Microbicidal composition

Information

  • Patent Grant
  • 9913468
  • Patent Number
    9,913,468
  • Date Filed
    Friday, October 3, 2014
    10 years ago
  • Date Issued
    Tuesday, March 13, 2018
    6 years ago
Abstract
A synergistic microbicidal composition having two components. The first component is a nonionic surfactant with structure: R1O(CH2CH(CH3)O)5(CH2CH2O)9H, where R1 is a C8 alkyl group. The second component is 2-decylthioethylamine. The weight ratio of the nonionic surfactant to 2-decylthioethylamine is from 1:0.004 to 1:0.0137 or 1:0.016 to 1:0.4571.
Description

This invention relates to microbicidal compositions containing 2-decylthioethylamine and a surfactant.


A composition containing 5-chloro-2-methylisothiazolin-3-one, 2-methylisothiazolin-3-one and a nonionic dispersant is disclosed in U.S. Pat. No. 4,295,932. The composition contains a 3:1 mixture of 5-chloro-2-methylisothiazolin-3-one and 2-methylisothiazolin-3-one, and a copolymer of ethylene oxide and propylene oxide which appears to have the same composition as PLURONIC L61 or TERGITOL L61 dispersant. However, there is a need for combinations of microbicides having synergistic activity against various strains of microorganisms to provide effective control of the microorganisms. Moreover, there is a need for such combinations containing lower levels of individual microbicides for environmental and economic benefit. The problem addressed by this invention is to provide such synergistic combinations of microbicides.


STATEMENT OF THE INVENTION

The present invention is directed to a synergistic microbicidal composition comprising: (a) a nonionic surfactant with structure:

R1O(CH2CH(CH3)O)5(CH2CH2O)9H

where R1 is a C8 alkyl group; and (b) 2-decylthioethylamine; wherein a weight ratio of said nonionic surfactant to 2-decylthioethylamine is from 1:0.004 to 1:0.0137 or 1:0.016 to 1:0.4571.


The present invention is further directed to a synergistic microbicidal composition comprising: (a) a nonionic surfactant with structure:

R2O(CH2CH(CH3)O)3(CH2CH2O)7H

where R2 is a mixture of C8-C14 linear alkyl groups; and (b) 2-decylthioethylamine; wherein a weight ratio of said nonionic surfactant to 2-decylthioethylamine is from 1:0.0023 to 1:0.4571.


The present invention is further directed to a synergistic microbicidal composition comprising: (a) a nonionic surfactant with structure:

R2O(CH2CH(CH3)O)3(CH2CH2O)5H

where R2 is a mixture of C8-C14 linear alkyl groups; and (b) 2-decylthioethylamine; wherein a weight ratio of said nonionic surfactant to 2-decylthioethylamine is from 1:0.0023 to 1:0.3657.


The present invention is further directed to methods for inhibiting the growth of microorganisms in aqueous media by adding to an aqueous medium a nonionic surfactant as described herein and 2-decylthioethylamine in the ratios described herein.







DETAILED DESCRIPTION OF THE INVENTION

“DTEA” is 2-decylthioethylamine, CAS No. 29873-30-1, or its salts. DTEA may be present in the form of a salt, especially the hydrochloride salt; ratios and amounts stated herein including 2-decylthioethylamine are based on the hydrochloride salt. As used herein, the following terms have the designated definitions, unless the context clearly indicates otherwise. The term “microbicide” refers to a compound capable of inhibiting the growth of or controlling the growth of microorganisms; microbicides include bactericides, fungicides and algaecides. The term “microorganism” includes, for example, fungi (such as yeast and mold), bacteria and algae. The following abbreviations are used throughout the specification: ppm=parts per million by weight (weight/weight), mL=milliliter. Unless otherwise specified, temperatures are in degrees centigrade (° C.), references to percentages are percentages by weight (wt %) and amounts and ratios are on an active ingredient basis, i.e., total weight of DTEA and the nonionic surfactant. Numbers of polymerized units of propylene oxide or ethylene oxide are number averages.


Preferably, the weight ratio of the nonionic surfactant with structure:

R1O(CH2CH(CH3)O)5(CH2CH2O)9H

where R1 is a C8 alkyl group to 2-decylthioethylamine is from 1:0.016 to 1:0.4571, preferably from 1:0.032 to 1:0.4571. Preferably, the weight ratio of the nonionic surfactant with structure:

R2O(CH2CH(CH3)O)3(CH2CH2O)7H

where R2 is a mixture of C8-C14 linear alkyl groups to 2-decylthioethylamine is from 1:0.01 to 1:0.4571. Preferably, the weight ratio of the nonionic surfactant with structure:

R2O(CH2CH(CH3)O)3(CH2CH2O)7H

where R2 is a mixture of C8-C14 linear alkyl groups to 2-decylthioethylamine is from 1:0.02 to 1:0.3657, preferably from 1:0.0343 to 1:0.3657.


The present invention is further directed to a method for inhibiting the growth of mold, preferably A. niger, in an aqueous medium by adding: (a) a nonionic surfactant with structure:

R2O(CH2CH(CH3)O)3(CH2CH2O)7H

where R2 is a mixture of C8-C14 linear alkyl groups; and (b) 2-decylthioethylamine; wherein a weight ratio of said nonionic surfactant to 2-decylthioethylamine is from 1:0.01 to 1:0.4571.


The present invention is further directed to a method for inhibiting the growth of mold, preferably A. niger, in an aqueous medium by adding: (a) a nonionic surfactant with structure:

R1O(CH2CH(CH3)O)5(CH2CH2O)9H

where R1 is a C8 alkyl group; and (b) 2-decylthioethylamine; wherein a weight ratio of said nonionic surfactant to 2-decylthioethylamine is from 1:0.032 to 1:0.4571.


The present invention is further directed to a method for inhibiting the growth of mold, preferably A. niger, in an aqueous medium by adding: (a) a nonionic surfactant with structure:

R2O(CH2CH(CH3)O)3(CH2CH2O)5H

where R2 is a mixture of C8-C14 linear alkyl groups; and (b) 2-decylthioethylamine; wherein a weight ratio of said nonionic surfactant to 2-decylthioethylamine is from 1:0.02 to 1:0.3657, preferably from 1:0.0343 to 1:0.3657.


R2 is a mixture of C8-C14 linear alkyl groups. Preferably, the C8-C14 linear alkyl groups comprise from 50 to 85 wt % C8-C10 linear alkyl groups and 15 to 50 wt % C12-C14 linear alkyl groups, preferably from 60 to 75 wt % C8-C10 linear alkyl groups and 25 to 40 wt % C12-C14 linear alkyl groups, preferably about 70 wt % C8-C10 linear alkyl groups and about 30 wt % C12-C14 linear alkyl groups. Preferably, the linear alkyl groups are derived from seed oil. Preferably, R1 is 2-ethylhexyl.


Preferably, each of the compositions is substantially free of microbicides other than the nonionic surfactant and DTEA, i.e., it has less than 1 wt % of microbicides other than the nonionic surfactant and DTEA based on total weight of active ingredients, preferably less than 0.5 wt %, preferably less than 0.2 wt %, preferably less than 0.1 wt %. Preferably, when the nonionic surfactant and DTEA are added to an aqueous medium, the medium is substantially free of other microbicides, i.e., it has less than 1 wt % of microbicides other than the nonionic surfactant and DTEA based on total weight of active ingredients, preferably less than 0.5 wt %, preferably less than 0.2 wt %, preferably less than 0.1 wt %.


The compositions of this invention may contain other ingredients, e.g., defoamers and emulsifiers. The microbicidal compositions of the present invention can be used to inhibit the growth of microorganisms or higher forms of aquatic life (such as protozoans, invertebrates, bryozoans, dinoflagellates, crustaceans, mollusks, etc) by introducing a microbicidally effective amount of the compositions into an aqueous medium subject to microbial attack. Suitable aqueous media are found in, for example: industrial process water; electrocoat deposition systems; cooling towers; air washers; gas scrubbers; mineral slurries; wastewater treatment; ornamental fountains; reverse osmosis filtration; ultrafiltration; ballast water; evaporative condensers; heat exchangers; pulp and paper processing fluids and additives; starch; plastics; emulsions; dispersions; paints; latices; coatings, such as varnishes; construction products, such as mastics, caulks, and sealants; construction adhesives, such as ceramic adhesives, carpet backing adhesives, and laminating adhesives; industrial or consumer adhesives; photographic chemicals; printing fluids; household products, such as bathroom and kitchen cleaners; cosmetics; toiletries; shampoos; soaps; personal care products such as wipes, lotions, sunscreen, conditioners, creams, and other leave-on applications; detergents; industrial cleaners; floor polishes; laundry rinse water; metalworking fluids; conveyor lubricants; hydraulic fluids; leather and leather products; textiles; textile products; wood and wood products, such as plywood, chipboard, flakeboard, laminated beams, oriented strandboard, hardboard, and particleboard; petroleum processing fluids; fuel; oilfield fluids, such as injection water, fracture fluids, and drilling muds; agriculture adjuvant preservation; surfactant preservation; medical devices; diagnostic reagent preservation; food preservation, such as plastic or paper food wrap; food, beverage, and industrial process pasteurizers; toilet bowls; recreational water; pools; and spas.


The specific amount of the microbicidal compositions of this invention necessary to inhibit or control the growth of microorganisms in an application will vary. Typically, the amount of the composition of the present invention is sufficient to control the growth of microorganisms if it provides from 1 to 500 ppm (parts per million) active ingredients of the composition. It is preferred that the active ingredients (i.e., nonionic surfactant and DTEA) of the composition be present in the medium to be treated in an amount of at least 3 ppm, preferably at least 5 ppm, preferably at least 10 ppm. It is preferred that the active ingredients of the composition be present in the locus in an amount of no more than 400 ppm, preferably no more than 300 ppm, preferably no more than 200 ppm, preferably no more than 100 ppm, preferably no more than 80 ppm, preferably no more than 70 ppm. In a method of this invention, a composition is treated to inhibit microbial growth by adding, together or separately, the nonionic surfactant and DTEA, in amounts that would produce the concentrations indicated above.


Examples

Surfactants and biocides were evaluated for synergy by determining the synergy index (S.I.) of the combination. Synergy index was calculated based on minimum inhibitory concentrations (MIC) of two antimicrobial compounds (A and B) alone and in combinations. The tests organisms were Gram negative bacteria (Pseudomonas aeruginosa ATCC #15442), Gram positive bacteria (Staphylococcus aureus ATCC #6538), yeast (Candida albicans ATCC#10203) and mold (Aspergillus niger ATCC#16404). Contact time for the bacteria was 24 and 48 hours, yeast was 48 and 72 hrs, and 3 and 7 days for mold. The test was carried out in 96 well microtiter plates.

R1O(CH2CH(CH3)O)5(CH2CH2O)9H, where R1 is 2-ethylhexyl  Surf. A
R2O(CH2CH(CH3)O)3(CH2CH2O)5H  Surf. D
R2O(CH2CH(CH3)O)3(CH2CH2O)7H  Surf. E

In Surf. D and Surf. E, R2 is a mixture of C8-C14 linear alkyl groups (70% C8-C10 linear alkyl and 30% C12-C14 linear alkyl)


Inoculums Used












Inoculum Size of organisms (CFU/ml)















Aspergillus


Candida





Staphylococcus


Pseudomonas


niger


albicans



Surfac-

aureus


aeruginosa

ATCC#
ATCC#


tants
ATCC# 6538
ATCC # 15442
16404
10203





Surf. A
1.156E+06
8.134E+07
1.156E+06
1.156+06


Surf. D
1.808E+05
1.156E+08
1.156E+06
5.726E+05


Surf. E
1.808E+06
5.727E+07
5.726E+05
1.808E+06
















TABLE 4







Media Used


Media Used for testing











Staphylococcus


Pseudomonas


Aspergillus


Candida




aureus


aeruginosa ATCC #


niger


albicans



ATCC# 6538
15442
ATCC# 16404
ATCC#10203





10% Tryptic soy
10% Tryptic soy
Potato dextrose
Potato dextrose


broth
broth
broth
broth









The pH of the Triptic soy broth was 7.3 and the Potato dextrose broth was 5.1.


The test results for demonstration of synergy of the MIC combinations are shown in the tables below. Each table shows the results for combinations of two components against the microorganisms tested with incubation times; the end-point activity in ppm measured by the MIC for compound A alone (CA), for component B alone (CB), and the mixture (Ca) and (Cb); the calculated SI value; and the range of synergistic ratios for each combination tested. SI is calculated as follows:

Ca/CA+Cb/CB=Synergy Index (“SI”)

Wherein:

    • CA=concentration of compound A in ppm, acting alone, which produced an end point (MIC of Compound A).
    • Ca=concentration of compound A in ppm, in the mixture, which produced an end point.
    • CB=concentration of compound B in ppm, acting alone, which produced an end point (MIC of Compound B).
    • Cb=concentration of compound B in ppm, in the mixture, which produced an end point.


      When the sum of Ca/CA and Cb/CB is greater than one, antagonism is indicated. When the sum is equal to one, additivity is indicated, and when less than one, synergism is demonstrated.


The ratio ranges at which DTEA (in the form of its hydrochloride salt) and the surfactants were tested are as summarized in the following tables:












DTEA with Surf. A











Organism
ATCC#
From
To
Ratio Range















Staphylococcus aureus

6538
0.02:20,000 
  100:218.75
1:0.000001-1:0.45714



Aspergillus niger

16404
0.2:20,000
1,000:218.75
1:0.00001-1:4.5714



Candida albicans

10203
0.2:20,000
1,000:218.75
1:0.00001-1:4.5714



Pseudomonas

15442
0.2:20,000
1,000:218.75
1:0.00001-1:4.5714



aeruginosa




















DTEA with Surf. E











Organism
ATCC#
From
To
Ratio Range















Staphylococcus aureus

6538
0.02:20,000
  100:218.75
1:0.000001-1:0.45714



Aspergillus niger

16404
 0.2:20,000
1,000:218.75
1:0.00001-1:4.5714



Candida albicans

10203
 0.2:20,000
1,000:218.75
1:0.00001-1:4.5714



Pseudomonas

15442
0.02:20,000
  100:218.75
1:0.000001-1:0.45714



aeruginosa




















DTEA with Surf. D











Organism
ATCC#
From
To
Ratio Range















Staphylococcus aureus

6538
0.02:20,000
100:218.75
1:0.000001-1:0.45714



Aspergillus niger

16404
0.02:20,000
100:218.75
1:0.000001-1:0.45714



Candida albicans

10203
 0.2:20,000
1,000:218.75  
1:0.00001-1:4.5714



Pseudomonas

15442
0.02:20,000
100:218.75
1:0.000001-1:0.45714



aeruginosa



























A: Surf. A





B: DTEA



Media: 1/10 TSB



Inoculum size: 8.13E+07




P. aeruginosa

ATCC#15442
No Synergy











A: Surf. A


B: DTEA


Media: PDB


Inoculum size: 1.156E+06










PPM AI MIC Values




(3rd day)










Test
Alone
Combination














Organism
CA
CB
Ca
Cb
S.I.
Ratio (Ca:Cb)






A. niger

>20000
200
2500
80
<0.53
1:0.0320


ATCC#16404
>20000
200
2500
100
<0.63
1:0.0400



>20000
200
1750
80
<0.49
1:0.0457



>20000
200
1750
100
<0.59
1:0.0571



>20000
200
875
100
<0.54
1:0.1143



>20000
200
437.5
100
<0.52
1:0.2286



>20000
200
218.75
100
<0.51
1:0.4571










A: Surf. A


B: DTEA


Media: PDB


Inoculum size: 1.156E+06










PPM AI MIC Values




(48 hrs)










Test
Alone
Combination














Organism
CA
CB
Ca
Cb
S.I.
Ratio (Ca:Cb)






C. albicans

>20000
50
2500
40
<0.93
1:0.0160


ATCC#10203
>20000
50
1750
40
<0.89
1:0.0229



>20000
50
875
40
<0.84
1:0.0457










A: Surf. A


B: DTEA


Media: 1/10 TSB


Inoculum size: 1.156E+06










PPM AI MIC Values




(24 hrs)










Test
Alone
Combination














Organism
CA
CB
Ca
Cb
S.I.
Ratio (Ca:Cb)






S. aureus

>20000
4
2500
1
<0.38
1:0.0004


ATCC#
>20000
4
2500
2
<0.63
1:0.0008


6538



>20000
4
2500
3
<0.88
1:0.0012



>20000
4
1750
1
<0.34
1:0.0006



>20000
4
1750
2
<0.59
1:0.0011



>20000
4
1750
3
<0.84
1:0.0017



>20000
4
875
1
<0.29
1:0.0011



>20000
4
875
2
<0.54
1:0.0023



>20000
4
875
3
<0.79
1:0.0034



>20000
4
437.5
2
<0.52
1:0.0046



>20000
4
437.5
3
<0.77
1:0.0069



>20000
4
218.75
3
<0.76
1:0.0137





















A: Surf. D; B: DTEA


Media: PDB; Inoculum size: 1.156E+06










PPM AI MIC Values




(3rd day)










Test
Alone
Combination














Organism
CA
CB
Ca
Cb
S.I.
Ratio (Ca:Cb)






>20000
100
20000
50
>1.50
1:0.0025



>20000
100
20000
60
>1.60
1:0.0030



A. niger

>20000
100
20000
80
>1.80
1:0.0040


ATCC#16404
>20000
100
10000
40
<0.90
1:0.0040



>20000
100
10000
50
>1.00
1:0.0050



>20000
100
10000
60
>1.10
1:0.0060



>20000
100
10000
80
>1.30
1:0.0080



>20000
100
5000
30
<0.55
1:0.0060



>20000
100
5000
40
<0.65
1:0.0080



>20000
100
5000
50
<0.75
1:0.0100



>20000
100
5000
60
<0.85
1:0.0120



>20000
100
5000
80
>1.05
1:0.0160



>20000
100
2500
20
<0.33
1:0.0080



>20000
100
2500
30
<0.43
1:0.0120



>20000
100
2500
40
<0.53
1:0.0160



>20000
100
2500
50
<0.63
1:0.0200



>20000
100
2500
60
<0.73
1:0.0240



>20000
100
2500
80
<0.93
1:0.0320



>20000
100
1750
20
<0.29
1:0.0114



>20000
100
1750
40
<0.49
1:0.0229



>20000
100
1750
50
<0.59
1:0.0286



>20000
100
1750
60
<0.69
1:0.0343



>20000
100
1750
80
<0.89
1:0.0457



>20000
100
875
30
<0.34
1:0.0343



>20000
100
875
40
<0.44
1:0.0457



>20000
100
875
50
<0.54
1:0.0571



>20000
100
875
60
<0.64
1:0.0686



>20000
100
875
80
<0.84
1:0.0914



>20000
100
437.5
20
<0.22
1:0.0457



>20000
100
437.5
30
<0.32
1:0.0686



>20000
100
437.5
40
<0.42
1:0.0914



>20000
100
437.5
50
<0.52
1:0.1143



>20000
100
437.5
60
<0.62
1:0.1371



>20000
100
437.5
80
<0.82
1:0.1829



>20000
100
218.75
40
<0.41
1:0.1829



>20000
100
218.75
50
<0.51
1:0.2286



>20000
100
218.75
60
<0.61
1:0.2743



>20000
100
218.75
80
<0.81
1:0.3657










A: Surf. D


B: DTEA


Media: PDB


Inoculum size 5.72E+05










PPM AI MIC Values




(48 hrs)










Test
Alone
Combination














Organism
CA
CB
Ca
Cb
S.I.
Ratio (Ca:Cb)






C. albicans

>20000
40
2500
30
<0.88
1:0.0100


ATCC#10203
>20000
40
1750
30
<0.84
1:0.0100



>20000
40
875
30
<0.79
1:0.0100



>20000
40
437.5
30
<0.77
1:0.0200



>20000
40
218.75
30
<0.76
1:0.0914










A: Surf. D


B: DTEA


Media: 1/10 TSB


Inoculum size: 1.16E+06










PPM AI MIC Values




(24 hrs)










Test
Alone
Combination














Organism
CA
CB
Ca
Cb
S.I.
Ratio (Ca:Cb)






Ps. aeruginosa

>20000
20
2500
8
<0.53
1:0.0032


ATCC#15442
>20000
20
2500
10
<0.63
1:0.0040



>20000
20
1750
10
<0.59
1:0.0057










A: Surf. D


B: DTEA


Media: 1/10 TSB


Inoculum size: 1.8E+05










PPM AI MIC Values




(24 hrs)










Test
Alone
Combination














Organism
CA
CB
Ca
Cb
S.I.
Ratio (Ca:Cb)






S. aureus

>20000
5
2500
4
<0.93
1:0.0016


ATCC#
>20000
5
1750
4
<0.89
1:0.0023


6538



>20000
5
875
3
<0.64
1:0.0034



>20000
5
875
4
<0.84
1:0.0046



>20000
5
437.5
2
<0.42
1:0.0046



>20000
5
437.5
3
<0.62
1:0.0069



>20000
5
437.5
4
<0.82
1:0.0091



>20000
5
218.75
3
<0.41
1:0.0091



>20000
5
218.75
3
<0.61
1:0.0137



>20000
5
218.75
4
<0.81
1:0.0183


























A: Surf. E





B: DTEA



Media: 1/10 TSB



Inoculum size: 8.13E+07




P. aeruginosa

ATCC#15442
No Synergy











A: Surf. E


B: DTEA


Media: PDB


Inoculum size 1.56E+06










PPM AI MIC Values




(3rd day)











Test
Alone
Combination

Ratio













Organism
CA
CB
Ca
Cb
S.I.
(Ca:Cb)






A. niger

>20000
200
5000
50
<0.50
1:0.0100


ATCC#16404
>20000
200
5000
60
<0.55
1:0.0120



>20000
200
5000
80
<0.65
1:0.0160



>20000
200
5000
100
<0.75
1:0.0200



>20000
200
2500
30
<0.28
1:0.0120



>20000
200
2500
40
<0.33
1:0.0160



>20000
200
2500
50
<0.38
1:0.0200



>20000
200
2500
60
<0.43
1:0.0240



>20000
200
2500
80
<0.53
1:0.0320



>20000
200
2500
100
<0.63
1:0.0400



>20000
200
1750
30
<0.24
1:0.0171



>20000
200
1750
40
<0.29
1:0.0229



>20000
200
1750
50
<0.34
1:0.0286



>20000
200
1750
60
<0.39
1:0.0343



>20000
200
1750
80
<0.49
1:0.0457



>20000
200
1750
100
<0.59
1:0.0571



>20000
200
875
30
<0.19
1:0.0343



>20000
200
875
40
<0.24
1:0.0457



>20000
200
875
50
<0.29
1:0.0571



>20000
200
875
60
<0.34
1:0.0686



>20000
200
875
80
<0.44
1:0.0914



>20000
200
875
100
<0.54
1:0.1143



>20000
200
437.5
40
<0.22
1:0.0914



>20000
200
437.5
50
<0.27
1:0.1143



>20000
200
437.5
60
<0.32
1:0.1371



>20000
200
437.5
80
<0.42
1:0.1829



>20000
200
437.5
100
<0.52
1:0.2286



>20000
200
218.75
60
<0.31
1:0.2743



>20000
200
218.75
80
<0.41
1:0.3657



>20000
200
218.75
100
<0.51
1:0.4571










A: Surf. E


B: DTEA


Media: PDB


Inoculum size 1.8E+06










PPM AI MIC Values




(48 hrs)











Test
Alone
Combination

Ratio













Organism
CA
CB
Ca
Cb
S.I.
(Ca:Cb)






>20000
50
10000
40
>1.30
1:0.0040



C. albicans

>20000
50
5000
30
<0.85
1:0.0060


ATCC#10203
>20000
50
5000
40
>1.05
1:0.0080



>20000
50
2500
20
<0.53
1:0.0080



>20000
50
2500
30
<0.73
1:0.0120



>20000
50
2500
40
<0.93
1:0.0160



>20000
50
1750
20
<0.49
1:0.0114



>20000
50
1750
30
<0.69
1:0.0171



>20000
50
1750
40
<0.89
1:0.0229



>20000
50
875
30
<0.64
1:0.0343



>20000
50
875
40
<0.84
1:0.0457



>20000
50
437.5
30
<0.62
1:0.0686



>20000
50
437.5
40
<0.82
1:0.0914



>20000
50
218.75
40
<0.81
1:0.1829










A: Surf. E


B: DTEA


Media: 1/10 TSB


Inoculum size: 1.156E+06










PPM AI MIC Values




(24 hrs)











Test
Alone
Combination

Ratio













Organism
CA
CB
Ca
Cb
S.I.
(Ca:Cb)






S. aureus

20000
5
1750
4
<0.89
1:0.0023


ATCC# 6538
20000
5
875
3
<0.64
1:0.0034



20000
5
875
4
<0.84
1:0.0046



20000
5
437.5
1
<0.22
1:0.0023



20000
5
437.5
2
<0.42
1:0.0046



20000
5
437.5
3
<0.62
1:0.0069



20000
5
437.5
4
<0.82
1:0.0091



20000
5
218.75
2
<0.41
1:0.0091



20000
5
218.75
3
<0.61
1:0.0137



20000
5
218.75
4
<0.81
1:0.0183









The following biocides had no synergy against any organism tested when paired with the following surfactants:


Surf. A


Sodium Benzoate, TRIS NITRO


Surf. E


DMDMH


Surf. D


CS-1246, OPP, DMDMH


In the following combinations, the ratio of surfactant to biocide where synergy was observed were not commercially relevant, i.e., a ratio of 1:0.2 or greater (less biocide relative to surfactant). At these ratios, the biocide levels in a formulated product would be too low to be practical:


Surf. A


DIDAC, IPBC


Surf. E


CMIT/MIT, IPBC, OIT, TTPC, WSCP


Surf. D


CMIT/MIT, OIT, DIDAC


(MBIT, IPBC, WSCP were synergistic only at 1:0.05 or worse except for one data point)

Claims
  • 1. A synergistic microbicidal composition comprising: (a) a nonionic surfactant with structure: R1O(CH2CH(CH3)O)5(CH2CH2O)9H
  • 2. A method for inhibiting the growth of microorganisms in an aqueous medium; said method comprising adding to said aqueous medium: (a) a nonionic surfactant with structure: R1O(CH2CH(CH3)O)5(CH2CH2O)9H
  • 3. A synergistic microbicidal composition comprising: (a) a nonionic surfactant with structure: R2O(CH2CH(CH3)O)3(CH2CH2O)7H
  • 4. A method for inhibiting the growth of microorganisms in an aqueous medium; said method comprising adding to said aqueous medium: (a) a nonionic surfactant with structure: R2O(CH2CH(CH3)O)3(CH2CH2O)7H
  • 5. A synergistic microbicidal composition comprising: (a) a nonionic surfactant with structure: R2O(CH2CH(CH3)O)3(CH2CH2O)5H
PCT Information
Filing Document Filing Date Country Kind
PCT/US2014/058951 10/3/2014 WO 00
Publishing Document Publishing Date Country Kind
WO2015/051202 4/9/2015 WO A
US Referenced Citations (7)
Number Name Date Kind
4295932 Pocius Oct 1981 A
H1265 Brady et al. Dec 1993 H
6039965 Donlan et al. Mar 2000 A
6241898 Wright et al. Jun 2001 B1
20080088647 Marcu et al. Apr 2008 A1
20090176887 Vlasaty et al. Jul 2009 A1
20110098492 Varineau et al. Apr 2011 A1
Foreign Referenced Citations (6)
Number Date Country
1262084 Oct 1989 CA
0266828 May 1988 EP
1454527 Sep 2004 EP
2138798 Oct 1984 GB
WO 2008088647 Jul 2008 WO
WO 2009155187 Dec 2009 WO
Non-Patent Literature Citations (1)
Entry
Adkins, et al., “Morphology and Stability o fCO 2-in-Water Foams with Nonionic Hydrocarbon Surfactants”, Langmuir, vol. 26, No. 8, pp. 5335-5348 (2010). XP55115328.
Related Publications (1)
Number Date Country
20160235058 A1 Aug 2016 US
Provisional Applications (1)
Number Date Country
61886339 Oct 2013 US