





GQAIKDKESQQFISEEFIIQLLFSISFASFESISTTLTLLLNFLADHPDVVKELEAEHEAIRKA





RADPDGPITWEEYKSMNFTLNVICETLRLGSVTPALLRKTTKEIQIKGYTIPEGWTVMLVTASR





HRDPEVYKDPDTFNPWRWKELDSITIQKNFMPFGGGLRHCAGAEYSKVYLCTFLHILFTKYRWR





KLKGGKIALIAHILRFEDGLYVNFTPKE






Cucumis sativus (sohB_CsCYP87D20)



(SEQ ID NO: 195)



MALLSEYGLFLAKIVTVVLAIAAIAAIIHWVNKWKDSKFNGVLPPGTMGLPLIGETIQLSRPSD






SLDVHPFIQRKVKRYGPIFKTCLAGRPVVVSTDAEFNHYIMLQEGRAVEMWYLDTLSKFFGLDT





EWLKALGLIHKYIRSITLNHFGAESLRERFLPRIEESARETLHYWSTQTSVEVKESAAAMVFRT





SIVKMFSEDSSKLLTEGLTKKFTGLLGGFLTLPLNLPGTTYHKCIKDMKQIQKKLKDILEERLA





KGVKIDEDFLGQAIKDKESQQFISEEFIIQLLFSISFASFESISTTLTLILNFLADHPDVVKEL





EAEHEAIRKARADPDGPITWEEYKSMNFTLNVICETLRLGSVTPALLRKTTKEIQIKGYTIPEG





NTVMLVTASRHRDPEVYKDPDTFNPWRWKELDSITIQKNFMPFGGGLRHCAGAEYSKVYLCTFL





HILFTKYRWRKLKGGKIARAHILRFEDGLYVNFTPKE






Cucumissativus (zipA_CsCYP87D20)



(SEQ ID NO: 196)



MAQDLRLILIIVGAIAIIALLVHGFHWVNKWKDSKFNGVLPPGTMGLPLIGETIQLSRPSDSLD






VHPFIQRKVKRYGPIFKTCLAGRPVVVSTDAEFNHYIMLQEGRAVEMWYLDTLSKFFGLDTEWI





KALGLIHKYIRSITLNHFGAESLRERFLPRIEESARETLHYWSTQTSVEVKESAAAMVFRTSIV





KMFSEDSSKLLTEGLTKKFTGLLGGFLTLPLMLPGTTYHKCIKDMKQIQKKLKDILEERLAKGV





KIDEDFLGQAIKDKESQQFISEEFTIQLLFSISFASFESISTTLTLILNFLADHPDVVKELEAE





HEAIRKARADPDGPITWEEYKSMNFTLNVICETLRLGSVTPALLRKTTKEIQIKGYTIPEGWTV





MLVTASRHRDPEVYKDPDTENPWRWKELDSITIOKNFMPFGGGLRHCAGAEYSKVYLCTFLHIL





FTKYRWRKLKGGKIARAHILRFEDGLYVNETPKE






Cucumis sativus (CsCYP87D20_mut)



(SEQ ID NO: 197)



MAWTILLGLATLAIAYYIHWVNKWKDSKFNGVLPPGTMGLPLIGETIQFSRPSDSLDVHPFIQR






KVKRYGPIFKTCIAGRPVVVSTDAEFNHYIMLQEGRAVEMWYLDTFSKFLGLDTEWLKALGLIE





KYIRSITLNHFGAESLRERFLPRIEESARETLHYWSTQTSVEVKESAAAMVFRTSIVKMFSEDS





SKLLTEGLTKKFTGLLGGFLTLPLNLPGTTYHKCIKDMKQIQKKLKDILEERLAKGVKIDEDFL





GQAIKDKESQQFISBEFIIQLLFSISFASFASISTTLTLILNFLADHPDVVKELEAEHEAIRKA





RADPDGPITWEEYKSMNFTLNVICETLRLGSVTPALLRKTTKEIQIKGYTIPEGWTVMLVTASR





HRDPEVYKDPDTFNPWRWKELDSITIQKNFMPFGGGLRHCAGAEYSKVYLCTFLHILFTKYRWR





KLKGGKIARALILREEDGLYVNETPKE






Cucumissativus (sohB_CsCYP87D20_mut)



(SEQ ID NO: 198)



MALLSEYGLFLAKIVTVVLAIAAIAAIIHWVNKWKDSKFNGVLPPCTMGLPLIGETIQFSRPSD






SLDVHPFIQRKVKRYGPIFKTCIAGRPVVVSTDAEFNHYIMLQEGRAVEMWYLDTFSKFLGLDT





EWLKALGLIHKYIRSITLNHFGAESLRERFLPRIEESARETLHYWSTQTSVEVKESAAAMVFRT





SIVKMFSEDSSKLLTEGLTKKFTGLLGGFLTLPLNLPGTTYHKCIKDMKQIQKKLKDILEERLA





KGVKIDEDFLGQAIKDKESQQFISEEFIIQLLFSISFASFASISTTLTLILNFLADHPDVVKEL





EAEHEAIRKARADPDGPITWEEYKSMNFTLNVICETLRLGSVTPALLRKTTKEIQIKGYTIPEG





WTVMLVTASRHRDPEVYKDPDTFNPWRWKELDSITIQKNFMPFGGGLRHCAGAEYSKVYLCTFL





HILFTKYRWRKLKGGKIARALILRFEDGLYVNFTPKE






Cucurbitapepo subsp. pepo (sohB_CppCYP)



(SEQ ID NO: 199)



MALLSEYGLFLAKIVTVVLAIAAIAAIIHWINKWKDSKFNGVLPPGTMGLPLVGETLQLARPSD






SLDVHPFIKKKVKRYGPIFKTCLAGRPVVVSTDAEFNNYIMLQEGRAVEMWYLDTLSKFFGLDT





EWLKALGFIHKYIRSITLNHFGAESLRERFLPRIEESAKETLRYWATQPSVEVKDSAAVMVFRT





SMVKMVSEDSSKLLTGGLTKKFTGLLGGFLTLPINVPGTTYNKCMKDMKEIQKKLREILEGRLA





SGGGSDEDFLGQAIKDKGSQQFISDDFIIQLLFSISFASFESISTTLTLVLNYLADHPDVVKEL





EAEHEAIRNARADPDGPITWEEYKSMTFTLHVIFETLRLGSVTPALLRKTTKEIQINGYTIPEG





WTVMLVTASRHRDPAVYKDPHTENPWRWKELDSITIQKNEMPFGGGLRHCAGAEYSKVILCTEL





HILFTKYRWTKLKGGKVARAHILSFEDGLHVKFTPKE






Cucurbitapepo subsp. pepo (17alpha_CppCYP)



(SEQ ID NO: 200)



MALLLAVFHWINKWKDSKFNGVLPPGTMGLPLVGETLQLARPSDSLDVHPFIKKKVKRYGPIFK






TCLAGRPVVVSTDAEFNNYIMLQEGRAVEMWYLDTLSKFFGLDTEWLKALGFIHKYIRSITLNE





FGAESLRERFLPRIEESAKETLRYWATQPSVEVKDSAAVMVFRTSMVKMVSEDSSKLLTGGLTK





KPTGLLGGFLTLPINVPGTTYNKCMKDMKEIQKKLRBILEGRLASGGGSDEDELGQAIKDKGSQ





QFISDDFIIQLLFSISFASFESISTTLTLVLNYLADHPDVVKELEAEHEAIRNARADPDGPITW





EEYKSMTFTLHVIFETLRLGSVTPALLRKTTKELQINGYTIPEGWTVMLVTASRHRDPAVYKDP





HTFNPWRWKELDSITIQKNFMPFGGGLRHCAGAEYSKVYLCTFLHILFTKYRWTKLKGGKVARA





HILSFEDGLHVKPTPKE






Siraitiagrosvenorii (CYP1798)



(SEQ ID NO: 221)



MEMSSSVAATISIWMVVVCIVGVGWRVVNWVWLRPKKLEKRLREQGLAGNSYRLLFGDLKERAA






MEEQANSKPINFSHDIGPRVFPSMYKTIQNYGKNSYMWLGPYPRVHIMDPQQLKTVFTLVYDIQ





KPNLNPLIKFLLDGIVTHEGEKWAKHRKIINPAFHLEKLKDMIPAFFHSCNEIVNEWERLISKE





GSCELDVMPYLQNLAADAISRTAFGSSYEEGKMIFQLLKELTDLVVKVAFGVYIPGWRFLPTKS





NNKMKEINRKIKSLLLGIINKRQKAMEEGEAGQSDLLGILMESNSNEIQGEGNNKEDGMSIEDV





IEECKVFYIGGQETTARLLIWTMILLSSHTEWQERARTEVLKVFGNKKPDFDGLSRLKVVTMIL





NEVLRLYPPASMLTRIIQKETRVGKLTLPAGVILIMPIILIHRDHDLWGEDANEFKPERFSKGV





SKAAKVQPAFFPFGWGPRICMGQNFAMIEAKMALSLILQRFSFELSSSYVHAPTVVFTTQPQHG





AHIVLRKL





Cytochrome P450 Reductase



Steviarebaudiana (SrCPR1)



(SEQ ID NO: 92)



MAQSDSVKVSPFDLVSAAMNGKAMEKLNASESEDPTTLPALKMLVENRELLTLFTTSFAVLIGC






LVFLMWRRSSSKKLVQDPVPQVIVVKKKEKESEVDDGKKKVSIFYGTQTGTAEGFAKALVEEAK





VRYEKTSFKVIDLDDYAADDDEYEEKLKKESLAFFFLATYGDGEPTDNAANFYKWFTEGDDKGE





NLKKLQYGVFGLGNRQYEHFNKIAIVVDDKLTEMGAKRLVPVGLGDDDQCIEDDFTAWKELVWP





ELDQLLRDEDDTSVTTPYTAAVLEYRVVYHDKPADSYABDQTHTNGHVVHDAQHPSRSNVAFKK





ELHTSQSDRSCTHLEFDISHTGLSYETGDHVGVYSENLSEVVDEALKLLGLSPDTYFSVHADKE





DGTPIGGASLPPPFPPCTLRDALTRYADVLSSPKKVALLALAAHASDPSEADRLKFLASPAGKD





EYAQWIVANQRSLLEVMQSFPSAKPPLGVFFAAVAPRLQPRYYSISSSPKMSPNRIHVTCALVY





ETTPAGRIHRGLCSTWMKNAVPLTESPDCSQASIFVRTSNFRLPVDPKVPVIMIGPGTGLAPFR





GFLQERLALKESGTELGSSIFFFGCRNRKVDFTYEDELNNFVETGALSELIVAFSREGTAKEYV





QHKMSQKASDIWKLLSEGAYLYVCGDAKGMAKDVHRTLHTIVQEQGSLDSSKAELYVKNLQMSG





RYLRDVW






Arabidopsisthaliana CPR1 (AtCPR1)



(SEQ ID NO: 93)



MATSALYASDLFKQLKSIMGTDSLSDDVVLVIATTSLALVAGFVVLLWKKTTADRSGELKPLMI






PKSLMAKDEDDDLDLGSGKTRVSIFFGTQTGTAEGFAKALSEEIKARYEKAAVKVIDLDDYAAD





DDQYEEKLKKETLAFFCVATYGDGEPTDNAARFYKWFTEENERDIKLQQLAYGVFALGNRQYEH





FNKIGIVLDEELCKKGAKRLIEVGLGDDDQSIEDDFNAWKESLWSELDKLLKDEDDKSVATPYT





AVIPEYRVVTHDPRFTTQKSMESNVANGNTTIDIHHPCRVDVAVQKELHTHESDRSCIHLEFDI





SRTGITYETGDHVGVYAENHVEIVEEAGKLLGHSLDLVFSIHADKEDGSPLESAVPPPFPGPCT





LGTGLARYADLLNPPRKSALVALAAYATEPSEAEKLKHLTSPDGKDEYSQWIVASQRSLLEVMA





AFPSAKPPLGVFFAAIAPRLQPRYYSISSSPRLAPSRVHVTSALVYGPTPTGRIHKGVCSTWMK





NAVPAEKSHECSGAPIFIRASNFKLPSNPSTPIVMVGPGTGLAPFRGFLQERMALKEDGEELGS





SLLEEGCRNRQMDELYEDELNNFVDQGVLSELIMAFSREGAQKEYVQHKMMEKAAQVWDLLKEE





GYLYVCGDAKGMARDVHRTLHTIVQEQEGVSSSEAEAIVKKLQTEGRYLRDVW






Arabidopsisthaliana CPR2 (AtCPR2)



(SEQ ID NO: 94)



MASSSSSSSTSMIDLMAAIIKGEPVIVSDPANASAYESVAAELSSMLIENRQFAMIVTTSIAVL






IGCIVMLVWRRSGSGNSKRVEPLKPLVIKPREEEIDDGRKKVTIFFGTQTGTAEGFAKALGEEA





KARYEKTRFKIVDLDDYAADDDEYEEKLKKEDVAFFFLATYGDGEPTDNAARFYKWFTEGNDRG





EWLKNLKYGVFGLGNRQYEHFNKVAKVVDDILVEQGAQRLVQVGLGDDDQCIEDDFTAWREALW





PELDTILREEGDTAVATPYTAAVLEYRVSIHDSEDAKFNDINMANGNGYTVFDAQHPYKANVAV





KRELHTPESDRSCIHLEFDIAGSGLTYETGDHVGVLCDNLSETVDEALRLLDMSPDTYFSLHAE





KEDGTPISSSLPPPFPPCNLRTALTRYACLLSSPKKSALVALAAHASDPTEAERLKHLASPAGK





DEYSKWVVESQRSLLEVMAEFPSAKPPLGVFFAGVAPRLQPRFYSISSSPKIAETRIHVTCALV





YEKMPTGRIHKGVCSTWMKNAVPYEKSENCSSAPIEVRQSNFKLPSDSKVPIIMIGPGTGLAPF





RGFLQERLALVESGVELGPSVLFFGCRNRRMDFIYEEELQRFVESGALAELSVAFSREGPTKEY





VQHKMMDKASDLWNMLSQGAYLYVCGDAKGMARDVHKSLHlLAMEQGSMDSTKAEGEVKNLMTS





GRYLRDVW






Arabidopsisthaliana (AtCPR3)



(SEQ ID NO: 95)



MASSSSSSSTSMIDLMAAIIKGEPVIVSDPANASAYESVAAELSSMLIENRQFAMIVTTSIAVL






IGCIVMLVWRRSGSGNSKRVEPLKPLVIKPREEEIDDGRKKVTIFFGTQTGTAEGFAKALGEEA





KARYEKTRFKIVDLDDYAADDDEYEEKLKKEDVAFFFLATYGDGEPTDNAARFYKWFTEGNDRG





EWLKNLKYGVFGLGNRQYEHFNKVAKVVDDILVEQGAQRLVQVGLGDDDQCIEDDFTAWREALW





PELDTILREEGDTAVATPYTAAVLEYRVSIHDSEDAKFNDITLANGNGYTVFDAQHPYKANVAV





KRELHTPESDRSCIHLEFDIAGSGLTMKLGDHVGVLCDNLSETVDEALRLLDMSPDTYFSLHAE





KEDGTPISSSLPPPFPPCNLRTALTRYACLLSSPKKSALVALAAHASDPTEAERLKHLASPAGK





DEYSKWVVESQRSLLEVMAEFPSAKPPLGVFEAGVAPRLQPRPYSISSSPKIAETRIHVTCALV





YEKMPTGRIHKGVCSTWMKNAVPYEKSEKLFLGRPIFVRQSNFKLPSDSKVPIIMIGPGTGLAP





FRGFLQERLALVESGVELGPSVIFFGCRNRRMDFIYEEELQRFVESGALAELSVAFSREGPTKE





YVQHKMMDKASDIWNMISQGAYLYVCGDAKGMARDVHRSLHTIAQEQGSMDSTKAEGFVKNLQT





SGRYLRDVW






Steviarebaudiana CPR2 (SrCPR2)



(SEQ ID NO: 96)



MAQSESVEASTIDLMTAVLKDTVIDTANASDNGDSKMPPALAMMFEIRDLLLILTTSVAVLVGC






FVVLVWKRSSGKKSGKELEPPKIVVPKRRLEQEVDDGKKKVTIFFGTQTGTAEGFAKALFEEAK





ARYEKAAFKVIDLDDYAADLDEYAEKLKKETYAFFFLATYGDGEPTDNAAKFYKWFTEGDEKGV





WLQKLQYGVFGLGNRQYEHFNKIGIVVDDGLTEQGAKRIVPVGLGDDDQSIEDDFSAWKELVWP





ELDLLLRDEDDKAAATPYTAAIPEYRVVFHDKPDAFSDDHTQTNGHAVHDAQHPCRSNVAVKKE





LHTPESDRSCTHLEFDISHTGLSYETGDHVGVYCENLIEVVEEAGKLLGLSTDTYFSLHIDNED





GSPLGGPSLQPPFPPCTLRKALTNYADLLSSPKKSTLLALAAHASDPTEADRLRFLASREGKDE





YAEWVVANQRSLLEVMEAFPSARPPLGVFFAAVAPRLQPRYYSISSSPKMEFNRIHVTCALVYE





KTPAGRIHKGICSTWMKNAVPLTESQDCSWAPIFVRTSNFRLPIDPKVPVIMIGPGTGLAPFRG





FLQERLALKESGTELGSSILFFGCRNRKVDYIYENELNNFVENGALSELDVAFSRDGPTKEYVQ





HKMTQKASEIWNMLSEGAYLYVCGDAKGMAKDVHRTLHTIVQEQGSLDSSKAELYVKNLQMSGR





YLRDVW






Steviarebaudiana CPR3 (SrCPR3)



(SEQ ID NO: 97)



MAQSNSVKISPLDLVTALFSGKVLDTSNASESGESAMLPTIAMIMENRELLMILTTSVAVLIGC






VVVLVWRRSSTKKSALEPPVIVVPKRVQEEEVDDGKKKVTVFFGTQTGTAEGFAKALVEEAKAR





YEKAVFKVIDLDDYAADDDEYEEKLKKESLAFFFLATYGDGEPTDNAARFYKWFTEGDAKGEWL





NKLQYGVFGLGNRQYEHFNKIAKVVDDGLVEQGAKRLVPVGLGDDDQCIEDDFTAWKELVWPEL





DQLLRDEDDTTVATPYTAAVAEYRVVEHEKPDALSEDYSYTNGHAVHDAQHPCRSNVAVKKELH





SPESDRSCTHLEFDISNTGLSYETGDHVGVYCENLSEVVNDAERLVGLPPDTYFSIHTDSEDGS





PLGGASLPPPFPPCTLRKALTCYADVLSSPKKSALLALAAHATDPSEADRLKFLASPAGKDEYS





QWIVASQRSLLEVMEAFPSAKPSLGVFFASVAPRLQPRYYSISSSPKMAPDRIHVTCALVYEKT





PAGRIHKGVCSTWMKNAVPMTESQDCSWAPIYVRTSNFRLPSDPKVPVIMIGPGTGLAPFRGFL





QERLALKEAGTDLGLSILFFGCRNRKVDFIYENELNNFVETGALSELIVAFSREGPTKEYVQHK





MSEKASDIWNLLSEGAYLYVCGDAKGMAKDVHRTLHTIVQEQGSLDSSKAELYVKNLQMSGRYL





RDVW






Artemisiaannua CPR (AaCPR)



(SEQ ID NO: 98)



MAQSTTSVKLSPFDLMTALLNGKVSFDTSNTSDTNIPLAVFMENRELLMILTTSVAVLIGCVVV






LVWRRSSSAAKKAAESPVIVVPKKVTEDEVDDGRKKVTVFFGTQTGTAEGFAKALVEEAKRRYE





LVWRRSSSAAKKAAESPVIVVPKKVTEDEVDDGRKKVTVFFGTQTGTAEGFAKALVEEAKARYE





KAVFKVIDLDDYAAEDDEYEEKLKKESLAFFFLATYGDGEPTDNAARFYKWFTEGEEKGEWLDK





LQYAVFGLGNRQYEHFNKIAKVVDEKLVEQGAKRLVPVGMGDDDQCIEDDETANKELVWPELDQ





LLRDEDDTSVATPYTAAVAEYRVVFHDKPETYDQDQLTNGHAVHDAQHPCRSNVAVKKELHSPL





SDRSCTHLEFDISNTGLSYETGDHVGVYVENLSEVVDEAEKLIGLPPHTYFSVHADNEDGTPLG





GASLPPPFPPCTLRKALASYADVLSSPKKSALLALAAHATDSTEADRLKFLASPAGKDEYAQWI





VASHRSLLEVMEAFPSAKPPLGVFFASVAPRLQPRYYSISSSPRFAPNRIHVTCALVYEQTPSG





RVHKGVCSTWMKNAVPMTESQDCSWAPIYVRTSNFRLPSDPKVPVIMIGPGTGLAPFRGFLQER





LAQKEAGTELGTAILFFGCPURKVDFIYEDELNNFVETGALSELVTAFSREGATKEYVQHKMTQ





KASDIWNLLSEGAYLYVCGDAKGMAKDVHRTLHTIVQEQGSLDSSKAELYVKNLQMAGRYLRDV





A





CPR (PgCPR)


(SEQ ID NO: 99)



MAQSSSGSMSPFDFMTAIIKGKMEPSNASLGAAGEVTAMILDNRELVMILTTSIAVLIGCVVVF






IWRRSSSQTPTAVQPLKPLLAKBTESEVDDGKQKVTIFFGTQTGTAEGFAKALADEAKARYDKV





TFKVVDLDDYAADDEEYEEKLKKETLAFFFLATYGDGEPTDNAARFYKWFLEGKERGEWLQNLK





FGVFGLGNRQYEHFNKIAIVVDEILAEQGGKRLISVGLGDDDQCIEDDFTAWRESLWPELDQLL





RDEDDTTVSTPYTAAVLEYRVVFHDPADAPTLEKSYSNANGHSVVDAQHPLRANVAVRRELHTP





ASDRSCTHLEFDISGTGIAYETGDHVGVYCENLAETVEEALELLGLSPDTYFSVHADKEDGTPL





SGSSLPPPFPPCTLRTALTLHADLLSSPKKSALLALAAHASDPTEADRLRHLASPAGKDEYAQW





IVASQRSLLEVMAEFPSAKPPLGVFFASVAPRLQPRYYSISSSPRIAPSRIHVTCALVYEKTPT





GRVHKGVCSTWMKNSVPSEKSDECSWAPIFVRQSNFKLPADAKVPIIMIGPGTGLAPFRGFLQE





RLALKEAGTELGPSILFFGCRNSKMDYIYEDELDNFVQNGALSELVLAFSREGPTKEYVQHKMM





EKASDIWNLISQGAYLYVCGDAKGMARDVHRTLHTIAQEQGSLDSSKAESMVKNLQMSGRYLRD





VW






Camptothecaacuminate CaCPR



(SEQ ID NO: 201)



MAQSSSVKVSTFDLMSAILRGRSMDQTNVSFESGESPALAMLIENRELVMILTTSVAVLIGCFV






VLLWRRSSGKSGKVTEPPKPLMVKTEPEPEVDDGKKKVSIFYGTQTGTAEGFAKALAEEAKVRY





EKASFKVIDLDDYAADDEEYEEKLKKETLTFFFLATYGDGEPTDNAARFYKWFMEGKERGDWLK





NLHYGVFGLGNRQYEHFNRIAKVVDDTIAEQGGKRLIPVGLGDDDQCIEDDFAAWRELLWPELD





QLLQDEDGTTVATPYTAAVLEYRVVFHDSPDASLLDKSFSKSNGHAVHDAQHPCRANVAVRREL





HTPASDRSCTHLEFDISGTGLVYETGDHVGVYCENLIEVVEEAEMLLGLSPDTFFSIHTDKEDG





TPLSGSSLPPPFPPCTLRRALTQYADLLSSPKKSSLLALAAHCSDPSEADRLRHLASPSGKDEY





AQWVVASQRSLLEVMAEFPSAKPPIGAFFAGVAPRLQPRYYSISSSPRMAPSRIHVTCALVFEK





TPVGRIHKGVCSTWMKNAVPLDESRDCSWAPIFVRQSNFKLPADTKVPVLMIGPGTGLAPFRGF





LQERLALKEAGAELGPAILFFGCRNRQMDYIYEDELNNFVETGALSELIVAFSREGPKKEYVQH





KMMEKASDIWNMISQEGYIYVCGDAKGMARDVHRTLHTIVQEQGSLDSSKTESMVKNLQMNGRY





LRDVW





Non-heme iron oxidase



Acetobacterpasteurianus subsp. ascendens (ApGA2ox)



(SEQ ID NO: 100)



MSVSKTTETFTSIPVIDISKLYSSDLAERKAVAEKLGDAARNIGFLYISGHNVSADLIEGVRKA






ARDFFAEPFEKKMEIYIGTSATHKGFVPEGEEVYSAGRPDHKEAFDIGYEVPANHPLVQAGTPL





LGPNNWPDIPGFRSAAEAYYRTVFDLGRTLFRGFALALGLNESYFOTVANFPPSKLRMIHYPYD





ADAODAPGIGAHTDYECFTILLADKPGLEVMNGNGDWIDAPPIPGAFVVNIGDMLEVMTAGEFV





ATAHRVRKVSEERYSFPLFYACDYHTQIRPLPAFAKKIDASYETITIGEHMWAQALQTYQYLVK





KVEKGELKLPKGARKTATFGHFKRNSAA






Cucurbitamaxima (CmGA2ox)



(SEQ ID NO: 101)



MAAASSFSAAFYSGIPLIDLSAPDAKQLIVKACEELGFFKVVKHGVPMELISSLESESTKFFSL






PLSEKQRAGPPSPFGYGNKQIGRNGDVGWVEYLLLNTHLESNSDGFLSMFGQDPQKLRSAVNDY





ISAvRNMAGEILELMAEGLKIQQRNVFSKLVMDEQSDSVFRVNHYPPCPDLQALKGTNMIGFGE





HTDPQIISVLRSNNTSGFQISLADGNWISVPPDHSSFFINVGDSLQVMTNGRFKSVKHRVLTNS





SKSRVSMIYFGGPPLSEKIAPLASLMQGEERSLYKEFTWFEYKRSAYNSRLADNRLVPFERIAA





S






Dendrobiumcatenatum (DcGA3ox)



(SEQ ID NO: 102)



MPSLSKEHFDLYSAFHVPETHAWSSSHLHDHPIAGDGATIPVIDISDPDAASMVGGACRSWGVF






YATSHGIPADLLHQVESHARRLFSLPLHRKLQTAPRDGSLSGYGRPPISAFFPKLMWSEGFTLA





GHDDHLAVTSQLSPFDSLSFCEVMEAYRKEMKKLAGRLFRLLILSLGLEEEEMGQVGPLKELSQ





AADAIQLNSYPTCPEPERAIGMAAHTDSAFLTVLHQTDGAGGLQVLRDQDESGSARWVDVLPRP





DCLVVNVGDLLHILSNGRFKSVRHRAVVNRADHRISAAYFIGPPAHMKVGSITKLVDMRTGPMY





RPVTWPEYLGIRTRLFDKALDSVKFQEKELEKD





Cucurbita maxima (CmGA3ox)


(SEQ ID NO: 103)



MATTIADVFKSFPVHIPAHKNLDFDSLHELPDSYAWIQPDSFPSPTHKHHNSILDSDSDSVPLI






DLSLPNAAALIGNAFRSWGAFQVINHGVPISLLQSIESSADTLFSLPPSHKLKAARTPDGISGY





GLVRISSFFPKRMWSEGFTIVGSPLDHFRQLWPHDYHKHCEIVEEYDREMRSLCGRLMWLGLGE





LGITRDDMKWAGPDGDFKTSPAATQFNSYPVCPDPDRAMGLGPHTDTSLLTTVYQSNTRGLQVL





REGKRWVTVEPVAGGLWQVGDLLHILTNGLYPSALHQAWNRTRKRLSVAYVFGPPESAEISP





LKKLLGPTQPPLYRPVTWTEYLGKKAEHFNNALSTVRLCAPITGLLDVNDHSRVKVG






Cucurbitamaxima (CmGA20ox)



(SEQ ID NO: 104)



MHVVTSTPEARHDGAPLVFDASVLRHQHNIPKQFIWPDEEKPAATCPELEVPLIDLSGFLSGEK






DAAAEAVRLVGEACEKHGFFLVVNHGVDRKLIGEAHKYMDEFFELPLSQKQSAQRKAGEHCGYA





SSFTGRFSSKLPWKETLSFRFAADESLNNLVLHYLNDKLGDQFAKFGRVYQDYCEAMSGLSLGI





MELLGKSLGVEEQCFKNFFKDNDSIMRLNFYPPCQKPHLTLGTGPHCDPTSLTILHQDQVGGLQ





VFVDNQWRLITPNFDAFVVNlGDTFMALSNGRYKSCLHRAVVNSERTRKSLAFFLCPRNDKVVR





PPRELVDTONPRRYPDFTWSMLLRFTQTHYRADMKTLEAFSAWLQQEQQEQQEQQFNI






Agapanthuspraecox subsp. orientalis (ApoGA20ox)



(SEQ ID NO: 105)



MVLQPFVFDAALLRDEHNIPTQFIWPEEDKPSPDASEELILPFIDLKAFLSGDPDSPFQVSKQV






GEACESLGAFQVTNHGIDFDLLEEAHSCIQKFFSMPLCERQRALRKAGESYGYASSFTGRFCSK





LPWKETLSFRYSSSSSDIVQNYFVRTLGEEFRHFGEVYQKYCESMSKLSLMIMEVLGLSLGVGR





MHFREFFEGNDSTMRLNYYPPCKKPDLTLGTGPHCDPTSLTILHQDDVSGLQVFTGGKWLTVRP





KTDAFVVNIGDTFTALSNGRYKSCLHRAVVNSKTARKSLAFFLCPAMNKIVRPPRELVDIDHPR





AYPDFTWSALLEFTQKHYRADMQTLNEFSKYILQAQGTLHK






Arabidopsisthaliana (AtFH)



(SEQ ID NO: 106)



MAPGTLTELAGESKLNSKFVRDEDERPKVAYNVFSDEIPVISLAGIDDVDGKRGEICRQIVEAC






ENWGIFQVVDHGVDTNLVADMTRLARDFFALPPEDKLRFDMSGGKKGGFIVSSHLQGEAVQDWR





BIVTYFSYPVRNRDYSRWPDKPEGWVKVTEEYSERLMSLACKLLEVLSEAMGLBKESLTNACVD





MDQKIVVNYYPKCPQPDLTLGLKRHTDPGTTTLLLQDQVGGLQATRDNGKTWITVQPVEGAFVV





NLGDHGHFLSNGRFKNADHQAVVNSNSSRLSIATFQNPAPDATVYPLKVREGEKAILEEPITFA





EMYKRKMGRDLELARLKKLAKEERDHKEVDKPVDQIEA






Chrysospleniumamericanum (CaF6H)



(SEQ ID NO: 107)



QEKTLNSRFVARDEDSLERPKVSAIYNGSFDEIPVLISLAGIDMTGAGTDAAARRSEICRKIVE






ACEDWGIFGEIDDDHGKRAEICDKIVKACEDWGVFQPDEKLESVMSAAKKGDFVVDHGVDAEVI





SQWTTFAKPTSHTQFETETTRDFPNKPEGWKATTEQYSRTLMGLACKLLGVISEAMGLEKEALT





KACVDMDQKVVVNYYPKCPQPDLTLGLKRHTDPGTITLLLQDQVGGLQATRDGGKTWITVQPVK





DNGWILLHIGDSNGHRHGHFLSNGRFKSHQAYRYRRPTRGSPTFGTKVSNYPPCPEQSLVRPPA





GRPYGRALNALDAKKLASAKQQLESAAILLISELAVAYIILAILPSSEIIAEEGYL






Daturastramonium (DsH6H)



(SEQ ID NO: 108)



MATFVSNWSTNNVSESFIAPLEKRAEKDVALGNDVPIIDLQQDHLLIVQQITKACQDFGLFQVI






NHGVPEKLMVEAMEVYKEFFALPAEEKEKFQPKGEPAKFELPLEQKAKLYVEGERRCNEEFLYW





KDTLAHGCYPLHEELLNSWPEKPPTYRDVIAKYSVEVRKLTMRILDYICEGLGLKLGYFDNELT





QIQMLLANYYPSCPDPSSTIGSGGHYDGNLITLLQQDLVGLQQLIVKDDRWIAVEPIPTAFVVN





LGLTLKVMSNEKFEGSIHRVVTHPTRNRISIGTLIGPDYSCTIEPIKELLSQENPPLYKPYPYA





KFAEIYLSDKSDYDAGVKPYKINQFPN






Arabidopsisthaliana (AtH6DH)



(SEQ ID NO: 109)



MENHTTMKVSSLNCIDLANDDLNHSVVSLKQACLDCGFFYVINHGISEEFMDDVFEQSKKLEAL






PLEEKMKVLRNEKHRGYTPVLDELLDPKNQINGDHKEGYYIGIEVPKDDPHWDKPFYGPNPWPD





ADVLPGWRETMEKYHQEALRVSMAIARLLALALDLDVGYFDRTEMLGKPIATMRLLRYQGISDP





SKGIYACGAHSDFGMMTLLATDGVMGLQICKDKNAMPQKWEYVPPTKGAFTVNLGDMLERWSNG





FFKSTLHRVLGNGQERYSIPFFVEPNHDCLVECLPTCKSESELPKYPPIKCSTYLTQRYEETHA





NLSIYHQQT






Solanunilycopersicum (S1F35H)



(SEQ ID NO: 110)



MALRINELFVAAIIYIIVHIIISKLITTVRERGRRLPLPPGPTGWPVIGALPLLGSMPHVALAK






MAKKYGPIMYLKVGTCGMVVASTPNAAKAFLKTLDINFSNRPPNAGATHLAYNAQDMVFAPYGP





RWKLLRKLSNLHMLGGKALENWANVRANELGHMLKSMFDASQDGECVVIADVLTFAMANMIGQV





MLSKRVFVEKGVEVNEFKNMVVELMTVAGYFNIGDFIPKLAWMDIQGIEKGMKNLHKKFDDLLT





KMFDEHFATSNERKFNPDFLDVVMANRDNSEGERLSTTNIKALLLNLFTAGTDTSSSVIEWALA





EMMKNPKIFEKAQQEMDQVIGKNRRLIESDIPNLPYLRAICKETFRKHPSTPLNLPRVSSEPCT





VDGYYIPKNTRLSVNIWAIGRDPDVWENPLEFTPERFLSGKNAKIEPRGNDFELIPFGAGRRIC





AGTRMGIVMVEYILGTLVHSFDWKLPNNVIDINMEESFGLALQKAVPLEAMVTPRLSLDVYRC





D4H


(SEQ ID NO: 111)



MPKSWPIVISSHSFCFLPNSEQERKMKDLNFHAATLSEEESLRELKAFDETKAGVKGIVDTGIT






KIPRIFIDQPKNLDRISVCRGKSDIKIPVINLNGLSSNSEIRREIVEKIGEASEKYGFFQIVNH





GIPQDVMDEMVDGVRKFHEQDDQIKRQYYSRDRFNKNFLYSSNYVLIFGIACNWRDTMECIMNS





NQFDPQEFPDVCRDILMKYSNYVRNLGLILFELLSEMiGLKPNHLSEMDCAEGLILLGHYYPAC





PQPELTFGTSKKSDSGFLTILKQDQIGGLQILLENQWIDVPFIPGALVINIADLLQLITNDKFK





SVEHRVLANKVGPRISVAVAFGIKTQTQEGVSPRLYGPIKELISSENPPIYKSVTVKDFITIRF





AKRFDDSSSLSPFRLNN






Catharanthusroseus (crD4Hlike)



(SEQ LD NO: 112)



MKELNNSEEELKAFDDTKAGVKALVDSGITEIPRIFLDHPTNLDQISSKDREPKFKKNIPVIDL






DGISTNSEIRREIVEKIREASEKWGFHQIVNHGIPQEVMDDMIVGIRRFHEQDNEIKKQFYTRD





RTKSFRYTSNFVLKPKIACNWRDTFECTMAPHQPNPQDLPDICRDIMMKYISYTRNLGLTLFEL





LSEALGLKSNRLKDMHCDEGVELVGHYYPACPQPELTLGTSKHTDTGFLTMLQQDQIGGLQVLY





ENHQWVDVPFIPGALIINIGDFLQIISNDKFKSAPHRVLANKNGPRISTASVFMPNFLESAEVR





LYGPIKELLSEENPPIYEQITAKDYVTVQFSRGLDGDSFLSPFMLNKDNMEK






Zeamays (ZmBX6)



(SEQ ID NO: 113)



MAPTTATKDDSGYGDERRRELQAFDDTKLGVKGLVDSGVKSIPSIFHHPPEALSDIISPAPLPS






SPPSGAAIPVVDLSVTRREDLVEQVRHAAGTVGFFWLVNHGVAEELMGGMLRGVRGFNEGPVEA





KQALYSRDLARNLRFASNFDLFKAAAADWRDTLFCEVAPNPPPREELPEPLRNVMLEYGAAVTK





LARFVFELLSESLGMPSDHLYEMECMQNLNVVCQYYPPCPEPHRTVGVKRHTDPGFFTILLQDG





MGGLQVRLGNNGQSGGCWVDIAPRPGALMVNIGDLLQLVTNDRFRSVEHRVFANKSSDTARVSV





ASFFNTDVRRSERMYGPIPDPSKPPLYRSVRARDFIAKFNTIGLDGRALDHFRL






Hordeumvulgare subsp. vulgare (HVIDS2)



(SEQ ID NO: 114)



MAKVMNLTPVHASSIPDSFLLPADRLHPATTDVSLPIIDMSRGRDEVRQAILDSGKEYGFIQVV






NHGISEPMLHEMYAVCHEFFDMPAEDKAEFFSEDRSERNKLFCGSAFETLGEKYWIDVLELLYP





LPSGDTKDWPHKPOMLREVVGNYTSLARGVAMEILRLLCEGLGLRPDFFVGDISGGRVVVDINY





YPPSPNPSRTLGLPPHCDRDLMTVLLPGAVPGLEIAYKGGWIKVQPVPNSLVINFGLOLEVVTN





GYLKAVEHRAATNFAEPRLSVASFIVPADDCVVGPAEEFVSEDNPPRYRTLTVGEFKRKHNVVN





LDSSINQIININNNQKGI






Hordeumvulgare subsp. vulgare (HvIDS3)



(SEQ ID NO: 115)



MENILHATPAPVSLPESFVFASDKVPPATKAVVSLPIIDLSCGRDEVRRSILEAGKELGFEQVV






NKGVSKQVMRDMEGMCEQFFHLPAADKASLYSEERHKPNRLFSGATYDTGGEKYWRDCLRLACP





FPVDDSINEWPDTPKGLRDVIEKFTSQTRDVGKELLRLLCEOMGIRADYFEGDLSGGNVILNIN





HYPSCPNPDKALGQPPHCDRNLITLLLPGAVNGLEVSYKGDWIKVDPAPNAFVVNFGQQLEVVT





NGLLKSIEHRaMTNSALARTSVATFIMPTQECLIGPAKEFLSKENPPCYRTTMFRDFMRIYNVV





KLGSSLNLTTNLKNVQKEI





Uridine diphosphate dependent glycosyltransferase (UGT)



Siraitiagrosvenorii UGT720-269-1



(SEQ ID NO: 116)



MEDRNAMDMSRIKYEPQPLRPASMVQPRVLLFPFPALGHVKPFLSLAELLSDAGIDVVFLSTEY






NHRRISNTEALASRFPTLHFETIPDGLPPNESRALADGPLYFSMREGTKPRFRQLIQSLNDGRW





PITCLITDIMLSSPIEVAEEFGIPVIAFCPCSARYLSIHFEIPKLVEEGQIPYADDDPIGELQG





VPLFEGLLRRNHLPGSWSDKSADISFSHGLINQTLAAGRASALILNTFDELEAPFLTHLSSIFN





KIYTIGPLHALSKSRLGDSSSSASALSGFWKEDRACMSWLDCQPPRSVVFVSFGSTMKMKADEL





REFWYGLVSSGKPFLCVLRSDVVSGGEAAELIEQMAEEEGAGGKLGMVVEWAAQEKVLSHPAVG





GFLTHCGWNSTVESIAAGVPMMCWPILGDQPSNATWIDRVWKIGVERNNREWDRLTVEKMVRAL





MEGQKRVEIQRSMEKLSKLANEKVVRGINLHPTISLKKDTPTTSEHPRHEFENMRCMNYEMLVG





NAIKSPTLTKK






Siraitiagrosvenorii UGT94-289-3



(SEQ ID NO: 117)



MTIFFSVEILVLGLAEFAAIAMDAAQQGDTTTILMLPWLGYGHLSAFLELAKSLSRRNFHIYFC






STSVNLDAIKPKLPSSFSDSIQFVELHLPSSPEFPPHLHTTNGLPPTLMPALHQAFSMAAQHFE





SILQTLAPHLLIYDSLQPWAPRVASSLKIPAINFNTTGVFVISQGLHPIHYPHSKFPFSEFVLH





NHWKAMYSTADGASTERTRKRGEAFLYCLHASCSVILINSFRELEGKYMDYLSVLLNKKVVPVG





PLVYEPNQDGEDEGYSSIKNWLDKKEPSSTVFVSFGSEYFPSKEEMEEIAHGLEASEVNFIWVV





RFPQGDNTSGIEDALPKGFLERAGERGMVVKGWAPQAKILKHWSTGGFVSHCGWNSVMESMMFG





VPIIGVPMHVDQPFNAGLVEEAGVGVEAKRDPDGKIQRDEVAKLIKEVVVEKTREDVRKKAREM





SEILRSKGEEKFDEMVAEISLLLKI






Siraitiagrosvenorii UGT74-345-2



(SEQ ID NO: 118)



MDETTVNGGRRASDVVVFAFPRHGHMSPMLQFSKRLVSKGLRVTFLITTSATESLRLNLPPSSS






LDLQVISDVPESNDIATLEGYLRSFKATVSKTLADFIDGIGNPPKFIVYDSVMPWVQEVARGRG





LDAAPFFTQSSAVNHILNHVYGGSLSIPAPENTAVSLPSMPVLQAEDLPAFPDDPEVVMNFMTS





QFSNFQDAKWIFFNTFDQLECKKQSQVVNWMADRWPIKTVGPTIPSAYLDDGRLEDDRAFGLNL





LKPEDGKNTRQWQWLDSKDTASVLYISFGSLAILQEEQVKELAYFLKDTNLSFLWVLRDSELQK





LPHNFVQETSERGLVVNWCSQLQVLSHRAVSCFVTHCGWNSTLEALSLGVPMVAIPQWVDQTTN





AKFVADVWRVGVRVKKKDERIVTKEELEASIRQVVQGEGRNEFKHNAIKNKKLAKEAVDEGGSS





DKNIEEFVKTIA






Siraitiagrosvenorii UGT75-281-2



(SEQ ID NO: 119)



MGDNGDGGEKKELKENVKKGKELGRQAIGEGYINPSLQLARRLISLGVNVTFATTVLAGRRMKN






KTHQTATTPGLSFATFSDGFDDETLKPNGDLTHYFSELRRCGSESLTHLITSAANEGRPITFVI





YSLLLSWAADIASTYDIPSALFFAQPATVLALYFYYFHGYGDTICSKLQDPSSYIELPGLPLLT





SQDMPSFFSPSGPHAFILPPMREQAEFLGRQSQPKVLVNTFDALEADALRAIDKLKMLAIGPLI





PSALLGGNDSSDASFCGDLFQVSSEDYIEWLNSKPDSSVVYISVGSICVLSDEQEDELVHALLN





SGHTFLWVKRSKENNEGVKQETDEEKLKKLEEQGKMVSWCRQVEVLKHPALGCFLTHCGWNSTI





ESLVSGLPVVAFPQQIDQATNAKLIEDVWKTGVRVKANTEGIVEREEIRRCLDLVMGSRDGQKE





EIERNAKKWKELARQAIGEGGSSDSNLKTFLWEIDLEI






Siraitiagrosvenorii UGT720-269-4



(SEQ ID NO: 120)



MAEQAHDLLHVLLFPFPAEGHIKPFLCLAELLCNAGFHVTFLNTDYNHRRLHNLHLLAARFPSI






HFESISDGLPPDQPRDILDPKFFISICQVTKPLFRELLLSYKRISSVQTGRPPITCVITDVIFR





FPIDVAEELDIPVFSFCTFSAREMFLYEWIPKLIEDGQLPYPNGNINQKLYGVAPEAEGLLRCK





DLPGHWAFADELKDDQLNFVDQTTASSRSSGLILNTFDDLEAPFLGRLSTIFKKIYAVGPIHSL





LNSHHCCLWKEDHSCLAWLDSRAAKSVVFVSFGSLVKITSRQLMEFWHGLLNSGKSFLFVLRSD





VVEGDDEKQVVKEIYETKAEGKWLVVGWAPQEKVLAHEAVGGFLTHSGWNSILESIAAGVPMIS





CPKIGDQSSNCTWISKVWKIGLEMEDRYDRVSVETMVRSIMEQEGEKMQKTIAELAKQAKYKVS





KDGTSYQNLECLIQDIKKLNQIEGFINNPNFSDLLRV






Siraitiagrosvenorii UGT94-289-2



(SEQ ID NO: 121)



MDAQQGHTTTILMLPWVGYGHLLPFLELAKSLSRRKLFHIYFCSTSVSLDAIKPKLPPSISSDD






SIQLVELRLPSSPELPPHLHTTNGLPSHLMPALHQAFVMAAQHFQVILQTLAPHLLIYDILQPW





APQVASSLNIPAINFSTTGASMLSRTLHPTHYPSSKFPISEEVLHNHWRAMYTTADGALTEEGH





KIEETLANCLHTSCGVVLVNSFRELETKYIDYLSVLLNKKVVPVGPLVYEPNQEGEDEGYSSIK





NWLDKKEPSSTVFVSFGTEYFPSKEEMEEIAYGLELSEVNFIWVLRFPQGDSTSTIEDALPKGF





LERAGERAMVVKGWAPQAKILKHWSTGGLVSHCGWNSMMEGMMFGVPIIAVPMHLDQPFNAGLV





EEAGVGVEAKRDSDGKIQREEVAKSIKEVVIEKTREDVRKKAREMDTKHGPTYFSRSKVSSFGR





LYKINRPTTLTVGRFWSKQIKMKRE






Siraitiagrosvenorii UGT94-289-1



(SEQ ID NO: 122)



MDAQRGHTTTILMFPWLGYGHLSAFLELAKSLSRRNFHYFCSTSVNLDAIKPKLPSSSSSDSI






QLVELCLPSSPDQLPPHLHTTNALPPHLMPTLHQAFSMAAQHFAAILHTLAPHLLIYDSFQPWA





PQLASSLNIPAINFNTTGASVLTRMLHATHYPSSKFPISEFVLHDYWKAMYSAAGGAVTKKDHK





IGETLANCLHASCSVILINSFRELEEKYMDYLSVLLNKKVVPVGPLVYEPNQDGEDEGYSSIKN





NLDKKEPSSTVFVSFGSEYFPSKEEMEEIAHGLEASEVHFTWVVRFPQGDNTSAIEDALPKGFL





ERVGERGMVVKGWAPQAKILKHWSTGGFVSHCGWNSVMESMMFGVPIIGVPMHLDQPFNAGLAE





EAGVGVEAKRDPDGKIQRDEVAKLIKEVVVEKTREDVRKKAREMSEILRSKGEEKMDEMVAAI8





LFLKI






Momordicacharantia 1 (McUGT1)



(SEQ ID NO: 123)



MAQPQTQARVLVFPYPTVGHIKPFLSLAELLADGGLDVVFLSTEYNHRRIPNLEALASRFPTLH






FDTIPDGLPIDKPRVIIGGELYTSMRDGVKQRLRQVLQSYNDGSSPITCVICDVMLSGPIEAAE





ELGIPVVTFCPYSARYLCAHFVMPKLIEEGQIPFTDGNLAGEIQGVPLFGGLLRRDHLPGFWFV





KSLSDEVWSHAFLNQTLAVGRTSALIINTLDELEAPFLAHLSSTFDKIYPIGPLDALSKSRLGD





SSSSSTVLTAFWKEDQACMSWLDSQPPKSVIFVSFGSTMRMTADKLVEFNHGLVNSGTRFLCVL





RSDIVEGGGAADLIKQVGETGNGIVVEWAAQEKVLAHRAVGGFLTHCGWNSTMESIAAGVPMMC





WQIYGDQMINATWIGKVWKIGIERDDKWDRSTVEKMIKELMEGEKGAEIQRSMEKFSKLANDKV





VKGGTSFENLELIVEYLKKLKPSN






Momordicacharantia 2 (McUGT2)



(SEQ ID NO: 124)



MAQPRVLLFPFPAMGHVKPFLSLAELLSDAGVEVVFLSTEYNHRRIPDIGALAARFPTLHFETI






PDGLPPDQPRVLADGHLYFSMLDGTKPRFRQLIQSLNGNPRPITCIINDVMLSSPIEVAEEFGI





PVIAFCPCSARFLSVHFFMPNFIEEAQIPYTDENPMGKIEEATVFEGLLRRKDLPGLWCAKSSN





ISFSHRFINQTIAAGRASALILNTFDELESPFLNHLSSIFPKIYCIGPLNALSRSRLGKSSSSS





SALAGFWKEDQAYMSWLESQPPRSVIFVSFGSTMKMEAWKLAEFWYGLVNSGSPFLEVFRPDCV





INSGDAAEVMEGRGRGMVVEWASQEKVLAHPAVGGFLTHCGWNSTVESIVAGVPMMCCPIVADQ





LSNATWIHKVWKTGTEGDEKWDRSTVEMMIKELMESQKGTEIRTSIEMLSKLANEKVVKGGTSL





NNFELLVEDIKTLRRPYT






Momordicacharantia 3 (McUGT3)



(SEQ ID NO: 125)



MEQSDSNSDDHQHHVLLFPFPAKGHIKPFLCLAQLLCGAGLQVTFLNTDHNHRRIDDRHRRLLA






TQFPMLHFKSISDGLPPDHPRDLLDGKLIASMRRVTESLFRQLLLSYNGYGNGTNNVSNSGRRP





PISCVITDVIFSFPVEVAEELGIPVFSFATFSARFLFLYEWIPKLIQEGQLPFPDGKTNQELYG





VPGAEGIIRCKDLPGSWSVEAVAKNDPMNFVKQTLASSRSSGLILNTFEDLEAPFVTHLSNTFD





KIYTIGPIHSLLGTSHCGLWKEDYACLAWLDARPRKSVVFVSFGSLVKTTSRELMELWHGLVSS





GKSFLLVLRSDVVEGEDEEQVVKEILESNGEGKWLVVGWAPQEEVLAHEAIGGFLTHSGWNSTM





ESIAAGVPMVCWPKIGDQPSNCTWVSRVWKVGLEMEERYDRSTVARMARSMMEQEGKEMERRIA





ELAKRVKYRVGKDGESYRNLESLIRDIKITKSSN






Momordicacharantia 4 (McUGT4)



(SEQ ID NO: 126)



MDAHQQAEHTTTILMLPWVGYGHLTAYLELAKALSRRNFHIYYCSTPVNIESIKPKLTIPCSSI






QFVELHLPSSDDLPPNLHTTNGLPSHLMPTLHQAFSAAAPLFEEILQTLCPHLLIYDSLQPWAP





KIASSLKIPALNFNTSGVSVIAQALHAIHHPDSKFPLSDFILHNYWKSTYTTADGCASEKTRRA





REAFLYCLNSSGNAILINTFRELEGEYIDYLSLLLNKKVIPIGPLVYEPNQDEDQDEEYRSIKN





NLDKKEPCSTVFVSFGSEYFPSNEEMEEIAPGLEESGANFIWVVRFPKLENRNGIIEEGLLERA





GERGMVIKEWAPQARILRHGSIGGFVSHCGWNSVMESIICGVPVIGVPMRVDQPYNAGLVEEAG





VGVEAKRDPDGKIQRHEVSKLIKQVVVEKTRDDVRKKVAQMSEILRRKGDEKIDEMVALISLLP





KG






Momordicacharantia 5 (MCUGT5)



(SEQ ID NO: 127)



MDARQQAEHTTTILMLPWVGYGHLSAYLELAKALSRRNFHIYYCSTPVNIESIKPKLTIPCSSI






QFVELHLPFSDDLPPNLHTTNGLPSHLMPALHQAFSAAAPLFEAILQTLCPHLLIYDSLQPWAP





QIASSLKIPALNFNTTGVSVIARALHTTHHPDSKFPLSEIVLHNYWKATHATADGANPEKFRRD





LEALLCCLHSSCNAILINTFRELEGEYIDYLSLLLNKKVTPIGPLVYEPNQDEEQDEEYRSIKN





WLDKKEPYSTIFVSFGSEYFPSNEEMEEIARGLEESGANFIWVVRFHKLENGNGITEEGLLERA





GERGMVIQGWAPQARILRHGSIGGFVSHCGWNSVMESIICGVPVIGVPMGLDQPYNAGLVEEAG





VGVEAKRDPDGKIQRHEVSKLIKQVVVEKTRDDVRKKVAQMSEILRRKGDEKIDEMVALISLLL





KG






Cucumissativus



(SEQ ID NO: 128)



MGLSPTDHVLLFPFPAKGHIKPFFCLAHLLCNAGLRVTFLSTEHHHQKLHNLTHLAAQIPSLHE






QSISDGLSLDHPRNLLDGQLFKSMPQVTKPLFRQLLLSYKDGTSPITCVITDLILRFPMDVAQE





LDIPvFCFSTFSARFLFLYFSIPKLLEDGQIPYPEGNSNQVLHGIPGAEGLLRCKDLPGYWSVE





AVANYNPMNFVNQTIATSKSHGLILNTFDELEVPFITNLSKIYKKVYTIGPIHSLLKKSVQTQY





BFWKEDHSCLAWLDSQPPRSVMFVSFGSIVKLKSSQLKEFWNGLVDSGKAFLLVLRSDALVEET





GEEDEKQKELVIKEIMETKEEGRWVIVNWAPQEKVLEHKAIGGFLTHSGWNSTLESVAVGVPMV





SWPQIGDQPSNATWLSKVWKIGVEMEDSYDRSTVESKVRSIMEHEDKKMENAIVELAKRVDDRV





SKEGTSYQNLQRLIEDIEGFKLN






Cucurbitamaxima 1 (CmaUGTl)



(SEQ ID NO: 129)



MELSHTHHVLLFPFPAKGHIKPFFSLAQLLCNAGLRVTFLNTDHHHRRIHDLNRLAAOLPTLHF






DSVSDGLPPDEPRNVFDGKLYESIRQVTSSLFRELLVSYNNGTSSGRPPITCVITDVMFRFPID





IAEELGIPVFTFSTFSARFLFLIFWIPKLLEDGQLRYPEQELHGVPGAEGLIRWKDLPGFWSVE





DVADWDPMNFVNQTLATSRSSGLILNTFDELEAPFLTSLSKIYKKIYSLGPINSLLKNFQSQPQ





YNLWKEDHSCMAWLDSQPRKSVVFVSFGSVVKLTSRQLMEFWNGLVNSGMPFLLVLRSDVIEAG





EEVVREIMERKAEGRWVIVSWAPQEEVLAHDAVGGFLTHSGWNSTLESLAAGVPMISWPQIGDQ





TSNSTWISKVWRIGLQLEDGFDSSTIETMVRSIMDQTMEKTVAELAERAKNRASKNGTSYRNFQ





TLIQDIINIIETHI






Cucurbitamaxima 2 (CmaUGT2)



(SEQ ID NO: 130)



MDAQKAVDTPPTTVLMLPWIGYGHLSAYLELAKALSRRNFHVYFCSTPVNLDSIKPNLIPPPSS






IQFVDLHLPSSPELPPHLHTTNGLPSHLKPTLHQAFSAAAQHFEAILQTLSPHLLIYDSLQPWA





PRIASSLNIPAINFNTTAVSIIAHALHSVHYPDSKFPFSDFVLHDYWKAKYTTADGATSEKIRR





GAEAFLYCLNASCDVVLVNSFRELEGEYMDYLSVLLKKKVVSVGPLVYEPSEGEEDEEYWRIKK





WLDEKEALSTVLVSFGSEYFPSKEEMEEIAHGLEESEANFIWVVRFPKGEESCRGIEEALPKGE





VERAGERAMVVKKWAPQGKILKHGSIGGFVSHCGWNSVLESIRFGVPVIGVPMHLDQPYNAGLL





EEAGIGVEAKRDADGKIQRDQVASLIKRVVVEKTREDIWKTVREMREVLRRRDDDMIDEMVAEI





SVVLKI






Cucurbitamaxima 3 (CmaUGT3)



(SEQ ID NO: 131)



MSSNLFLKISIPFGRLRDSALNCSVFHCKLHLAIAIAMDAQQAANKSPTATTIEMLPWAGYGHL






SAYLELAKALSTRNFHIYFCSTPVSLASIKPRLIPSCSSIQFVELHLPSSDEFPPHLHTTNGLP





SRLVPTFHQAFSEAAQTFEAFLQTLRPHLLIYDSLQPWAPRIASSLNIPAINFFTAGAFAVSHV





LRAFHYPDSOFPSSDFVLHSRWKIKNTTAESPTQAKLPKIGEAIGYCLNASRCVILTNSFRELE





GKYIDYLSVILKKRVFPIGPLVYQPNQDEEDEDYSRIKNWLDRKEASSTVLVSFGSEFFLSKEE





TEAIAHGLEQSEANFIWGIRFPKGAKKNAIEEALPEGFLERAGGRAMVVEEWVPQGKILKHGSI





GGFVSHCGWNSAMESIVCGVPIIGIPMQVDQPFNAGILEEAGVGVEAKRDSDGKIQRDEVAKLI





KEVVVERTREDIRNKLEKINEILRSRREEKLDELATEISLLSRN






Cucurbitamoschata 1 (CmoUGT1)



(SEQ ID NO: 132)



MELSPTHHLLLFPFPAKGHIKPFFSLAQLLCNAGARVTFLNTDHHHRRIHDLDRLAAQLPTLHE






DSVSDGLPPDESRNVFDGKLYESIRQVTSSLFRELLVSYNNGTSSGRPPITCVITDCMFRFPID





IAEELGIPVFTFSTFSARFLFLFFWIPKLLEDGQLRYPEQELHGVPGAEGLIRCKDLPGFLSDE





DVAHWKPINFVNQILATSRSSGLILNTFDELEAPFLTSLSKIYKKIYSLGPINSLLKNFQSQPQ





YNLWKEDHSCMAWLDSQPPKSVVFVSFGSVVKLTNRQLVEFWNGLVNSGKPFLLVLRSDVIEAG





EEVVRENMERKAEGRWMIVSWAPQEEVLAHDAVGGFLTHSGWNSTLESLAAGVPMISWTQIGDQ





TSNSTWVSKVWRIGLQLEDGFDSFTIETMVRSVMDQTMEKTVAELAERAKNRASKNGTSYRNFQ





TLIQDITNIIETHI






Cucurbitamoschata 2 (CmoUGT2)



(SEQ ID NO: 133)



MDAQKAVDTPPTTVIMLPWIGYGHLSAYLELAKALSRRNFHVYFCSTPVNLDSIKPNLIPPPPS






IQFVDLHLPSSPELPPHLHTTNGLPSHLKPTLHQAFSAAAQHFEAILQTLSPHLLIYDSLQPWA





PRIASSLNIPAINFNTTAVSIIAHALHSVHYPDSKFPFSDFVLHDYWKAKYTTADGATSEKTRR





GVEAFLYCLNASCDVVLVNSFRELEGEYMDYLSVLLKKKVVSVGPLVYEPSEGEEDEEYWRIKK





WLDEKEALSTVLVSFGSEYFPPKEEMEEIAHGLEESEANFIWVVRFPKGEESSSRGIEEALPKG





FVERAGERAMWKKWAPQGKILKHGSIGGFVSHCGWNSVLESIRFGVPVIGAPMHLDQPYNAGL





LEEAGIGVEAKRDADGKIQRDQVASLIKQVVVEKTREDTWKKVREMREVLRRRDDDDMMIDEMV





AVISVVLKI






Cucurbitamoschata 3 (CmoUGT3)



(SEQ ID NO: 134)



MDAQQAANKSPTASTIFMLPWVGYGHLSAYLELAKALSTRNFHVYFCSTPVSLASIKPRLIPSC






SSIQFVELHLPSSDEFPPHLHTTNGLPAHLVPTIHQAFAAAAQTFEAFLQTLRPHLLIYDSLQP





NAPRIASSLNIPAINFFTAGAFAVSHVLRAFHYPDSQFPSSDFVLHSRWKIKNTTAESPTQVKI





PKIGEAIGYCLNASRGVILTNSFRELEGKYIDYLSVILKKRVLPIGPLVYQPNQDEEDEDYSRI





KNWLDRKEASSTVLVSFGSEFFLSKEETEAIAHGLEQSEANFIWGIRFPKGAKKNAIEEALPEG





FLERVGGRAMVVEEWVPQGKILKHGNIGGFVSHCGWNSAMESIMCGVPVIGIPMQVDQPFNAGI





LEEAGVGVEAKRDSDGKIQRDEVAKLIKEVVVERTREDIRNKLEEINEILRTRREEKLDELATE





ISLLCKN






Prunuspersica



(SEQ ID NO: 135)



MAMKQPHVIIFPFPLQGHMKPLLCLAELLCHAGLHVTYVNTHHNHQRLANRQALSTHFPTLHFE






SISDGLPEDDPRTLNSQLLIALKTSIRPHFRELLKTISLKAESNDTLVPPPSCIMTDGLVTFAE





DVAEELGLPILSFNVPCPRYLWTCLCLPKLIENGQLPFQDDDMNVEITGVPGMEGLLHRQDLPG





FCRVKQADHPSLQFAINETQTLKRASALILDTVYELDAPCISHMALMFPKIYTLGPLHALLNSQ





IGDMSRGLASHGSLWKSDLNCMTWLDSQPSKSIIYVSFGTLVHLTRAQVIEFWYGLVNSGHPFL





WVMRSDITSGDHQIPAELENGTKERGCIVDWVSQEEVLAHKSVGGFLTHSGWNSTLESIVAGLP





MICWPKLGDHYIISSTVCRQWKIGLQLNENCDRSNTESMVQTLMGSKREEIQSSMDAISKLSRD





SVAEGGSSHNNLEQLIEYIRNLQHQN






Theobroniacacao



(SEQ ID NO: 136)



MRQPHVLVLPFPAQGHIKPMLCLAELLCQAGLRVTELNTHHSHRRLNNLQDLSTREPTLHEESV






SDGLPEDHPRNLVHFMHLVHSIKNVTKPLLRDLLTSLSLKTDIPPVSCIIADGILSFAIDVAEE





LQIKVIIFRTISSCCLWSYLCVPKLIQQGELQFSDSDMGQKVSSVPEMKGSLRLHDRPYSFGLK





QLEDPNFQFFVSETQAMTRASAVIFNTFDSLEAPVLSQMIPLLPKVYTIGPLHALRKARLGDLS





QHSSFNGNLREADHNCITWLDSQPLRSVVYVSFGSHVVLTSEELLEFWHGLVNSGKRFLWVLRP





DIIAGEKDHNQIIAREPDLGTKEKGLLVDWAPQEEVLAHPSVGGFLTHCGWNSTLESMVAGVPM





LCWPKLPDQLVNSSCVSEVWKIGLDLKDMCDRSTVEKMVRALMEDRREEVMRSVDCISKLARES





VSHGGSSSSNLEMLIQELET






Corchoruscapsularis



(SEQ ID NO: 137)



MDSKQKKMSVLMFPWLAYGHISPFLELAKKLSKRNFHTFFFSTPINLNSIKSKLSPKYAQSIQF






VELHLPSLPDLPPHYHTTNGLPPHLMNTLKKAFDMSSLQFSKILKTLNPDLLVYDFIQPWAPLL





ALSNKIPAVHFACTSAAMSSFSVHAFKKPCEDFPFPNIYVHGNFMNAKFNNMENCSSDDSISDQ





DRVLQCFERSTKIILVKTFEELEGKFMDYLSVLLNKKIVPTGPLTQDPNEDEGDDDERTKLLLE





WLNKKSKSSTVFVSFGSEYFLSKEEREEIAYGLELSKVNFIWVIRFPLGENKTNLEEALPQGFL





QRVSERGLVVENWAPQAKILQHSSIGGFVSHCGWSSVMESLKFGVPIIAIPMHLDQPLNARLVV





DVGVGLEVIRNHGSLEREEIAKLIKEVVLGNGNDGEIVRRKAREMSNHIKKKGEKDMDELVEEL





MLCKMKPNSCHLS






Ziziphusjujube



(SEQ ID NO: 138)



MMERQRSIKVLMFPWLAHGHISPFLELAKRLTDRNFQIYFCSTPVNLTSVKPKLSQKYSSSIKL






VELHLPSLPDLPPHYHTTNGLALNLIPTLKKAFDMSSSSFSTILSTIKPDLLIYDFLQPWAPQL





ASCMNIPAVNFLSAGASMVSFVLHSIKYNGDDHDDEFLTTELHLSDSMEAKFAEMTESSPDEHI





DRAVTCLERSNSLILIKSFRELEGKYLDYLSLSFAKKVVPIGPLVAQDTNPEDDSMDIINWLDK





KEKSSTVFVSFGSEYYLTNEEMEEIAYGLELSKVNFTWVVRFPLGQKMAVEEALPKGFLERVGE





KGMVVEDWAPQMKILGHSSIGGFVSHCGWSSLMESLKLGVPIIAMPMQLDQPINAKLVERSGVG





LEVKRDKNGRIEREYLAKVIREIVVEKARQDIEKKAREMSNIITEKGEEEIDNVVEELAKLCGM






Vitisvinifera



(SEQ ID NO: 139)



MDARQSDGISVLMFPWLAHGHISPFLQLAKKLSKRNFSIYFCSTPVNLDPIKGKLSESYSLSIQ






LVKLHLPSLPELPPQYHTTNGLPPHLMPTLKMAFDMASPNFSNILKTLHPDLLIYDFLQPWAPA





AASSLNTPAVQFLSTGATLQSFLAHRHRKPGIEFPFQEIHLPDYEIGRLNRFLEPSAGRISDRD





RANQCLERSSRFSLIKTFREIEAKYLDYVSDLTKKKMVTVGPLLQDPEDEDEATDIVEWLNKKC





EASAVFVSFGSEYFVSKEEMEEIAHGLELSNVDFIWVVRFPMGEKIRLEDALPPGFLHRLGDRG





MVVEGWAPQRKILGHSSIGGFVSHCGWSSVMEGMKFGVPIIAMPMHLDQPINAKLVEAVGVGRE





VKRDENRKLEREEIAKVIKEVVGEKNGENVRRKARELSETLRKKGDEEIDVVVEELKQLCSY






Juglansregia



(SEQ ID NO: 140)



MDTARKRIRVVMLPWLAHGHISPFLELSKKLAKRNFHIYFCSTPVNLSSIKPKLSGKYSRSIQL






VELHLPSLPELPPQYHTTKGLPPHLNATLKRAFDMAGPHFSNILKTLSPDLLIYDFLQPWAPAI





AASQNTPAINFLSTGAAMTSFVLHAMKKPGDEFPFPEIHLDECMKTRFVDLPEDHSPSDDHNHI





SDKDRALKCFERSSGFVMMKTFEELEGKYINFLSHLMQKKIVPVGPLVQNPVRGDHEKAKTLEW





LDKRKQSSAVFVSFGTEYFLSKEEMEEIAYGLELSNVNFTWVVRFPEGEKVKLEEALPEGFLQR





VGEKGMVVEGWAPQAKILMHPSIGGFVSHCGWSSVMESIDFGVPIVAIPMQLDQPVNAKVVEQA





GVGVEVKRDRDGKLEREEVATVIREVVMGNIGESVRKKEREMRDNIRKKGEEKMDGVAQELVQL





YGNGIKNV






Heveabrasiliensis



(SEQ ID NO: 141)



METLQRRKISVLMFPWLAHGHLSPELELSKKLNKRNEHVYFCSTPVNLDSIKPKLSAEYSFSIQ






LVELHLPSSPELPLHYHTTNGLPPHLMKNLKNAFDMASSSFFNILKTLKPDLLIYDFIQPWAPA





LASSLNIPAVNFLCTSMAMSCFGLHLNNQEAKFPFPGIYPRDYMRMKVFGALESSSNDIKDGER





AGRCMDQSFHLILAKTFRELEGKYIDYLSVKLMKKIVPVGPLVQDPIFEDDEKIMDHHQVIKWL





EKKERLSTVFVSFGTEYFLSTEEMEEIAYGLELSKAHFIWVVRFPTGEKINLEESLPKRYLERV





QERGKIVEGWAPQQKILRHSSIGGFVSHCGWSSIMESMKFGVPIIAMPMNLDQPVNSRIVEDAG





VGIEVRRNKSGELEREEIAKTIRKVVVEKDGKNVSRKAREMSDTIRKKGEEEIDGVVDELLQLC





DVKTNYLQ






Manihotesculenta



(SEQ ID NO: 142)



MATAQTRKISVLMFPWLAHGHLSPFLELSKKLANRNFHVYFCSTPVNLDSIKPKLSPEYHFSIQ






FVELHLPSSPELPSHYHTTNGLPPHLMKTLKKAFDMASSSFFNILKTLNPDLLIYDFLQPWAPA





LASSLNIPAVNFLCSSMAMSCFGLNLNKNKEIKFLFPEIYPRDYMEMKLFRVFESSSNQIKDGE





RAGRCIDQSFHVILAKTFRELEGKYIDYVSVKCNKKIVPVGPLVEDTIHEDDEKTMDHHHHHHD





EVIKWLEKKERSTTVFVSFGSEYFLSKEEMEEIAHGLELSKVNFIWVVRFPKGEKINLEESLPE





GYLERIQERGKIVEGWAPQRKILGHSSIGGFVSHCGWSSIMESMKLGVPIIAMPMNLDQPINSR





IVEAACVGIEVSRNQSGELEREEMAKTIRKVVVEREGVYVRRKAREMSDVLRKKGEEEIDGVVD





ELVQLCDMKTNYL






Cephalotusfollicularis



(SEQ ID NO: 143)



MDLKRRSIRVLMLPWLAHGHISPFLELAKKLTNRNFLIYFCSTPINLNSIKPKLSSKYSFSIQL






VELHLPSLPELPPHYHTTNGLPLHLMNTLKTAFDMASPSFLNILKTLKPDLLICDHLQPWAPSL





ASSLNIPAIIFPTNSAIMMAFSLHHAKNPGEEFPFPSININDDMVKSINFLHSASNGLTDMDRV





LQCLERSSNTMLLKTFRQLEAKYVDYSSALLKKKIVLAGPLVQVPDNEDEKIEIIKWLDSRGQS





STVFVSFGSEYFLSKEEREDIAHGLELSKVNFIWVVRFPVGEKVKLEEALPNGEAERIGERGLV





VEGWAPQAMILSHSSIGGFVSHCGWSSMMESMKFGVPIIAMPMHIDQPLNARLVEDVGVGLBIK





RNKDGRFEREELARVIKEVLVYKNGDAVRSKAREMSEHIKKNGDQEIDGVADALVKLCEMKTNS





LNQD






Steviarebaudiana UGT74G1



(SEQ ID NO: 144)



MAEQQKIKKSPHVLLIPFPLQGHINPFIQFGKRLISKGVKTTLVTTIHTLNSTLNHSNTTTTSI






EIQAISDGCDEGGFMSAGESYLETFKQVGSKSLADLIKKLQSEGTTIDAIIYDSMTEWVLDVAI





EFGIDGGSFFTQACVVNSLYYHVHKGLISLPLGETVSVPGFPVLQRWETPLILQNHEQIQSPWS





QMLFGQFANIDQARWVFTNSFYKLEEEVIEWTRKIWNLKVIGPTLPSMYLDKRLDDDKDNGFNL





YKANHHECMNWLDDKPKESVVYVAFGSLVKHGPEQVEEITRALIDSDVNFLWVIKHKEEGKLPE





NLSEVIKTGKGLIVAWCKQLDVLAHESVGCFVTHCGFNSTLEAISLGVPVVAMPQFSDQTTNAK





LLDEILGVGVRVKADENGIVRRGNLASCIKMIMEEERGVIIRKNAVKWKDLAKVAVHEGGSSDN





DIVEFVSELIKA






Steviarebaudiana UGT76G1



(SEQ ID NO: 145)



MENKTETTVRRRRRIILFPVPFQGHINPTLQLANVLYSKGFSITIFHTNFNKPKTSNYPHFTFR






FILDNDPQDERISMLPTHGPLAGMRIPIINEHGADELRRELELLMLASEEDEEVSCLITDALWY





FAQSVADSLNLRRLVLMTSSLFNFHAHVSLPQFDELGYLDPDDKTRLEEQASGFPMLKVKDIKS





AYSNWQILKEILGKMIKQTKASSGVIWNSFKELEESELETVIREIPAPSFLIPLPKHLTASSSS





LLDHDRTVFQWLDQQPPSSVLYVSFGSTSEVDEKDFLEIARGLVDSKQSFLWVVRPGFVKGSTW





VEPLPDGFLGERGRIVKWVPQQEVLAHGAIGAFWTHSGWNSTLESVCEGVPMIFSDFGLDQPLN





ARYMSDVLKVGVYLENGWERGEIANAIRRVMVDEEGEYIRQNARVLKQKADVSLMKGGSSYESL





ESLVSYISSL






Steviarebaudiana UGT85C2



(SEQ ID NO: 146)



MDAMATTEKKPHVIFIPFPAQSHIKAMLKLAQLLHHKGLQITEVNTDFIHNQFLESSGPHCLDG






APGFRFETIPDGVSHSPEASIPIRESLLRSIETNFLDRFIDLVTKLPDPPTCIISDGFLSVFTI





DAAKKLGIPVMMYWTLAACGFMGFYHIHSLIEKGFAPLKDASYLTNGYLDTVIDWVPGMEGIRL





KDFPLDWSTDLNDKVLMFTTEAPQRSHKVSHHIFHTFDELEPSIIKTLSLRYNHIYTIGPLQLL





LDQIPEEKKQTGITSLHGYSLVKEEPECFQWLQSKEPNSVVYVNFGSTTVMSLEDMTEFGWGLA





NSNHYFLWIIRSNLVIGENAVLPPELEEHIKKRGFIASWCSQEKVLKHPSVGGFLTHCGWGSTI





ESLSAGVPMICWPYSWDQLTNCRYICKEWEVGLEMGTKVKRDEVKRLVQELMGEGGHKMRNKAK





DWKEKARIAIAPNGSSSLNIDKMVKEITVLARN






Steviarebaudiana UGT91D1



(SEQ ID NO: 147)



MYNVTYHQNSKAMATSDSIVDDRKQLHVATFPWLAEGHLLPFLQLSKLIAEKGHKVSFLSTTRN






IQRLSSHISPLINVVQLTLPRVQELPEDAEATTDVHPEDIQYLKKAVDGLQPEVTRFLEQHSPD





NIIYDFTHYWLPSIAASLGISRAYFCVITPWTIAYLAPSSDAMINDSDGRTTVEDLTTPPKWFP





FPTKVCWRKHDLARMEPYEAPGISDGYRMGMVFKGSDCLLFKCYHEFGTQWLPLLETLHQVPVV





PVGLLPPEIPGDEKDETWVSIKKWLDGKQKGSVVYVALGSEALVSQTEVVELALGLELSGLPFV





WAYRKPKGPAKSDSVELPDGFVERTRDRGLVWTSWAPQLRILSHESVCGFLTHCGSGSIVEGLM





FGHPLIMLPIFCDQPLNARLLEDKQVGIEIPRNEEDGCLTKESVARSLRSVVVENEGEIYKANA





RAISKIYNDTKVEKEYVSQFVDYLEKNARAVAIDHES





Stevia rebaudiana UGT91D2


(SEQ ID NO: 148)



MATSDSIVDDRKQLHVATFPWLAFGHILPYLQLSKLIAEKGHKVSFLSTTRNIQRLSSHISPLI






NVVQLTLPRVQELPEDAEATTDVHPEDIPYLKKASDGLQPEVTRFLEQHSPDWIIYDYTHYWLP





SIAASLGISRAHFSVTTPWAIAYMGPSADAMINGSDGRTTVEDLTTPPKWFPFPTKVCWRKHDL





ARLVPYKAPGISDGYRMGLVLKGSDCLLSKCYHEFGTQWLPLLETLHQVPVVPVGLLPPEVPGD





EKDETWVSIKKWLDGKQKGSVVYVALGSEVLVSQTEVVELALGLELSGLPFVWAYRKPKGPAKS





DSVELPDGFVERTRDRGLVWTSWAPQLRILSHESVCGFLTHCGSGSIVEGLMFGHPLIMLPIFG





DQPLNARLLEDKQVGIEIPRNEEDGCLTKESVARSLRSVVVEKEGEIYKANARELSKIYNDTKV





EKEYVSQFVDYLEKNTRAVAIDHES






Steviarebaudiana UGT91D2e



(SEQ ID NO: 149)



MATSDSIVDDRKQLHVATFPWLAFGHILPYLQLSKLIAEKGHKVSFLSTTRNIQRLSSHISPLI






NVVQLTLPRVQELPEDAEATTDVHPEDIPYLKKASDGLQPEVTRFLEQHSPDWIIYDYTHYWLP





SIAASLGISRAHFSVTTPWAIAYMGPSADAMINGSDGRTTVEDLTTPPKWFPFPTKVCWRKHDL





ARLVPYKAPGISDGYRMGLVLKGSDCLLSKCYHEFGTQWLPLLETLHQVPVVPVGLLPPEIPGD





EKDETWVSIKKWLDGKOKGSVVYVALGSEVLVSQTEVVELALGLELSGLPFVWAYRKPKGPAKS





DSVELPDGFVERTRDRGLVWTSWAPQLRILSHESVCGFLTHCGSGSIVEGLMFGHPLIMLPIFG





DQPLNARLLEDKQVGIEIPRNEEDGCLTKESVARSLRSVVVEKEGEIYKANARELSKIYNDTKV





EKEYVSQFVDYLEKNARAVAIDHES





OsUGT1-2


(SEQ ID NO: 150)



MDSGYSSSYAAAAGMHVVICPWLAFGHLLPCLDLAQRLASRGHRVSFVSTPRNISRLPPVRPAL






APLVAFVALPLPRVEGLPDGAESTNDVPHDRPDMVELHRRAFDGLAAPFSEFLGTACADWVIVD





VFHHWAAAAALEHKVPCAMMLLGSAHMIASIADRRLERAETESPAAAGQGRPAAAPTFEVARMK





LIRTKGSSGMSLAERFSLTLSRSSLVVGRSCVEFEPETVPLLSTLRGKPITFLGLMPPLHEGRR





EDGEDATVRWLDAQPAKSVVYVALGSEVPLGVEKVHELALGLELAGTRFLWALRKPTGVSDADL





LPAGFEERTRGRGVVATRWVPQMSILAHAAVGAFLTHCGWNSTIEGLMFGHPLIMLPIFGDQGP





NARLIEAKNAGLQVARNDGDGSFDREGVAAAIRAVAVEEESSKVFQAKAKKLQEIVADMACHER





YIDGFIQQLRSYKD






Arabidopsisthaliana AAN72025.1



(SEQ ID NO: 151)



MGSISEMVFETCPSPNPIHVMLVSFQGQGHVNPLLRLGKLIASKGLLVTEVTTELWGKKMRQAN






KIVDGELKPVGSGSIRFEFFDEEWAEDDDRRADFSLYIAHLESVGIREVSKLVRRYEEANEPVS





CLINNPFIPWVCHVAEEFNIPCAVLWVQSCACFSAYYHYQDGSVSFPTETEPELDVKLPCVPVI





KNDEIPSFLHPSSRFTGFRQAILGQFKNLSKSFCVLIDSFDSLEREVIDYMSSLCPVKTVGPLE





KVARTVTSDVSGDICKSTDKCLEWLDSRPKSSVVYISFGTVAYLKQEQIEEIAHGVLKSGLSFL





NVIRPPPHDLKVETHVLPQELKESSAKGKGMIVDWCPQEQVLSHPSVACFVTHCGWNSTMESLS





SGVPVVCCPQWGDOVTDAVYLIDVFKTGVRLGRGATEERVVPREEVAFKTLEATVGEKAEELRK





NALKWKAEAEAAVAPGGSSDKNFREFVEKLGAGVTKTKDNGY






Arabidopsis thaliana AAF87256.1



(SEQ ID NO: 152)



MGSHVAQKQHVVCVPYPAQGHINPMMKVAKLLYAKGFHITFVNTVYNHNRLLRSRGPNAVDGLP






SFRFESIPDGLPETDVDVTQDIPTLCESTMKHCLAPFKELLRQINARDDVPPVSCIVSDGCMSF





TLDAAEELGVPEVLFWTTSACGFLAYLYYYRFIEKGLSPIKDESYLTKEHLDTKIDWIPSMKNL





RLKDIPSFIRTTNPDDIMLNFIIREADRAKRASAIILNTFDDLEHDVIQSMKSIVPPVYSIGPL





HLLEKQESGEYSEIGRTGSNLWREETECLDWLNTKARNSVVYVNFGSITVLSAKQLVEFAWGLA





ATGKEFLWVIRPDLVAGDEAMVPPEFLTATADRRMLASWCPQEKVLSHPAIGGFLTHCGWNSTL





ESLCGGVPMVCWPFFAEQQTNCKFSRDEWEVGIEIGGDVKREEVEAVVRELMDEEKGKNMREKA





EEWRRLANEATEHKHGSSKLNFEMLVNKVLLGE






Columbalivia CIUGTI



(SEQ ID NO: 153)



MIHCGKKHICAFVTCILISASILMYSWKDPQLQNNITRKIFQATSALPASQLCRGKPAQNVITA






LEDNRTFIISPYFDDRESKVTRVIGIVHHEDVKQLYCWFCCQPDGKIYVARAKIDVHSDRFGFP





YGAADIVCLEPENCNPTHVSIHQSPHANIDQLPSFKIKNRKSETFSVDFTVCISAMFGNYNNVL





QFIQSVEMYKILGVQKVVIYKNNCSQLMEKVLKFYMEEGTVEIIPWPINSHLKVSTKWHFSMDA





KDIGYYGQITALNDCIYRNMQRSKFVVLNDADELILPLKHLDWKAMMSSLQEQNPGAGIFLFEN





HIFPKTVSTPVFNISSWNRVPGVNILQHVHREPDRKEVFNPKKMIIDPRQVVQTSVHSVLRAYG





NSVNVPADVALVYHCRVPLQEELPRESLIRDTALWRYNSSLITNVNKVLHQTVL






Haemophilusducreyi LgtE Q9L875



(SEQ ID NO: 154)



MPTLTVAMIVKNEAQDLAECLKTVDGWVDEIVIVDSGSTDDTLKIATQFNAKVYVNSDWQGFGP






QRQFAQQYVTSDYVLWLDADERVTPELKASILQAVQHNQKNTVYKVSRLSEIFGKEIRYSGWYP





DYVVRLYPTYLAKYGDELVHEKVHYPADSRVEKLQGDLLHFTYKNIHHYLVKSASYAKAWAMQR





AKAGKKASLLDGVTHAIACFLKMYLFKAGFLDGKQGFLLAVLSAHSTFVKYADLWDRTRS






Neisseriagonorrhoeae Q5F735



(SEQ ID NO: 155)



MKKVSVLIVAKNEANHIRECIESCRFDKEVIVIDDHSADNTAEIAEGLGAKVFRRHLNGDFGAQ






KTFAIEQAGGEWVFLIDADERCTPELSDEISKIVRTGDYAAYPVERRNLFPNHPATHGAMRPDS





VCRLMPKKGGSVQGKVHETVQTPYPERRLKHFMYHYTYDNWEQYFNKFNKYTSISAEKYREQGK





PVSFVRDIILRPIWGFFKIYILNKGFLDGKMGWIMSVNHSYYTMIKYVKLYYLYKSGGKE






Rhizobiummeliloti (strain 1021) ExoM P33695



(SEQ ID NO: 156)



MPNETLHIDIGVCTYRRPELAETLRSLAAMNVPERARLRVIVADNDAEPSARALVEGLRPEMPF






DILYVHCPHSNISIARNCCLDNSTGDFLAFLDDDETVSGDWLTRLLETARTTGAAAVLGPVRAH





YGPTAPRWMRSGDFHSTLPVWAKGEIRTGYTCNALLRRDAASLLGRRFKLSLGKSGGEDTDFFT





GMHCAGGTIAFSPEAWVHEPVPENPASLAWLAKRRFRSGQTHGRLLAEKAHGLROAWNIALAGA





KSGFCATAAVLCFPSAARRNRFALRAVLHAGVISGLLGLKEIEQYGAREVTSA






Rhizobiumradiobacter Q44418



(SEQ ID NO: 157)



MCRCGRAVRSRPVCRPGQLVVRRSPRPRSRNHSRCRPLRLSVFPRPHRRVRHHCQRDLRWEPGR






NIAVRWKAARSHRRFRRCPFPRQLVWPVRERHRDAGDRRNQRERRRRDAYHEISEPKFRTRKRT





ESFWMNKAITVIVWLLVSLCVLAIITMPVSLQTHLVATAISLILLATIKSFNGQGAWRLVALGF





GTAIVLRYVYWRTTSTLPPVNQLENFIPGFLLYLAEMYSVVMLGLSLVIVSMPLPSRKTRPGSP





DYRPTVDVFVPSYNEDAELLANTLAAAKNMDYPADRFTVWLLDDGGSVQKRNAANIVEAQAAQR





RHEELKKLCEDLDVRYLTRERNVHAKAGNLNNGLAHSTGELVTVFDADHAPARDFLLETVGYFD





EDPRLFLVQTPHFFVNPDPIERNLRTFETMPSENEMFYGIIQRGLDKWNGAFFCGSAAVLRREA





LQDSDGFSGVSITEDCETALALHSRGWNSVYVDKPLIAGLQPATFASFIGQRSRWAQGMMQILI





FRQPLFKRGLSFTQRLCYMSSTLFWLFPFPRTIFLEAPLFYLFFDLQIFVASGGEFLAYTAAYM





LVNLMMQNYLYGSFRWPWISELYEYVQTVHLLPAVVSVIFNPGKPTFKVTAKDESIAEARLSEI





SRPFFVIFALLLVAMAFAVWRIYSEPYKADVTLVVGGWNLLNLIFAGCALGVVSERGDKSASRR





ITVKRRCEVQLGGSDTWVPASIDNVSVHGLLINIFDSATNIEKGATAIVKVKPHSEGVPETMPL





NVVRTVRGEGFVSIGCTFSPQRAVDHRLIADLIFANSEQWSEFQRVRRKKPGLIRGTAIFLAIA





LFQTQRGLYYLVRARRPAPKSAKPVGAVK






Streptococcusagalactiae cpsI 087183



(SEQ ID NO: 158)



MIKKIEKDLISVIVPIYNVEDYLVECIESLIVQTYRNIEILLINDGSTDNCATIAKEFSERDCR






VIYIEKSNGGLSEARNYGIYHSKGKYLTFVDSDDKVSSDYIANLYNAIQKHDSSIAIGGYLEFY





ERHNSIRNYEYLDKVIFVEEALLNMYDIKTYGSIFITAWGKLFHKSIFNDLEFALNKYHEDEFF





NYKAYLKANSITYIDKPLYHYRIRVGSIMNNSDNVIIARKKLDVLSALDERIKLITSLRKYSVF





LQKTEIFYVNQYFRTKKFLKQQSVMFKEDNYIBAYRMYGRLLRKVKLVDKLKLIKNRFF






Streptococcuspneumoniae cps33 054611



(SEQ ID NO: 159)



MYTFILMLLDFFQNHDFHFFMLFFVFILIRWAVIYFHAVRYKSYSCSVSDEKLFSSVIIPVVDE






PLNLFESVLNRISRHKPSEIIVVINGPKNSRLVKLCHDFNEKLENNMTPIQCYYTPVPGKRNAI





RVGLEHVDSQSDITVLVDSDTVWTPRTLS3LLKPFVCDKKIGGVTTRQKILDPERNLVTMFANL





LEEIRAEGTMKAMSVTGKVGCLPGRTIAFRNIVERVYTKFIEETFMGFHKEVSDDRSLTNLTLK





KGYKTVMQDTSVVYTDAPTSWKKFIRQQLRWAEGSQYNNLKMTPWMIRNAPLMFFIYFTDMILP





MLLISFGVNIFLLKILNITTIVYTASWWEEILYVLLGMIFSFGGRNFKAMSRMKWYYVFLIPVF





IIVLSIIMCPIRLLGLMRCSDDLGWGTRNLTE





MbUGTc13


(SEQ ID NO: 160)



MADAMATTEKKPHVIFIPFPAQSHIKAMLKLAQLLHHKGLQITFVNTDFIHNQFLESSGPHCLD






GAPGFRFETIPDGVSHSPEASIPIRESLLRSIETNFLDRFIDLVTKLPDPPTCIISDGFLSVFT





IDAAKKLGIPVMMYWTLAACGFMGFYHIHSLIEKGFAPLKDASYLTNGYLDTVIDWVPGMEGIR





LKDFPLDWSTDLNDKVLMFTTEATQRSHKVSHKIFHTFDELEPSIIKTLSLRYNHIYTIGPLQL





LLDQIPEEKKQTGITSLHGYSLVKEEPECFQWLQSKEPNSVVYVNFGSTTVMSLEDMTEFGWGL





ANSNHYFLWIIRSNLVIGENAVLPPELEEHIKKRGFIASWCSQEKVLKHFSVGGFLTHCGWGST





IESLSAGVPMICWPYSWDQLTNCRYICKEWEVGLEMGTKVKRDEVKRLVQELMGEGGHKMRNKA





KDWKEKARIAIAPNGSSSLNIDKMVKEITVLARN





MbUGTc19


(SEQ ID NO: 161)



MANHHECMNWLDDKPKESVVYVAFGSLVKIGPEQVEEITRALIDSDVNFLWVIKHKEEGKLPEN






LSEVIKTGKGLIVAWCKQLDVLAHESVGOFVTHCGENSTLEASLGVPVVAMPQFSDQTTNAKL





LDEILGVGVRVKADENGIVRRGNLASCIKMIMEEERGVIIRKNAVKWKDLAKVAVHEGGSSDND





IVEFVSELIKAGSGEQQKIKKSPHVLLIPFPLQGHINPFIQFGKRLISKGVKTTLVTTIHTLNS





TLNHSNTTTTSIEIQAISDGCDEGGFMSAGESYLETFKQVGSKSLADLIKKLQSEGTTIDAIIY





DSMTEWVLDVAIEFGIDGGSFFTQACWNSLYYHVHKGLISLPLGETVSVPGFPVLQRWETPLI





LQNHEQIQSPWSQMLFGQFANIDQARWVFTNSFYKLEEEVIEWTRKIWNLKVIGPTLPSMYLDK





RLDDDKDNGFNLYKA





MbUGT1-3


(SEQ ID NO: 162)



MENKTETTVRRRRRIILFPVPFQGHINPILQLANVLYSKGFSITIFHTNFNKPKTSNYPHFTFR






FILDNDPQDERISNLPTHGPLAGMRIPIINEHGADELRRELELLMLASEEDEEVSCLITDALWY





FAQSVADSLNLRRLVLMTSSLFNFHAHVSLPQFDELGYLDPDDKTRLEEQASGFPMLKVKDIKS





AYSNWQILKEILGKMIKQTKASSGVIWNSFKELEESELETVIREIPAPSFLIPLPKHLTASSSS





LLDHDRTVFQWLDQQPPSSVLYVSFGSTSEVDEKDFLEIARGLVDSKQSFLWVVRPGFVKGSTW





VEPLPDGFLGERGRIVKWVPQQEVLAHGAIGAFWTHSGWNSTLESVCEGVPMIFSDFGLDQPLN





ARYMSDVLKVGVYLENGWERGEIANAIRRVMVDEEGEYIRQNARVLKQKADVSLMKGGSSYESL





ESIVSYISSI





MbUGT1-2


(SEQ ID NO: 163)



MATKGSSGMSLAERFWLTLSRSSLVVGRSCVEFEPETVPLLSTLRGKPITFLGLMPPLHEGRRE






DGEDATVRWLDAQPAKSVVYVALGSEVPLGVEKVHELALGLELAGTRFLNALRKPTGVSDADLL





PAGFEERTRGRGVVATRWVPQMSILAHAAVGAFLTHCGWNSTIEGLMFGHPLIMLPIFGDQGPN





ARLIEAKNAGLQVARNDGDGSFDREGVAAAIRAVAVEEESSKVFQAKAKKLQEIVADMACHERY





IDGFIQQLRSYKDDSGYSSSYAAAAGMHVVICPWLAFGHLLPCLDLAQRLASRGHRVSFVSTPR





NISRLPPVRPALAPLVAFVALPLPRVEGLPDGAESTNDVPHDRPDMVELHRRAFDGLAAPFSEE





LGTACADWVIVDVFHHWAAAAALEHKVPCAMMLLGSAEMIASIADERLEHAETESPAAAGQGRP





AAAPTFEVARMKLIR






Coffeaarabica (CaUGT_1, 6)



(SEQ ID NO: 164)



MAENHATFNVLMLPWLAHGHVSPYLELAKKLTARNFNVYLCSSPATLSSVRSKLTEKFSQSIHL






VELHLPKLPELPAEYHTTNGLPPHLMPTLKDAFDMAKPNFCNVLKSLKPDLLIYDLLQPWAPEA





ASAFNIPAVVFISSSATMTSFGLHFFKNPGTKYPYGNAIFYRDYESVFVENLTRRDRDTYRVIN





CMERSSKIILIKGFNEIEGKYFDYFSCLTGKKVVPVGPLVQDPVLDDEDCRIMQWLNKKEKGST





VFVSFGSEYFLSKKDMEEIAHGLEVSNVDFIWVVRFPKGENIVIEETLPKGFFERVGERGLVVN





GWAPQAKILTHPNVGGFVSHCGWNSVMESMKFGLPIIAMPMHLDQPINARLIEEVGAGVEVLRD





SKGKLHRERMAETINKVMKEASGESVRKKARELQEKLELKGDEEIDDVVKELVQLCATKNKRNG





LHYY






Steviarebaudiana UGT85C1



(SEQ ID NO: 165)



MADQMAKIDEKKPHVVFIPFPAQSHIKCMLKLARILHQKGLYITFINTDTNHERLVASGGTQWL






ENAPGFWFKTVPDGFGSAKDDGVKPTDALRELMDYLKTNFFDLFLDLVLKLEVPATCIICDGCM





TFANTIRAAEKLNIPVILFWTMAACGFMAFYQAKVLKEKEIVPVKDETYLTNGYLDMEIDWIPG





MKRIRLRDLPEFILATKQNYFAFEFLFETAQLADKVSHMIIHTFEELEASLVSEIKSIFPNVYT





IGPLQLLLNKITQKETNNDSYSLWKEEPECVEWLNSKEPNSVVYVNFGSLAVMSLQDLVEFGWC





LVNSNHYFLWIIRANLIDGKPAVMPQELKEAMNEKGFVGSWCSQEEVLNHPAVGGFLTHCGWGS





IIESLSAGVPMLGWPSIGDQRANCRQMCKEWEVGMEIGKNVKRDEVEKLVRMLMEGLEGERMRK





KALEWKKSATLATCCNGSSSLDVEKLANEIKKLSRN






Arabidopsisthaliana AtUCT7303



(SEQ ID NO: 202)



MATEKTHQFHPSLHFVLFPFMAQGHMIPMIDIARLLAQRGVTITIVTTPHNAARFKNVLNRAIE






SGLAINILHVKFPYQEFGLPEGKENIDSLDSTELMVPFFKAVNLLEDPVMKLMEEMKPRPSCLI





SDVVCLPYTSIIAKNFNPKIVFHGMGCFNLLCMHVLRRNLEILENVKSDEEYFLVPSFPDRVEE





TKLQLPVKANASGDWKEIMDEMVKAEYTSYGVIVNTFQELEPPYVKDYKEAMDGKVWSIGPVSL





CNKAGADKAERGSKAAIDQDECLQWLDSKEEGSVLYVCLGSICNLPLSQLKELGLGLEESRRSF





IWVIRGSEKYKELFEWMLESGFEERIKERGLLIKGWAPQVLILSHPSVGGFLTHCGWNSTLEGI





TSGIPLITWPIFGDQFCNQKLVVQVLKAGVSAGVEEVMKWGEEDKIGVLVDKEGVKKAVEELMG





DSDDAKERRRRVKELGELAHKAVEKGGSSHSNITLLLQDIMQLAQFKN






Hordeumvulgare subsp. Vulgare HVUGT_B1



(SEQ ID NO: 204)



MAQAESERMRVVMFPWLAHGHINPYLELAKRLIASASGDHHLDVVVHLVSTPANLAPLAHHQTD






RLRLVELHLPSLPDLPPALHTTKGLPARLMPVLKRACDLAAPRFGALLDELCPDILVYDFIQPW





APLEAEARGVPAFHFATCGAAATAFFIHCLKTDRPPSAFPFESISLGGVDEDAKYTALVTVRED





STALVAERDRLPLSLERSSGFVAVKSSADIERKYMEYLSQLLGKEIIPTGPLLVDSGGSEEQRD





GGRIMRWLDGEEPGSVVFVSFGSEYFMSEHQMAQMARGLELSGVPFLWVVRFPNAEDDARGAAR





SMPPGFEPELGLVVEGWAPQRRILSHPSCGAFLTHCGWSSVLESMAAGVPMVALPLHIDQPLNA





NLAVELGAAAARVKQERFGEPTAEEVARAVRAAVKGKEGEAARRRARELQEVVARNNGNDGQIA





TLLQRMARLCGKDQAVPN






Hordeumvulgare subsp. Vulgare HVUGT_B3



(SEQ ID NO: 205)



MAEANDGGKMHVVMLPWLAFGHVLPFTEFAKRVARQGHRVTLLSAPRNTRRLIDIPPGLAGLIR






VVHvPLPRVDGLPEHAEATIDLPSDHLRPCLRRAFDAAFERELSRLLQEEAKPDWVLVDYASYW





APTAAARHGVPCAFLSLFGAAALSFFGTPETLLGIGRHAKTEPAHLTVVPEYVPFPTTVAYRGY





EARELFEPGMVPDDSGVSEGYRFAKTIEGCQLVGIRSSSEFEPEWLRLLGELYRKPVIPVGLFP





PAPQDDvAGHEATLRWLDGQAPSSVVYAAFGSEVKLTGAOLQRIALGLEASGLPFIWAFRAPTS





TETGAASGGLPEGFEERLAGRGVVCRGVVPQVKFLAHASVGGFLTHAGWNSIAEGLAHGVRLVL





LPLVFEQGLNARNIVDKNIGVEVARDEQDGSFAAGDIAAALRRVMVEDEGEGFGAKVKELAKVF





GDDEVNDQCVREFLMHLSDHSKKNQGQD





MbUGT1, 2.2


(SEQ ID NO: 206)



MATKGSSGMSLAERFWLTLSRSSLVVGRSCVEFEPETVPLLSTLRGKPITFLGLMPPLHEGRRE






DGEDATVRWLDAQPAKSVVYVALGSEVPLGVEKVHELALGLELAGTRFLWALRKPTGVSDADLL





PAGFEERTRGRGVVATRWVPQMSILAHAAVGAFLTHCGWNSTIEGLMFGHPLIMLPIFGDQGPN





ARLIEAKNAGLQVARNDGDGSFDREGVAAAIRAVAVEEESSKvFQAKAKKLQEIVADMACHERY





IDGFIQQLRSYKDDSGYSSSYAAAAGMHVVICPWLAFGHLLPCLDLAQRLASRGHRVSFVSTPR





NISRLPPVRPALAPLVAFVALPLPRVEGLPDGAESTNDVPHDRPDMVELHRRAFDGLAAPFSEF





LGTACADWVIVDVFHHWAAAAALEHKVPCAMMLLGSAEMIASIADERLEHAETESPAAAGQGRP





AAAPTFEVARMKLIR






Coffeacanephora (CCUGT_1, 6) (207)



MAENHATFNVLMLPWLARGHVSPYLELAMKLTARNFNVYLCSSPATLSSVRSKLTEKFSQSIHL





VELHLPKLPELPAEYHTTNGLPPHLMPTLKDAFDMAKPNFCNVLKSLKPDLLIYDLLQPWAPEA





ASAFNTPAVVFISSSATMTSFGLHFFKNPGTKYPYGNTIFYRDYESVFVENLKKRDRDTYRVVN





CMERSSKIILIKGFKEIEGKYFDYFSCLTGKKVVPVGPLVQDPVLDDEDCRIMQWLNKKEKGST





VFVSFGSEYFLSKEDMEEIAHGLELSNVDFIWVVRFPKGENIVIEETLPKGFFERVGERGLVVN





GWAPQAKILTHPNVGGFVSHCGWNSVMESMKFGLPIVAMPMHLDQPINARLIEEVCAGVEVLRD





SKGKLHRERMAETINKVTKEASGEPARKKARELQEKLELKGDEEIDDWKELVQLCATKNKRNG





LHCYN






Coffeaeugenioides (CeUGT_1, 6) (208)



MAENHATFNVLMLPWLAHGHVSPYLELAKKLTARNFNVYLCSSPATLSSVRSKLTEKFSQSIHL





VELHLPKLPELPAEYHTTNGLPPHLMPTLKDAFDMAEPNFCNVLKSLKPDLLIYDLLQPWAPEA





ASAFNIPAVVFISSSATMTSFGLHFFKNPGTKYPYGNTIFYRDYESVFVENLKRRDRDTYRVVN





CMERSSKIILIKGFKEIEGKYFDYFSCLTGKKVVPVGPLVQDPVLDDEDCRIMQWLNKKEKGST





VEVSFGSEYFLSKEDMEEIAHGLELSNVDFIWVVREPKGENIVIEETLPKGEFERVGERGLVVN





GWAPQAKILTHPNVGGFVSHCGWNSVMESMKFGLPIIAMPMHLDQPINARLIEEVGAGVEVLRD





SKGKLHRERMAETINKVTKEASGESVRKKARELQEKLELKGDEEIDDVVKELVQLCATKNKRNG





LHYN






Coffeaeugenioides (CeUGT 1, 6.2) (209)



MAENHATFNVLMLPWLAHGHVSPYLELAKKLTARNFNVYLCSSPATLSSVRSKLTEKFSQSIHL





VELHLPKLPELPABYHTTNGLPPHLMPTLKDAFDMAKPNFCNVLKSLKPDLLIYDLLQPWAPEA





ASAFNIPAVVFISSSATMTSFGLHFFKNPGTKYPYGNAIFYRDYESVFVENLTRRDRDTYRVIN





CMERSSKIILIKGFNEIEGKYFDYFSCLTGKKVVPVGPLVQDPVLDDEDCEIMQWLNKKEKVST





VFVSFGSEYFLSKKDMEEIAHGLELSNVDFIWVVRFPKGENIVIEETLPKGFFERVGERGLVVN





GWAPQAKILTEPNVGGFVSHCGWNSVMESMKFGLPIIAMPMHLDQPINARLIEEVGAGVEVLRD





SKGKLHRERMAETINKVMKEASGESVRKKARELQEKMDLKGDEEIDDVVKELVQLCATKNKRNG





LHYY






Siraitiagrosvenorii (SgUGT94-289-3.2) (210)



MADAAQQGDTTTILMLPWLGYGHLSAFLELAKSLSRRNFHIYFCSTSVNLDAIKPKLPSSFSDS





IQFVELHLPSSPEFPPHLHTTNGLPPTLMPALHQAFSMAAQHFESILQTLAPHLLIYDSLQPWA





PRVASSLKIPAINFNTTGVFVISQGLHPIHYPHSKFPFSEFVLHNHWKAMYSTADGASTERTRK





RGEAFLYCLHASCSVILINSFRELEGKYMDYLSVLLNKKVVPVGPLVYEPNQDGEDEGYSSIKN





NLDKKEPSSTVFVSFGSEYFPSKEEMEEIAHGLEASEVNFIWVVRFPQGDNTSGIEDALPKGFL





ERAGERGMVVKGWAPQAKILKHWSTGGFVSHCGWNSVMESMMFGVPIIGVPMHVDQPFNAGLVE





EAGVGVEAKRDPDGKIQRDEVAKLIKEVVVEKTREDVRKKAREMSEILRSKGEEKFDEMVAEIS





LLLKI






Oryzasativa (OsJUGT 1, 6)



(SEQ ID NO: 211)



MAQAERERLRVLMFPWLAHGHINPYLELATRLTTTSSSQIDVVVHLVSTPVNLAAVAHRRTDRI






SLVELHLPELPGLPPALHTTKHLPPRLMPALKRACDLAAPAFGALLDELSPDVVLYDFIQPWAP





LEAAARGVPAVHFSTCSAAATAFFLHFLDGGGGGGGRGAFPFEAISLGGAEEDARYTMLTCRDD





CTALLPKGERLPLSFARSSEFVAVKTCVEIESKYMDYLSKLVGKEIIPCGPLLVDSGDVSAGSE





ADGVMRWLDGQEPGSVVLVSFGSEYFMTEKQLAEMARGLELSGAAFVWVVRFPQQSPDGDEDDH





GAAAARAMPPGFAPARGLVVEGWAPQRRVLSHRSCGAFLTHCGWSSVMESMSAGVPMVALPLHI





DQPVGANLAAELGVAARVRQERFGEFEAEEVARAVRAVMRGGEALRRRATELREVVARRDAECD





EQIGALLHRMARLCGKGTGRAAQLGH






Panaxginseng (PsUGT94_B1)



(SEQ ID NO: 213)



MADNQNGRISIALLPFLAHGHISPFFELAKQLAKRNCNVFLCSTPINLSSIKDKDSSASIKLVE






LHLPSSPDLPPHYHTTNGLPSHLMLPLRNAFETAGPTFSEILKTLNPDLLIYDFNPSWAPEIAS





SHNIPAVYFLTTAAASSSIGLHAFKNPGEKYPFPDFYDNSNITPEPPSADNMKLLHDFIACFER





SCDIILIKSFRELEGKYIDLLSTLSDKTLVPVGPLVQDPMGHNEDPKTEQIINWLDKRAESTVV





FVCFGSEYFLSNEELEEVAIGLEISTVNFIWAVRLIEGEKKGILPEGFVQRVGDRGLVVEGWAP





QARILGHSSTGGFVSHCGWSSIAESMKFGVPVIAMARHLDQPLNGKLAAEVGVGMEVVRDENGK





YKREGIAEVIRKVVVEKSGEVIRRKARELSEKMKEKGEQEIDRALEELVQICKKKKDEQ






Steviarebaudiana (SrUGT73E1, with optional His tag)



(SEQ ID NO: 214)



MAHHHHHHVGTGSNDDDDKSPDPNWASTSELVFIPSPGAGHLPPTVELAKLLLHRDQRLSVTII






VMNLWLGPKHNTEARPCVPSLRFVDIPCDESTMALISPNTFISAFVEHHKPRVRDIVRGIIESD





SVRLAGEVLDMECMPMSDVANEFGVPSYNYETSGAATLGLMEHLQWKRDHEGYDATELKNSDTE





LSVPSYVNPVPAKVLPEVVLDKEGGSKMFLDLAERIRESKGIIVNSCQAIERHALEYLSSNNNG





IPPVFPVGPILNLENKKDDAKTDEIMRWLNEQPESSVVFLCFGSMGSFNEKQVKEIAVAIERSG





HRFLWSLRRPTPKEKIEFPKEYENLEEVLPECFLKRTSSIGKVIGWAPQMAVLSHPSVGGFVSH





CGWNSTLESMWCGVPMAAWPLYAEQTLNAFLLVVELGLAAEIRMDYRTDTKAGYDGGMEVTVEE





IEDGIRKLMSDGEIRNKVKDVKEKSRAAVVEGGSSYASIGKFIEHVSNVTI






Oryzasativa (OsUGT1-2)



(SEQ ID NO: 215)



MADSGYSSSYAAAAGMHVVICPWLAFGHLLPCLDLAQRLASRGHRVSFVSTPRNISRLPPVRPA






LAPLVAFVALPLPRVEGLPDGAESTNDVPHDRPDMVELHRRAFDGLAAPFSEFLGTACADWVIV





DVFHHWAAAAALEHKVPCAMMLLGSAHMIASIADRRLERAETESPAAAGQGRPAAAPTFEVARM





KLIRTKGSSGMSLAERFSLTLSRSSLVVGRSCVEFEPETVPLLSTLRGKPITFLGLMPPLHEGR





REDGEDATVRWLDAQPAKSVVYVALGSEVPLGVEKVHELALGLELAGTRFLWALRKPTGVSDAD





LLPAGFEERTRGRGVVATRWVPQMSILAHAAVGAFLTHCGWNSTTEGLMFGHPLIMLPIFGDQG





PNARLIEAKNAGLQVARNDGDGSFDREGVAAAIRAVAVEEESSKVFQAKAKKLQEIVADMACHE





RYIDGFIQQLRSYKD






Camelinasativa (XP_010516905.1)



(SEQ ID NO: 216)



MASEKTLQVHPPLHFVLFPFMAQGHMIPMVDIARLLAQRGATVTIVTTRYNAGRFENVLSRAVE






SGLPINIVHVKFPYEEVGLPKGKENIDSLDSMELMVPFFKAVNMLQDPVVKLMEEMESRPSCII





SDLLLPYTSKIAKKFNIPKIVFHGISCFCLLCVHVLRRNLEILTNLKSDKEYFLVPSFPDRVEF





TKPQVTVETNASGDWKEFLDEMVEAEDTSYGVIINTFEELEPAYVKDYKDARAGNVWSIGPVSL





CNKAGVDKAERGNKATIDQDECLKWLDSKEEGSVLYVCLGSICNLPLVQLKELGLGLEESQRPF





IWVIRGWEKYNELSEWMVESGFEERIRERGLLIRGWAPQVLILSHPSVGGFLTHCGWNSTVEGI





TSGVPLITWPLFGDQFCNQTLVVQVLKAGVSVGVEEVMKWGEEEKIGVLVDKEGVKKAVEDLMG





ESDDAKERTKRVKELGGLAHKAVEEGGSSHSNITLFLQDIRQVOSV






Glycyrrhizauralensis (UGT73F24)



(SEQ ID NO: 217)



MADVAEEQPLKIYFIPYLAAGHMIPLCDIATLFASRGHHVTIITTPSNAQTLRESHHFRVQTIQ






FPSQEVGLPAGVQNLTAVTNLDDSYKIYHATMLLRKHIEDFVERDPPDCIVADFLFPWVDDVAT





KLHIPRLVFNGFTLFTICAMESHKAHPLPVDAASGSFVIPDFPHHVTINSTPPKRTKEFVDPLL





TEAFKSHGFLINSFVELDGEECVEHYERITGGHKAWHLGPAFLVHRTAQDRGEKSVVSTQECLS





NLDSKRDNSVLYICFGTICYFPDKQLYEIASAIEASGHEFIWVVPEKRGNADESEEEKEKWLPK





GFEERNNGKKGMIIRGWAPQVAILGHPAVGGFLTHCGWNSTVEAVSAGVPMITWPVHSDQYFNE





KLITQVRGIGVEVGAEEWIVTAFRETEKLVGRDRIERAVRRVMDGGDEAVQIRRRARELGEMAR





QAVQEGGSSHTNLTALINDLKRWRDSKQLN






Glycyrrhizauralensis (UGT73033)



(SEQ ID NO: 218)



MAVFQANQPHFVLFPLMAQGHIIPMIDIARLLAQRGAIVTIFTTPKNASRFTSVLSRAVSSGLQ






IRLVHLHFPSKEAGLPEGCENLDMVASHDMICNIFQAIRMLQKQAEELFETLTPKPSCIISDFC





IPWTTQVAEKEHIPRISFHGFSCFCLHCMLKIHTSKVLEGITSESEYETVPGIPDQIQVTKQQV





PGPMIDEMKEFGEQMRDAEIRSYGVIINTFEELEKAYVNDYKKERNGKVWCIGPVSLCNKDGLD





KAQRGNKASISEHHCLEWLDLQQPNSVIYVCLGSLCNLTPPQLMELALGLEATKRPFTWVIREG





NKFEELEKWISEEGFEERIKGRGLIIRGWAPQVLILSHPSIGGFLTHCGWNSTLEGVTAGVPMV





TWPLFADQFLNEKLVTQVLRIGVSLGVDVPLKWGEEEKVGVQVKKEGIEKAICMVMDEGEESKE





RRERAKELSEMAKRAVEKDGSSHLNMTMLIQDIMQQSSSKVET





Claims
  • 1. A method for making mogrol or mogroside, comprising: providing a recombinant microbial host cell expressing a heterologous enzyme pathway catalyzing the conversion of isopentenyl pyrophosphate (IPP) and dimethylallyl pyrophosphate (DMAPP) to mogrol or mogroside, the pathway comprising at least one of:(A) at least two squalene epoxidase enzymes (SQE) for converting squalene to 2,3;22,23 dioxidosqualene;(B) at least one triterpene cyclase enzyme for converting 22,23-dioxidosqualene to 24,25-epoxycucurbitadienol, the triterpene cyclase enzyme comprising an amino acid sequence that is at least 70% identical to one of SEQ ID NO: 191, SEQ ID NO: 192, and SEQ ID NO: 193;(C) at least one epoxide hydrolase converting 24,25-epoxycucurbitadienol to 24,25-dihydroxycucurbitadienol, the at least one epoxide hydrolase comprising an amino acid sequence that is at least 70% identical to any one of SEQ ID NOS. 189, 58, 184, 185, 187, 188, 190, and 212;(D) a cytochrome P450 enzyme comprising an amino acid sequence having at least 70% sequence identity with an amino acid sequence selected from SEQ ID NO: 194 and SEQ ID NO: 171; and(E) at least one uridine diphosphate dependent glycosyltransferase (UGT) enzyme comprising an amino acid sequence having at least 70% sequence identity to any one of SEQ ID NO: 164, 165, 138, 204 to 211, 213 to 218; andculturing the host cell under conditions for producing the mogrol or mogroside.
  • 2. The method of claim 1, wherein at least one squalene epoxidase comprises an amino acid sequence that is at least 70% identical to any one of SEQ ID NOS: 17 to 39, 168 to 170, and 177 to 183.
  • 3. The method of claim 2, wherein at least one squalene epoxidase comprises an amino acid sequence that is at least 70% identical to SEQ ID NO: 39.
  • 4. The method of claim 3, wherein the at least one SQE comprises an amino acid sequence that is at least 80%, or at least 85%, or at least 90° %, or at least 95%, or at least 98%, or at least 99% identical to SEQ ID NO: 39.
  • 5. The method of claim 3, wherein the SQE comprises an amino acid sequence having from 1 to 20 amino acid modifications with respect to SEQ ID NO: 39, the amino acid modifications being independently selected from amino acid substitutions, deletions, and insertions.
  • 6. The method of claim 3, wherein the host cell comprises two squalene epoxidase enzymes that each comprise an amino acid sequence that is at least 70% identical to SEQ ID NO: 39.
  • 7. The method of claim 6, wherein one of the SQE enzymes has one or more amino acid modifications that improve specificity or productivity for conversion of 2,3-oxidosqualene to 2,3;22,23 dioxidosqualene, as compared to the enzyme having the amino acid sequence of SEQ ID NO: 39.
  • 8. The method of claim 6 or 7, wherein the amino acid modifications to the squalene epoxidase comprise one or more modifications at positions corresponding to the following positions of SEQ ID NO: 39: 35, 133, 163, 254, 283, 380, and 395.
  • 9. The method of claim 8, wherein the amino acid modifications to the squalene epoxidase comprise two, three, four, five, or six amino acid modifications selected from substitutions at positions corresponding to positions 35, 133, 163, 254, 283, 380, and 395 of SEQ ID NO: 39.
  • 10. The method of claim 8 or 9, wherein the amino acid modifications are selected from: the amino acid at the position corresponding to position 35 of SEQ ID NO: 39 is arginine or lysine;the amino acid at the position corresponding to position 133 of SEQ ID NO: 39 is glycine, alanine, leucine, isoleucine, or valine;the amino acid at the position corresponding to position 163 of SEQ ID NO: 39 is glycine, alanine, leucine, isoleucine, or valine;the amino acid at the position corresponding to position 254 of SEQ ID NO: 39 is phenylalanine, alanine, leucine, isoleucine, or valine;the amino acid at the position corresponding to position 283 of SEQ ID NO: 39 is alanine, leucine, isoleucine, or valine.the amino acid at the position corresponding to position 380 of SEQ ID NO: 39 is alanine, leucine, or glycine; andthe amino acid at the position corresponding to position 395 of SEQ ID NO: 39 is tyrosine, serine, or threonine.
  • 11. The method of claim 10, wherein the squalene epoxidase comprises the amino acid substitutions: H35R, F163A, M283L, V380L, and F395Y, numbered according to SEQ ID NO: 39.
  • 12. The method of claim 10, wherein the squalene epoxidase comprises the amino acid substitutions: H35R, N133G, F163A, Y254F, V380L, and F395Y, numbered according to SEQ ID NO: 39.
  • 13. The method of any one of claims 1 to 12, wherein the heterologous enzyme pathway further comprises a squalene synthase (SQS).
  • 14. The method of claim 13, wherein the SQS comprises an amino acid sequence that is at least 70% identical to an amino acid sequence selected from SEQ ID NOS: 2 to 16, 166, and 167.
  • 15. The method of claim 14, wherein the SQS comprises an amino acid sequence that is at least 70% identical to SEQ ID NO: 11.
  • 16. The method of claim 15, wherein the SQS comprises an amino acid sequence that is at least 80%, or at least 85%, or at least 90%, or at least 95%, or at least 98%, or at least 99% identical to SEQ ID NO: 11.
  • 17. The method of claim 15, wherein the SQS comprises an amino acid sequence having from 1 to 20 amino acid modifications with respect to SEQ ID NO: 11, the amino acid modifications being independently selected from amino acid substitutions, deletions, and insertions.
  • 18. The method of claim 14, wherein the SQS comprises an amino acid sequence that is at least 80%, or at least 85%, or at least 90%, or at least 95%, or at least 98%, or at least 99% identical to SEQ ID NO: 2, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO. 166, or SEQ ID NO: 167.
  • 19. The method of any one of claims 1 to 18, wherein the heterologous enzyme pathway comprises at least one triterpene cyclase (TTC).
  • 20. The method of claim 19, wherein at least one TTC comprises an amino acid sequence that is at least 70% identical to an amino acid sequence selected from SEQ ID NOS: 40 to 55, 191 to 193, and 219 to 220.
  • 21. The method of claim 20, wherein the heterologous enzyme pathway comprises at least two enzymes having triterpene cyclase activity and converting 22,23-dioxidosqualene to 24,25-epoxycucurbitadienol.
  • 22. The method of claim 20 or 21, wherein the TTC comprises an amino acid sequence that is at least 70% identical to the amino acid sequence of SEQ ID NO: 40.
  • 23. The method of claim 22, wherein the TTC comprises an amino acid sequence that is at least 80%, or at least 85%, or at least 90%, or at least 95%, or at least 98%, or at least 99% identical to SEQ ID NO: 40.
  • 24. The method of claim 23, wherein the TTC comprises an amino acid sequence having from 1 to 20 amino acid modifications with respect to SEQ ID NO: 40, the amino acid modifications being independently selected from amino acid substitutions, deletions, and insertions.
  • 25. The method of any one of claims 19 to 24, wherein the heterologous enzyme pathway comprises at least one TTC that comprises an amino acid sequence that is at least 70% identical to one of SEQ ID NO: 191, SEQ ID NO: 192, and SEQ ID NO: 193.
  • 26. The method of claim 25, wherein at least one TTC comprises an amino acid sequence that is at least 80%, or at least 85%, or at least 90%, or at least 95%, or at least 98%, or at least 99% identical to one of SEQ ID NOS: 191, 192, and 193.
  • 27. The method of claim 26, wherein the TTC comprises an amino acid sequence having from 1 to 20 amino acid modifications with respect to one of SEQ ID NOS: 191, 192, and 193, the amino acid modifications being independently selected from amino acid substitutions, deletions, and insertions.
  • 28. The method of any one of claims 1 to 27, wherein the heterologous pathway comprises an enzyme that converts cucurbitadienol to 24,25-epoxycucurbitadienol.
  • 29. The method of claim 28, wherein the enzyme converting cucurbitadienol to 24,25-epoxycucurbitadienol comprises an amino acid sequence having at least about 70% sequence identity to SEQ ID NO: 221.
  • 30. The method of any one of claims 1 to 29, wherein the heterologous enzyme pathway comprises an epoxide hydrolase (EPH).
  • 31. The method of claim 30, wherein the EPH comprises an amino acid sequence that is at least 70% identical to amino acid sequence selected from SEQ ID NOS: 56 to 72, 184 to 190, and 212.
  • 32. The method of claim 31, wherein the EPH comprises an amino acid sequence that is at least 80%, or at least 85%, or at least 90%, or at least 95%, or at least 98%, or at least 99% identical to one of SEQ ID NOS: 56 to 72, 184 to 190, and 212.
  • 33. The method of claim 32, wherein the EPH comprises an amino acid sequence having from 1 to 20 amino acid modifications with respect to one of SEQ ID NOS: 56 to 72, 184 to 190, and 212, the amino acid modifications being independently selected from amino acid substitutions, deletions, and insertions.
  • 34. The method of claim 31, wherein the heterologous pathway comprises at least one EPH converting 24,25-epoxycucurbitadienol to 24,25-dihydroxycucurbitadienol, the at least one EPH comprising an amino acid sequence that is at least 70% identical to one of: SEQ ID NOS: 189, 58, 184, 185, 187, 188, 190, and 212.
  • 35. The method of claim 34, wherein the EPH comprises an amino acid sequence that is at least 80%, or at least 85%, or at least 90%, or at least 95%, or at least 98%, or at least 99% identical to one of SEQ ID NOS: 189, 58, 184, 185, 187, 188, 190, and 212.
  • 36. The method of claim 35, wherein the EPH comprises an amino acid sequence having from 1 to 20 amino acid modifications with respect to one of SEQ ID NOS: 189, 58, 184, 185, 187, 188, 190, and 212, the amino acid modifications being independently selected from amino acid substitutions, deletions, and insertions.
  • 37. The method of any one of claims 1 to 36, wherein the heterologous pathway comprises one or more oxidases that oxidize C11 of C24,25 dihydroxycucurbitadienol to produce mogrol.
  • 38. The method of claim 37, wherein at least one oxidase is a cytochrome P450 enzyme.
  • 39. The method of claim 38, wherein at least one cytochrome P450 enzyme comprises an amino acid sequence that is at least 70% identical to an amino acid sequence selected from SEQ ID NOS: 73 to 91, 171 to 176, and 194 to 200.
  • 40. The method of claim 39, wherein at least one cytochrome P450 enzyme comprises an amino acid sequence that is at least 80%, or at least 85%, or at least 90%, or at least 95%, or at least 98%, or at least 99% identical to one of SEQ ID NOS: 73 to 91, 171 to 176, and 194 to 200.
  • 41. The method of claim 40, wherein at least one cytochrome P450 enzyme comprises an amino acid sequence having from 1 to 20 amino acid modifications with respect to one of SEQ ID NOS: 73 to 91, 171 to 176, and 194 to 200, the amino acid modifications being independently selected from amino acid substitutions, deletions, and insertions.
  • 42. The method of any one of claims 37 to 41, wherein the cytochrome P450 comprises an amino acid sequence that is at least 70% identical to an amino acid sequence selected from SEQ ID NO: 194 and SEQ ID NO: 171.
  • 43. The method of claim 42, wherein the cytochrome P450 enzyme comprises an amino acid sequence that is at least 80%, or at least 85%, or at least 90%, or at least 95%, or at least 98%, or at least 99% identical to one of SEQ ID NOS: 194 and 171.
  • 44. The method of claim 43, wherein at least one cytochrome P450 enzyme comprises an amino acid sequence having from 1 to 20 amino acid modifications with respect to one of SEQ ID NOS: 194 and 171, the amino acid modifications being independently selected from amino acid substitutions, deletions, and insertions.
  • 45. The method of any one of claims 42 to 44, wherein the cytochrome P450 enzyme has at least a portion of its transmembrane region substituted with a heterologous transmembrane region.
  • 46. The method of claim 37, wherein at least one oxidase is a non-heme iron oxidase.
  • 47. The method of claim 46, wherein the non-heme iron oxidase comprises an amino acid sequence that is at least 70% identical to an amino acid sequence selected from SEQ ID NOS: 100 to 115.
  • 48. The method of any one of claims 37 to 47, wherein the microbial host cell expresses one or more electron transfer proteins selected from a cytochrome P450 reductase (CPR), flavodoxin reductase (FPR) and ferredoxin reductase (FDXR) sufficient to regenerate the one or more oxidases.
  • 49. The method of claim 48, wherein the microbial host cell expresses a cytochrome P450 reductase comprising an amino acid sequence that is at least 70% identical to one of SEQ ID NOS: 92 to 99 and 201.
  • 50. The method of claim 49, wherein the cytochrome P450 reductase comprises an amino acid sequence that is at least 80%, or at least 85%, or at least 90%, or at least 95%, or at least 98%, or at least 99% identical to one of SEQ ID NOS: 92 to 99 and 201.
  • 51. The method of claim 49, wherein the microbial host cell expresses SEQ ID NO: 194 or a derivative thereof, and SEQ ID NO: 98 or a derivative thereof.
  • 52. The method of claim 49, wherein the microbial host cell expresses SEQ ID NO. 171 or a derivative thereof, and SEQ ID NO: 201 or a derivative thereof.
  • 53. The method of any one of claims 1 to 52, wherein the heterologous enzyme pathway comprises one or more uridine diphosphate-dependent glycosyltransferase (UGT) enzymes, thereby producing one or more mogrol glycosides.
  • 54. The method of claim 53, wherein the one or more mogrol glycosides are selected from Mog.II-E, Mog.III, Mog.III-A1, Mog.II-A2, Mog.III, Mog.IV, Mog.IV-A, siamenoside, Mog.V, and Mog.VI.
  • 55. The method of claim 53, wherein the one or more mogrol glycosides include Mog.VI, Isomog.V, and Mog.V.
  • 56. The method of claim 53, wherein the host cell produces Mog.V or siamenoside.
  • 57. The method of any one of claims 53 to 56, wherein at least one UGT enzyme comprises an amino acid sequence that is at least 70% identical to an amino acid sequence selected from SEQ ID NOS: 116 to 165, 202 to 210, 211, 213 to 218.
  • 58. The method of claim 57, wherein at least one UGT enzyme comprises an amino acid sequence that is at least 80%, or at least 85%, or at least 90%, or at least 95%, or at least 98%, or at least 99% identical to one of SEQ ID NOS: 116 to 165, 202 to 210, 211, 213 to 218.
  • 59. The method of claim 58, wherein at least one UGT enzyme comprises an amino acid sequence having from 1 to 20 amino acid modifications with respect to one of SEQ ID NOS: 116 to 165, 202 to 210, 211, 213 to 218, the amino acid modifications being independently selected from amino acid substitutions, deletions, and insertions.
  • 60. The method of any one of claims 53 to 59, wherein at least one uridine diphosphate dependent glycosyltransferase (UGT) enzyme comprises an amino acid sequence having at least 70% sequence identity to one of SEQ ID NO: 164, 165, 138, 204 to 211, and 213 to 218.
  • 61. The method of claim 60, wherein at least one UGT enzyme comprises an amino acid sequence that is at least 70% identical to SEQ ID NO: 165.
  • 62. The method of claim 61, wherein at least one UGT enzyme comprises an amino acid sequence that is at least 80%, or at least 85%, or at least 90%, or at least 95%, or at least 98%, or at least 99% identical to SEQ ID NO: 165; or comprises an amino acid sequence having from 1 to 20 amino acid modifications with respect to SEQ ID NO: 165, the amino acid modifications being independently selected from amino acid substitutions, deletions, and insertions.
  • 63. The method of claim 62, wherein the at least one UGT enzyme comprises a substitution at one or more of positions 41, 49, and 127, with respect to SEQ ID NO: 165, wherein said one or more substitutions optionally include one or more of: L41F, D49E, and C127F.
  • 64. The method of claim 60, wherein at least one UGT enzyme comprises an amino acid sequence that is at least 70% identical to SEQ ID NO: 164.
  • 65. The method of claim 64, wherein at least one UGT enzyme comprises an amino acid sequence that is at least 80%, or at least 85%, or at least 90%, or at least 95%, or at least 98%, or at least 99% identical to SEQ ID NO: 164; or comprises an amino acid sequence having from 1 to 20 amino acid modifications with respect to SEQ ID NO: 164, the amino acid modifications being independently selected from amino acid substitutions, deletions, and insertions.
  • 66. The method of claim 65, wherein the at least one UGT enzyme comprises one or substitutions listed in Table 3, with respect to SEQ ID NO: 164, and optionally having one or more amino acid substitutions selected from S150F, T147L, N207K, K270E, V281L, L354V, L13F, T32A, and K101A with respect to SEQ ID NO: 164.
  • 67. The method of claim 59, wherein at least one UGT enzyme comprises an amino acid sequence that is at least 70% identical to SEQ ID NO: 138.
  • 68. The method of claim 67, wherein at least one UGT enzyme comprises an amino acid sequence that is at least 80%, or at least 85%, or at least 90%, or at least 95%, or at least 98%, or at least 99% identical to SEQ ID NO: 138; or comprises an amino acid sequence having from 1 to 20 amino acid modifications with respect to SEQ ID NO: 138, the amino acid modifications being independently selected from amino acid substitutions, deletions, and insertions.
  • 69. The method of claim 60, wherein at least one UGT enzyme comprises an amino acid sequence that is at least 70% identical to SEQ ID NO: 204.
  • 70. The method of claim 69, wherein at least one UGT enzyme comprises an amino acid sequence that is at least 80%, or at least 85%, or at least 90%, or at least 95%, or at least 98%, or at least 99% identical to SEQ ID NO: 204; or comprises an amino acid sequence having from 1 to 20 amino acid modifications with respect to SEQ ID NO: 204, the amino acid modifications being independently selected from amino acid substitutions, deletions, and insertions.
  • 71. The method of claim 60, wherein at least one UGT enzyme comprises an amino acid sequence that is at least 70% identical to SEQ ID NO: 205.
  • 72. The method of claim 71, wherein at least one UGT enzyme comprises an amino acid sequence that is at least 80%, or at least 85%, or at least 90%, or at least 95%, or at least 98%, or at least 99%/o identical to SEQ ID NO: 205; or comprises an amino acid sequence having from 1 to 20 amino acid modifications with respect to SEQ ID NO: 205, the amino acid modifications being independently selected from amino acid substitutions, deletions, and insertions.
  • 73. The method of claim 60, wherein at least one UGT enzyme comprises an amino acid sequence that is at least 70% identical to SEQ H) NO: 206.
  • 74. The method of claim 73, wherein at least one UGT enzyme comprises an amino acid sequence that is at least 80%, or at least 85%, or at least 90/o, or at least 95%, or at least 98%, or at least 99% identical to SEQ ID NO: 206; or comprises an amino acid sequence having from 1 to 20 amino acid modifications with respect to SEQ ID NO: 206, the amino acid modifications being independently selected from amino acid substitutions, deletions, and insertions.
  • 75. The method of claim 60, wherein at least one UGT enzyme comprises an amino acid sequence that is at least 70% identical to SEQ ID NO: 207; or wherein at least one UGT enzyme comprises an amino acid sequence that is at least 80%, or at least 85%, or at least 90%, or at least 95%, or at least 98%, or at least 99% identical to SEQ ID NO: 207.
  • 76. The method of claim 60, wherein at least one UGT enzyme comprises an amino acid sequence that is at least 70% identical to SEQ ID NO: 208; or wherein at least one UGT enzyme comprises an amino acid sequence that is at least 80%, or at least 85%, or at least 90%, or at least 95%, or at least 98%, or at least 99% identical to SEQ ID NO: 208.
  • 77. The method of claim 60, wherein at least one UGT enzyme comprises an amino acid sequence that is at least 70% identical to SEQ ID NO: 209, or wherein at least one UGT enzyme comprises an amino acid sequence that is at least 80%, or at least 85%, or at least 90%, or at least 95%, or at least 98%, or at least 99% identical to SEQ ID NO: 209.
  • 78. The method of claim 60, wherein at least one UGT enzyme comprises an amino acid sequence that is at least 70% identical to SEQ ID NO: 210; or wherein at least one UGT enzyme comprises an amino acid sequence that is at least 80%, or at least 85%, or at least 90%, or at least 95%, or at least 98%, or at least 99% identical to SEQ ID NO: 210.
  • 79. The method of claim 60, wherein at least one UGT enzyme comprises an amino acid sequence that is at least 70% identical to SEQ ID NO: 211; or wherein at least one UGT enzyme comprises an amino acid sequence that is at least 80%, or at least 85%, or at least 90%, or at least 95%, or at least 98%, or at least 99% identical to SEQ ID NO: 211.
  • 80. The method of claim 60, wherein at least one UGT enzyme comprises an amino acid sequence that is at least 70% identical to SEQ ID NO: 213; or wherein at least one UGT enzyme comprises an amino acid sequence that is at least 80%, or at least 85%, or at least 90%, or at least 95%, or at least 98%, or at least 99% identical to SEQ ID NO: 213.
  • 81. The method of claim 60, wherein at least one UGT enzyme comprises an amino acid sequence that is at least 70% identical to SEQ ID NO: 214; or wherein at least one UGT enzyme comprises an amino acid sequence that is at least 80%, or at least 85%, or at least 90%, or at least 95%, or at least 98%, or at least 99% identical to SEQ ID NO: 214.
  • 82. The method of claim 60, wherein at least one UGT enzyme comprises an amino acid sequence that is at least 70% identical to SEQ ID NO: 215; or wherein at least one UGT enzyme comprises an amino acid sequence that is at least 80%, or at least 85%, or at least 90%, or at least 95%, or at least 98%, or at least 99% identical to SEQ ID NO: 215.
  • 83. The method of claim 60, wherein at least one UGT enzyme comprises an amino acid sequence that is at least 70% identical to SEQ ID NO: 218; or wherein at least one UGT enzyme comprises an amino acid sequence that is at least 80%, or at least 85%, or at least 90%, or at least 95%, or at least 98%, or at least 99% identical to SEQ ID NO: 218.
  • 84. The method of claim 60, wherein at least one UGT enzyme comprises an amino acid sequence that is at least 70% identical to SEQ ID NO: 217; or wherein at least one UGT enzyme comprises an amino acid sequence that is at least 80%, or at least 85%, or at least 90%, or at least 95%, or at least 98%, or at least 99% identical to SEQ ID NO. 217, and optionally having one or more amino acid substitutions selected from A74E, 191F, H101P, Q241E, and I436L.
  • 85. The method of claim 60, wherein at least one UGT enzyme comprises an amino acid sequence that is at least 70% identical to SEQ ID NO: 216; or wherein at least one UGT enzyme comprises an amino acid sequence that is at least 80%, or at least 85%, or at least 90%, or at least 95%, or at least 98%, or at least 99%/o identical to SEQ ID NO-216.
  • 86. The method of any one of claims 60 to 85, wherein at least one UGT enzyme further comprises an amino acid sequence that is at least 70% identical to SEQ ID NO: 146.
  • 87. The method of claim 86, wherein at least one UGT enzyme comprises an amino acid sequence that is at least 80%, or at least 85%, or at least 90%, or at least 95%, or at least 98%, or at least 99% identical to SEQ ID NO: 146, or at least one UGT enzyme comprises an amino acid sequence having from 1 to 20 amino acid modifications with respect to SEQ ID NO: 146, the amino acid modifications being independently selected from amino acid substitutions, deletions, and insertions.
  • 88. The method of any one of claims 60 to 87, wherein at least one UGT enzyme further comprises an amino acid sequence that is at least 70% identical to SEQ ID NO: 202.
  • 89. The method of claim 88, wherein at least one UGT enzyme comprises an amino acid sequence that is at least 80%, or at least 85%, or at least 90%, or at least 95%, or at least 98%, or at least 99% identical to SEQ ID NO: 202; or at least one UGT enzyme comprises an amino acid sequence having from 1 to 20 amino acid modifications with respect to SEQ ID NO: 202, the amino acid modifications being independently selected from amino acid substitutions, deletions, and insertions.
  • 90. The method of any one of claims 60 to 89, wherein at least one UGT enzyme is a circular permutant of a wild-type UGT enzyme, or a derivative thereof.
  • 91. The method of any one of claims 60 to 90, wherein the microbial host cell expresses at least three UGT enzymes: a first UGT enzyme catalyzing primary glycosylation at the C24 hydroxyl of mogrol, a second UGT enzyme catalyzing primary glycosylation at the C3 hydroxyl of mogrol, and a third UGT enzyme catalyzing one or more branching glycosylation reactions.
  • 92. The method of claim 91, wherein the microbial host cell expresses one or two UGT enzymes catalyzing beta 1,2 and/or beta 1,6 branching glycosylations of the C3 and/or C24 primary glycosylations.
  • 93. The method of any one of claims 53 to 57, wherein the UGT enzymes comprise three or four UGT enzymes selected from: SEQ ID NO: 165 or a derivative thereof,SEQ ID NO: 146 or a derivative thereof;SEQ ID NO: 214 or a derivative thereof,SEQ ID NO: 129 or a derivative thereof;SEQ ID NO: 164 or a derivative thereof,SEQ ID NO: 116 or a derivative thereof,SEQ ID NO: 202 or a derivative thereof,SEQ ID NO: 218 or a derivative thereof;SEQ ID NO: 217 or a derivative thereof,SEQ ID NO: 138 or a derivative thereof,SEQ ID NO: 204 or a derivative thereof;SEQ ID NO: 205 or a derivative thereof;SEQ ID NO: 207 or a derivative thereof,SEQ ID NO: 208 or a derivative thereof,SEQ ID NO: 209 or a derivative thereof,SEQ ID NO: 11 or a derivative thereof;SEQ ID NO: 215 or a derivative thereof;SEQ ID NO: 213 or a derivative thereof;SEQ ID NO: 206 or a derivative thereof;SEQ ID NO: 122) or a derivative thereof; andSEQ ID NO: 210) or a derivative thereof.
  • 94. The method of any one of claims 1 to 93, wherein the microbial host cell is prokaryotic or eukaryotic, and is optionally a bacteria selected from Escherichia coli, Bacillus subtilis, Corynebacterium glutamicum, Rhodobacter capsulatus, Rhodobacter sphaeroides, Zymomonas mobilis, Vibrio natriegens, or Pseudomonas putida; or is a yeast selected from a species of Saccharomyces, Pichia, or Yarrowia, and which is optionally Saccharomyces cerevisiae, Pichia pastoris, and Yarrowia lipolytica.
  • 95. The method of claim 94, wherein the microbial host cell is E. coli.
  • 96. The method of claim 94 or 95, wherein the microbial host cell is a bacterium that produces increased MEP pathway products.
  • 97. The method of any one of claims 1 to 96, wherein the heterologous enzyme pathway comprises a farnesyl diphosphate synthase (FPPS).
  • 98. The method of any one of claims 1 to 97, wherein microbial host cell has one or more genetic modifications that increase the production or availability of UDP-glucose.
  • 99. The method of claim 98, wherein the microbial host cell is a bacterial cell having one or more genetic modifications selected from ΔgalE, ΔgalT, ΔgalK, ΔgalM, ΔushA, Δagp, Δpgm, duplication or overexpression of E. coli GALU, expression of Bacillus subtilis UGPA, and expression of Bifidobacterium adolescentis SPL.
  • 100. The method of any one of claims 1 to 99, wherein the mogrol glycoside products are recovered from the extracellular media.
  • 101. A method for making a product comprising a mogrol glycoside, comprising: producing a mogrol glycoside in accordance with any one of claims 1 to 100, and incorporating the mogrol glycoside into a product.
  • 102. The method of claim 101, wherein the product is a sweetener composition, flavoring composition, food, beverage, chewing gum, texturant, pharmaceutical composition, tobacco product, nutraceutical composition, or oral hygiene composition.
  • 103. The method of claim 101 or 102, wherein the product further comprises one or more of a steviol glycoside, aspartame, and neotame.
  • 104. The method of claim 103, wherein the steviol glycoside comprises one or more of RebM, RebB, RebD, RebA, RebE, and RebI.
  • 105. A microbial host cell expressing a heterologous enzyme pathway catalyzing the conversion of isopentenyl pyrophosphate (IPP) and dimethylallyl pyrophosphate (DMAPP) to mogrol or mogroside, the pathway comprising at least one of: (A) at least two squalene epoxidase enzymes (SQE) for converting squalene to 2,3;22,23 dioxidosqualene;(B) at least one triterpene cyclase enzyme for converting 22,23-dioxidosqualene to 24,25-epoxycucurbitadienol, the triterpene cyclase enzyme comprising an amino acid sequence that is at least 70% identical to one of SEQ ID NO: 191, SEQ ID NO: 192, and SEQ ID NO: 193;(C) at least one epoxide hydrolase converting 24,25-epoxycucurbitadienol to 24,25-dihydroxycucurbitadienol, the at least one epoxide hydrolase comprising an amino acid sequence that is at least 70% identical to any one of SEQ ID NOS: 189, 58, 184, 185, 187, 188, 190, and 212;(D) a cytochrome P450 enzyme comprising an amino acid sequence having at least 70% sequence identity with an amino acid sequence selected from SEQ ID NO: 194 and SEQ ID NO: 171; and(E) at least one uridine diphosphate dependent glycosyltransferase (UGT) enzyme comprising an amino acid sequence having at least 70% sequence identity to any one of SEQ ID NO: 164, 165, 138, 204 to 211, 213 to 218.
  • 106. The microbial host cell of claim 105, wherein at least one squalene epoxidase comprises an amino acid sequence that is at least 70% identical to any one of SEQ ID NOS: 17 to 39, 168 to 170, and 177 to 183.
  • 107. The microbial host cell of claim 106, wherein at least one squalene epoxidase comprises an amino acid sequence that is at least 70% identical to SEQ ID NO: 39.
  • 108. The microbial host cell of claim 107, wherein the at least one SQE comprises an amino acid sequence that is at least 80%, or at least 85%, or at least 90%, or at least 95%, or at least 98%, or at least 99% identical to SEQ ID NO: 39.
  • 109. The microbial host cell of claim 108, wherein the host cell comprises two squalene epoxidase enzymes that each comprise an amino acid sequence that is at least 70% identical to SEQ ID NO: 39.
  • 110. The microbial host cell of claim 109, wherein one of the SQE enzymes has one or more amino acid modifications that improve specificity or productivity for conversion of 2,3-oxidosqualene to 2,3;22,23 dioxidosqualene, as compared to the enzyme having the amino acid sequence of SEQ ID NO: 39.
  • 111. The microbial host cell of claim 110, wherein the amino acid modifications to the squalene epoxidase comprise one or more modifications at positions corresponding to the following positions of SEQ ID NO: 39: 35, 133, 163, 254, 283, 380, and 395.
  • 112. The microbial host cell of claim 111, wherein the squalene epoxidase comprises the amino acid substitutions: H35R, F163A, M283L, V380L, and F395Y, numbered according to SEQ ID NO: 39; or comprises the amino acid substitutions: H35R, N133G, F163A, Y254F, V380L, and F395Y, numbered according to SEQ ID NO: 39.
  • 113. The microbial host cell of any one of claims 105 to 112, wherein the heterologous enzyme pathway further comprises a squalene synthase (SQS).
  • 114. The microbial host cell of claim 113, wherein the SQS comprises an amino acid sequence that is at least 70% identical to SEQ ID NO: 11; or the SQS comprises an amino acid sequence that is at least 80%, or at least 85%, or at least 90%, or at least 95%, or at least 98%, or at least 99% identical to SEQ ID NO: 11.
  • 115. The microbial host cell of any one of claims 105 to 114, wherein the heterologous enzyme pathway comprises at least one triterpene cyclase (TTC).
  • 116. The microbial host cell of claim 115, wherein the heterologous enzyme pathway comprises at least two enzymes having triterpene cyclase activity and converting 22,23-dioxidosqualene to 24,25-epoxycucurbitadienol.
  • 117. The microbial host cell of claim 115 or 116, wherein the TTC comprises an amino acid sequence that is at least 70% identical to the amino acid sequence of SEQ ID NO. 40; or the TTC comprises an amino acid sequence that is at least 80%, or at least 85%, or at least 90%, or at least 95%, or at least 98%, or at least 99% identical to SEQ ID NO-40.
  • 118. The microbial host cell of any one of claims 115 to 117, wherein the heterologous enzyme pathway comprises at least one TTC that comprises an amino acid sequence that is at least 70% identical to one of SEQ ID NO: 191, SEQ ID NO: 192, SEQ ID NO: 193; or at least one TTC comprises an amino acid sequence that is at least 80%, or at least 85%, or at least 90%, or at least 95%, or at least 98%, or at least 99% identical to one of SEQ ID NOS: 191, 192, and 193.
  • 119. The microbial host cell of any one of claims 105 to 118, wherein the heterologous pathway comprises an enzyme that converts cucurbitadienol to 24,25-epoxycucurbitadienol.
  • 120. The microbial host cell of claim 119, wherein the enzyme converting cucurbitadienol to 24,25-epoxycucurbitadienol comprises an amino acid sequence having at least about 70% sequence identity to SEQ ID NO: 221.
  • 121. The microbial host cell of any one of claims 105 to 120, wherein the heterologous enzyme pathway comprises an epoxide hydrolase (EPH).
  • 122. The microbial host cell of claim 121, wherein the heterologous pathway comprises at least one EPH converting 24,25-epoxycucurbitadienol to 24,25-dihydroxycucurbitadienol, the at least one EPH comprising an amino acid sequence that is at least 70% identical to one of: SEQ ID NO: 189, SEQ ID NO: 58, SEQ ID NO: 184, SEQ ID NO: 185, SEQ ID NO: 187, SEQ ID NO: 188, SEQ ID NO: 190) and SEQ ID NO: 212).
  • 123. The microbial host cell of claim 122, wherein the EPH comprises an amino acid sequence that is at least 80%, or at least 85%, or at least 90%, or at least 95%, or at least 98%, or at least 99% identical to one of SEQ ID NOS: 189, 58, 184, 185, 187, 188, 190, and 212.
  • 124. The microbial host cell of any one of claims 105 to 123, wherein the heterologous pathway comprises one or more oxidases that oxidize C11 of C24,25 dihydroxycucurbitadienol to produce mogrol.
  • 125. The microbial host cell of claim 124, wherein at least one oxidase is a cytochrome P450 enzyme.
  • 126. The microbial host cell of claim 124 or 125, wherein the cytochrome P450 comprises an amino acid sequence that is at least 70% identical to an amino acid sequence selected from SEQ ID NO: 194 and SEQ ID NO: 171; or the cytochrome P450 enzyme comprises an amino acid sequence that is at least 80%, or at least 85%, or at least 90%, or at least 95%, or at least 98%, or at least 99% identical to one of SEQ ID NOS: 194 and 171.
  • 127. The microbial host cell of claim 125 or 126, wherein the cytochrome P450 enzyme has at least a portion of its transmembrane region substituted with a heterologous transmembrane region.
  • 128. The microbial host cell of any one of claims 124 to 127, wherein the microbial host cell expresses one or more electron transfer proteins selected from a cytochrome P450 reductase (CPR), flavodoxin reductase (FPR) and ferredoxin reductase (FDXR) sufficient to regenerate the one or more oxidases.
  • 129. The microbial host cell of claim 128, wherein the microbial host cell expresses SEQ ID NO: 194 or a derivative thereof, and SEQ ID NO: 98) or a derivative thereof.
  • 130. The microbial host cell of claim 129, wherein the microbial host cell expresses SEQ ID NO: 171 or a derivative thereof, and SEQ ID NO: 201 or a derivative thereof.
  • 131. The microbial host cell of any one of claims 105 to 130, wherein the heterologous enzyme pathway comprises one or more uridine diphosphate-dependent glycosyltransferase (UGT) enzymes, thereby producing one or more mogrol glycosides.
  • 132. The microbial host cell of claim 131, wherein the host cell produces one or more mogrol glycosides selected from Mog.II-E, Mog.III, Mog.III-A1, Mog.III-A2, Mog.III, Mog.IV, Mog.IV-A, siamenoside, and Mog V.
  • 133. The microbial host cell of claim 132, wherein the host cell produces Mog.V or siamenoside.
  • 134. The microbial host cell of any one of claims 105 to 133, wherein at least one uridine diphosphate dependent glycosyltransferase (UGT) enzyme comprises an amino acid sequence having at least 70% sequence identity to one of SEQ ID NO: 164, 165, 138, 204 to 211, and 213 to 218.
  • 135. The microbial host cell of claim 134, wherein at least one UGT enzyme comprises an amino acid sequence that is at least 70% identical to Stevia rebaudiana UGT85C1 (SEQ ID NO: 165), or wherein at least one UGT enzyme comprises an amino acid sequence that is at least 80%, or at least 85%, or at least 90%, or at least 95%, or at least 98%, or at least 99% identical to SEQ ID NO: 165.
  • 136. The microbial host cell of claim 135, wherein the UGT enzyme has an amino acid substitution at one or more positions selected from 41, 49, and 127 with respect to SEQ ID NO: 165, optionally including one or more of L41F, D49E, C127F.
  • 137. The microbial host cell of claim 134, wherein at least one UGT enzyme comprises an amino acid sequence that is at least 70% identical to Coffea arabica UGT (SEQ ID NO. 164); or wherein at least one UGT enzyme comprises an amino acid sequence that is at least 80%, or at least 85%, or at least 90%, or at least 95%, or at least 98%, or at least 99% identical to SEQ ID NO: 164.
  • 138. The microbial host cell of claim 137, wherein the UGT enzyme has one or more amino acid substitutions from Table 3 with respect to SEQ ID NO: 164, and which optionally include one or more of S150F, T147L, N207K, K270E, V281L, L354V, L13F, T32A, and K101A.
  • 139. The microbial host cell of claim 134, wherein at least one UGT enzyme comprises an amino acid sequence that is at least 70% identical to SEQ ID NO: 138; or wherein at least one UGT enzyme comprises an amino acid sequence that is at least 80%, or at least 85%, or at least 90%, or at least 95%, or at least 98%, or at least 99% identical to SEQ ID NO: 138.
  • 140. The microbial host cell of claim 134, wherein at least one UGT enzyme comprises an amino acid sequence that is at least 70% identical to SEQ ID NO: 204; or wherein at least one UGT enzyme comprises an amino acid sequence that is at least 80%, or at least 85%, or at least 90%, or at least 95%, or at least 98%, or at least 99% identical to SEQ ID NO: 204.
  • 141. The microbial host cell of claim 134, wherein at least one UGT enzyme comprises an amino acid sequence that is at least 70% identical to SEQ ID NO: 205; or wherein at least one UGT enzyme comprises an amino acid sequence that is at least 80%, or at least 85%, or at least 90%, or at least 95%, or at least 98%, or at least 99% identical to SEQ ID NO: 205.
  • 142. The microbial host cell of claim 134, wherein at least one UGT enzyme comprises an amino acid sequence that is at least 70% identical to SEQ ID NO: 206; or wherein at least one UGT enzyme comprises an amino acid sequence that is at least 80%, or at least 85%, or at least 90%, or at least 95%, or at least 98%, or at least 99% identical to SEQ ID NO: 206.
  • 143. The microbial host cell of claim 134, wherein at least one UGT enzyme comprises an amino acid sequence that is at least 70% identical to SEQ ID NO: 207; or wherein at least one UGT enzyme comprises an amino acid sequence that is at least 80%, or at least 85%, or at least 90%, or at least 95%, or at least 98%, or at least 99% identical to SEQ ID NO: 207.
  • 144. The microbial host cell of claim 134, wherein at least one UGT enzyme comprises an amino acid sequence that is at least 70% identical to SEQ ID NO: 208; or wherein at least one UGT enzyme comprises an amino acid sequence that is at least 80%, or at least 85%, or at least 90%, or at least 95%, or at least 98%, or at least 99% identical to SEQ ID NO: 208.
  • 145. The microbial host cell of claim 134, wherein at least one UGT enzyme comprises an amino acid sequence that is at least 70% identical to SEQ ID NO: 209; or wherein at least one UGT enzyme comprises an amino acid sequence that is at least 80%, or at least 85%, or at least 90%, or at least 95%, or at least 98%, or at least 99% identical to SEQ ID NO: 209.
  • 146. The microbial host cell of claim 134, wherein at least one UGT enzyme comprises an amino acid sequence that is at least 70% identical to SEQ ID NO: 210; or wherein at least one UGT enzyme comprises an amino acid sequence that is at least 80%, or at least 85%, or at least 90%, or at least 95%, or at least 98%, or at least 99% identical to SEQ ID NO: 210.
  • 147. The microbial host cell of claim 134, wherein at least one UGT enzyme comprises an amino acid sequence that is at least 70% identical to SEQ ID NO: 211; or wherein at least one UGT enzyme comprises an amino acid sequence that is at least 80%, or at least 85%, or at least 90%, or at least 95%, or at least 98%, or at least 99% identical to SEQ ID NO. 211.
  • 148. The microbial cell of claim 134, wherein at least one UGT enzyme comprises an amino acid sequence that is at least 70% identical to SEQ ID NO: 213; or wherein at least one UGT enzyme comprises an amino acid sequence that is at least 80%, or at least 85%, or at least 90%, or at least 95%, or at least 98%, or at least 99% identical to SEQ ID NO: 213.
  • 149. The microbial cell of claim 134, wherein at least one UGT enzyme comprises an amino acid sequence that is at least 70% identical to SEQ ID NO: 214; or wherein at least one UGT enzyme comprises an amino acid sequence that is at least 80%, or at least 85%, or at least 90%, or at least 95%, or at least 98%, or at least 99% identical to SEQ ID NO. 214.
  • 150. The microbial cell of claim 134, wherein at least one UGT enzyme comprises an amino acid sequence that is at least 70% identical to SEQ ID NO: 215; or wherein at least one UGT enzyme comprises an amino acid sequence that is at least 80%, or at least 85%, or at least 90%, or at least 95%, or at least 98%, or at least 99% identical to SEQ ID NO: 215.
  • 151. The method of claim 134, wherein at least one UGT enzyme comprises an amino acid sequence that is at least 70% identical to SEQ ID NO: 218; or wherein at least one UGT enzyme comprises an amino acid sequence that is at least 80%, or at least 85%, or at least 90%, or at least 95%, or at least 98%, or at least 99% identical to SEQ ID NO: 218.
  • 152. The method of claim 134, wherein at least one UGT enzyme comprises an amino acid sequence that is at least 70% identical to SEQ ID NO: 217; or wherein at least one UGT enzyme comprises an amino acid sequence that is at least 80%, or at least 85%, or at least 90%, or at least 95%, or at least 98%, or at least 99% identical to SEQ ID NO: 217, the UGT optionally having an amino acid substitution selected from A74E, 191F, H101P, Q241E, and I436L.
  • 153. The method of claim 134, wherein at least one UGT enzyme comprises an amino acid sequence that is at least 70% identical to SEQ ID NO: 216; or wherein at least one UGT enzyme comprises an amino acid sequence that is at least 80%, or at least 85%, or at least 90%, or at least 95%, or at least 98%, or at least 99% identical to SEQ ID NO: 216.
  • 154. The microbial host cell of any one of claims 134 to 153, wherein at least one UGT enzyme further comprises an amino acid sequence that is at least 70% identical to SEQ ID NO: 146); or wherein at least one UGT enzyme comprises an amino acid sequence that is at least 80%, or at least 85%, or at least 90%, or at least 95%, or at least 98%, or at least 99% identical to SEQ ID NO: 146.
  • 155. The microbial cell of any one of claims 134 to 154, wherein at least one UGT enzyme further comprises an amino acid sequence that is at least 70% identical to SEQ ID NO: 202; wherein at least one UGT enzyme comprises an amino acid sequence that is at least 80%, or at least 85%, or at least 90%, or at least 95%, or at least 98%, or at least 99% identical to SEQ ID NO: 202.
  • 156. The microbial host cell of any one of claims 134 to 155, wherein the microbial host cell expresses at least three UGT enzymes: a first UGT enzyme catalyzing primary glycosylation at the C24 hydroxyl of mogrol, a second UGT enzyme catalyzing primary glycosylation at the C3 hydroxyl of mogrol, and a third UGT enzyme catalyzing one or more branching glycosylation reactions.
  • 157. The microbial host cell of claim 156, wherein the microbial host cell expresses one or two UGT enzymes catalyzing beta 1,2 and/or beta 1,6 branching glycosylations of the C3 and/or C24 primary glycosylations.
  • 158. The microbial host cell of claim 157, wherein the UGT enzymes comprise three or four UGT enzymes selected from: SEQ ID NO: 165 or a derivative thereof;SEQ ID NO: 146 or a derivative thereof;SEQ ID NO: 214 or a derivative thereof;SEQ ID NO: 129 or a derivative thereof;SEQ ID NO: 164 or a derivative thereof;SEQ ID NO: 116 or a derivative thereof;SEQ ID NO: 202 or a derivative thereof;SEQ ID NO: 218 or a derivative thereof;SEQ ID NO: 217 or a derivative thereof;SEQ ID NO: 138 or a derivative thereof;SEQ ID NO: 204 or a derivative thereof; andSEQ ID NO: 205 or a derivative thereof;SEQ ID NO: 207 or a derivative thereof;SEQ ID NO: 208 or a derivative thereof;SEQ ID NO: 209 or a derivative thereof;SEQ ID NO: 11 or a derivative thereof;SEQ ID NO: 215 or a derivative thereof;SEQ ID NO: 213 or a derivative thereof;SEQ ID NO: 206 or a derivative thereof;SEQ ID NO: 122 or a derivative thereof; andSEQ ID NO: 210) or a derivative thereof.
  • 159. The microbial host cell of any one of claims 105 to 158, wherein the microbial host cell is prokaryotic or eukaryotic, and is optionally a bacteria selected from Escherichia coli, Bacillus subtilis, Corynebacterium glutamicum, Rhodobacter capsulatus, Rhodobacter sphaeroides, Zymomonas mobilis, Vibrio natriegens, or Pseudomonas putida; or is a yeast selected from a species of Saccharomyces, Pichia, or Yarrowia, and which is optionally Saccharomyces cerevisiae, Pichia pastoris, and Yarrowia lipolytica.
  • 160. The microbial host cell of claim 159, wherein the microbial host cell is E. coli.
  • 161. The microbial host cell of claim 159 or 160, wherein the microbial host cell is a bacterium that produces increased MEP pathway products.
  • 162. The microbial host cell of any one of claims 105 to 161, wherein the heterologous enzyme pathway comprises a farnesyl diphosphate synthase (FPPS).
  • 163. The microbial host cell of any one of claims 105 to 162, wherein microbial host cell has one or more genetic modifications that increase the production or availability of UDP-glucose.
  • 164. The method of claim 163, wherein the microbial host cell is a bacterial cell having one or more genetic modifications selected from ΔgalE, ΔgalT, ΔgalK, ΔgalM, ΔushA, Δagp, Δpgm, duplication or overexpression of E. coli galU, expression of Bacillus subtilis UGPA, and expression of Bifidobacterium adolescentis SPL.
  • 165. A UGT enzyme or host cell expressing the UGT enzyme, the UGT enzyme comprising an amino acid sequence that has at least about 70%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, or at least about 97% sequence identity with SEQ ID NO: 165, and having one or more an amino acid substitutions selected from L41F, D49E, and C127F with respect to SEQ ID NO: 165.
  • 166. The UGT enzyme or host cell of claim 165, wherein the UGT enzyme comprises the amino acid substitutions L41F, D49E, and C127F, with respect to SEQ ID NO: 165.
  • 167. A UGT enzyme or host cell expressing the UGT enzyme, the UGT enzyme comprising an amino acid sequence that has at least about 70%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, or at least about 97% sequence identity with SEQ ID NO: 164, and having one or more an amino acid substitutions selected from Table 3.
  • 168. The UGT enzyme or host cell of claim 167, wherein the UGT enzyme has one or more substitutions selected from S150F, T147L, N207K, K270E, V281L, L354V, L13F, T32A, and K101A, with respect to SEQ ID NO: 164.
  • 169. The UGT enzyme of claim 168, comprising the amino acid substitutions T147L and N207K, with respect to SEQ ID NO: 164.
  • 170. The UGT enzyme or host cell expressing the UGT enzyme, the UGT enzyme comprising an amino acid sequence that has at least about 70%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, or at least about 97% sequence identity with SEQ ID NO: 217, and having one or more an amino acid substitutions selected from A74E, 191F, H101P, Q241E, and I436L, with respect to SEQ ID NO: 217.
  • 171. The UGT enzyme or host cell of claim 170, comprising the amino acid substitutions A74E, I91F, and H101P with respect to SEQ ID NO: 217.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims priority to, and the benefit of, U.S. Provisional Application No. 63/085,557 filed Sep. 30, 2020, U.S. Provisional Application No. 63/075,631 filed Sep. 8, 2020, and U.S. Provisional Application No. 62/948,657 filed Dec. 16, 2019, the disclosures of which are hereby incorporated by reference in their entireties.

PCT Information
Filing Document Filing Date Country Kind
PCT/US2020/065285 12/16/2020 WO
Provisional Applications (3)
Number Date Country
63075631 Sep 2020 US
63085557 Sep 2020 US
62948657 Dec 2019 US