The present invention relates to the field of microcontrollers. Specifically, embodiments of the invention relate to a microcontroller system on a chip, with architecture effectuating both analog and digital programmable circuits.
Microcontrollers have become commonplace in the thirty years since their introduction. They have all but replaced mechanical and electromechanical components in the area of control over “real world” activities. For applications now controlled by microcontrollers, control functions therein are now much more functional, reliable, and economical.
Major improvements in microcontroller design since their introduction have made them nearly ubiquitous in modern control applications. The in-circuit emulator improved debugging and the integration of hardware and software. Embedded application development effectuated by C and other compilers has reduced software development time and allowed much larger programs and concomitantly more complex applications. One time programmability (OTP) of microcontrollers extended their utility, particularly for highly specialized and/or low volume applications. Programmability also improved the development cycle for users of microcontrollers.
Microcontrollers have embedded processors, memories, power sources, voltage references, voltage/power and temperature sensors, timers, oscillators, and other circuits. Various microcontrollers have differing features, including capacities. The 8-bit microcontrollers are an extremely useful, common, and well-populated class.
Contemporarily, there are thousands of different 8-bit microcontrollers from a number of sources. Nevertheless, selecting a microcontroller for a particular application and/or matching a particular microcontroller to a specific application remains a challenge. First, selecting a particular microcontroller from the many available can be confusing and tedious. After a selection is made, changing design requirements, engineering solutions, and/or unexpected higher capacity requirements often require scrapping the original selection and repeating the confusing and tedious selection process.
Conventionally, these problems may be addressed by custom designing a microcontroller with a “perfect,” e.g., exact, particular combination of required peripheral functionalities, and no surplusage, incorporating all needed functions, and eliminating a requirement for any external chips. This is demanding of time and resources, because it requires custom design and manufacturing operations for each selected application. It is expensive, in as much as it can take no advantage of the usual electronics industry economies of scale, which otherwise typically hold electronic prices at reasonably low levels.
Microcontrollers effectuate a wide range of applications in modem electronic installations into which they are functionally integrated. One major microcontroller utilization is the embedded system application. Most embedded system applications interface to the “real world.” This real world is analog in nature, and most microcontrollers interfacing with it offer an analog to digital (A/D) converter; true analog peripherals are rare. However, many microcontroller designs with real world interfacing embedded systems require that analog signals be multiplied, filtered, or otherwise conditioned before conversion to digital. While conventional analog functional components are available for use with microcontrollers, they are custom components and still require a separate microcontroller and an effective electrical coupling and signal synchronization and transfer modality to effectuate their use therewith. This is inefficient and costly.
Microcontrollers have a number of components to effectuate device application. Such components in conventional microcontrollers have fixed functions, which are disadvantageous in two major ways. First, in selecting a microcontroller for a particular application, it must be known in advance precisely which functions are required to effectuate that application and that this functional requirement is static. Second, specifying any particular function carries a cost, in as much as that function is static. The following example illustrates this second limitation.
A conventional microcontroller with “off the shelf” availability is selected for a particular application because it has a timer functionality, required by the application for which it is to be used. To effectuate this particular microcontroller's timer functionality, the microcontroller has two integrated timing components. However, the application at hand may be effectuated by the microcontroller if it had only a single timer component. This is wasteful of chip resources, power and computing demands, etc. Yet finding an exact, or even closer match from the finite supply of available microcontrollers with off the shelf availability is difficult and time consuming.
This limitation can be offset by negotiation with the microcontroller manufacturer for a custom designed and built chip, or the user, seeking the microcontroller for the particular application at hand may continue to search for another microcontroller with off the shelf availability, having components more closely matching the requirements of the application at hand. However, as discussed above, either of these solutions is also costly in terms of time, resources, and/or expense.
Further, microcontrollers employing conventional component technology have individual characteristic spectra of application, which are typically rather limited and static. Often, particular microcontrollers have rather precisely defined design functionalities, which are static and unchangeable, or changeable only in rather limited ways. Thus in this regard, conventional microcontrollers applications are inherently one dimensional and inflexible. This is also true of other circuits, such as an application specific integrated circuit (ASIC).
Conventional microcontrollers themselves are not reconfigurable to any convenient degree. A relatively small fraction of available conventional microcontrollers, and those implementing very general functions, have some degree of reconfigurability. However, the degree of reconfigurability is very limited. For example, one particular type of conventional microcontrollers implementing very general functions includes logic devices such as programmable gate arrays.
Programmable gate arrays typically are characterized by very fine grained logic architectures.
In so far as programmable gate arrays are reconfigurable at all, their reconfiguration is a static process, requiring a programmable gate array being so reconfigured to be out of service during the process, which takes an inordinate amount of time and requires a heavy price in computational resources. This is because the fine grain architecture of the programmable gate array being reconfigured demands thousands, for some common reconfigurations even millions of bits of information to be written, for each and every logic block requiring re-writing to effectuate the reconfiguration.
The conventional art is problematic because it generally fails to address the limitations of individual microcontroller and integrated circuit (IC) applicability and flexibility, and configurablity and programmability. Where reconfigurability is possible at all in conventional microcontrollers and ICs, it is typically achieved statically, with the microcontroller or IC out of service, to a very limited degree, and requires relatively long times and informational input to achieve. Custom designed analog-based devices are coupled with microcontrollers and/or ICs in such a way as to harmonize their operations in particular microcontroller/IC applications requiring analog functionality. Contemporary solutions to these problems using conventional resources are inadequate because of the time and effort required for custom choosing a particular conventional microcontroller/IC design for a certain application from a relatively limited field, resource costs of functionalities selected in the conventional microcontrollers/ICs selected, and the inordinate expense of custom chips, such as ASICs.
What is needed is a method of integrating a system with a microcontroller and integrated circuits (IC) on a single chip to effectuate a system on a chip, including analog functionality, and/or a system so integrated with a microcontroller and/or other IC. What is also needed is a system on a chip, which has sufficient flexibility to function in a very wide range of multiple applications, including applications wherein integrated analog functionalities are required. Further, what is needed is a method of programming and dynamically reconfiguring a system on a chip, and a system on a chip which is so programmable and dynamically reconfigurable. Further still, what is needed is a system on a chip, which achieves the foregoing advantages and yet is relatively inexpensive and simple to configure, apply, use, and reconfigure.
Embodiments of the present invention provide an integrated system with a microcontroller and integrated circuits (IC), on a single chip to effectuate a system on a chip, including programmable analog and digital functionality and a microprocessor, and a method of configuring such an integrated system. The present invention also provides a system on a chip, which has sufficient flexibility to function in a very wide range of multiple applications, including applications wherein integrated analog functionalities are required. Further, the present invention provides a method of programming and dynamically reconfiguring a system on a chip, and a system on a chip, which is so programmable and dynamically reconfigurable. Further still, the present invention provides a system on a chip, which achieves the foregoing advantages and yet is relatively inexpensive and simple to configure, apply, use, and reconfigure.
Embodiments of the present invention directed to a microcontroller device having a microprocessor, programmable memory components, and programmable analog and digital blocks. The programmable analog and digital blocks are configurable based on programming information stored in the memory components. Programmable interconnect logic, also programmable from the memory components, is used to couple the programmable analog and digital blocks as needed. The advanced microcontroller design also includes programmable input/output blocks for coupling selected signals to external pins. The memory components also include user programs that the embedded microprocessor executes. These programs may include instructions for programming the digital and analog blocks “on-the-fly,” e.g., dynamically. In one implementation, there are a plurality of programmable digital blocks and a plurality of programmable analog blocks.
In one embodiment, the present invention provides a method of integrating a system with a microcontroller/IC on a single chip to effectuate a system on a chip, including programmable analog functionality. Another embodiment provides a system so integrated with a microcontroller/IC. In one embodiment, the present invention also provides a system on a chip which has sufficient flexibility to function in a very wide range of multiple applications, including applications wherein integrated analog functionalities are required. In the present embodiment, the system on a chip is capable of executing a wide range of applications requiring programmable mixed (analog and digital) signals. In the present embodiments, both digital and analog functionalities are effectuated in block components integrated with a microcontroller/IC on a single chip. These block components are complete functional units, each with a very large number of operations programmed within them.
In one embodiment, the present invention further provides a method of programming and dynamically reconfiguring a system on a chip, and a system on a chip, which is so programmable and dynamically reconfigurable. The programming is effectuated, in one embodiment, by firmware executing a series of instructions run by a microprocessor component of the microcontroller/IC. In one embodiment, a new microcontroller/IC programming paradigm is effectuated, wherein a user of the system on a chip loads a configuration into the functional blocks and/or programmable interconnects electrically coupling the functional blocks with each other, with other microcontroller components, and with the outside world.
In one embodiment, the programmable interconnects configure, not only the functional blocks, but also the way in which the functional blocks intercommunicate. In one embodiment, actual connection pins of the device can be configured to communicate with different internal resources, allow intercommunication via different methods and/or modalities, and actual reconfiguration of the internal structure of the device. In one embodiment, the reconfigurability features effectuate dynamic reconfiguring and programming, with no need to take the system on a chip out of service. The system on a chip can be dynamically reconfigured “on the fly,” easily and in very little time. Advantageously, these features effectuate the ability to program microcontroller/IC sequences and simultaneously program unique hardware functions that are expressible via the newly configured system on a chip.
In one embodiment, the present invention provides a system on a chip, which achieves the foregoing advantages and yet is relatively inexpensive and simple to configure, apply use, and reconfigure. The inherent great flexibility and widespread applicability of microcontroller systems on a chip of the present embodiments obviates searching, shopping, and research for the “right” microcontroller and mix of functionalities and/or design and manufacture of custom microcontroller and mix of system functionalities. Real savings in effort, time, and cost are effectuated by embodiments of the present invention.
These and other advantages of the present invention will become obvious to those of ordinary skill in the art after reading the following detailed description of the preferred embodiments, which are illustrated in the various drawing figures.
The accompanying drawings, which are incorporated in and form a part of this specification, illustrate embodiments of the invention and, together with the description, serve to explain the principles of the invention.
Reference will now be glade in detail to the preferred embodiments of the invention, examples of which are illustrated in the accompanying drawings. While the invention will be described in conjunction with the preferred embodiments, it will be understood that they are not intended to limit the invention to these embodiments. On the contrary, the invention is intended to cover alternatives, modifications and equivalents, which may be included within the spirit and scope of the invention as defined by the appended claims. Furthermore, in the following detailed description of the present invention, numerous specific details are set forth in order to provide a thorough understanding of the present invention. However, it will be obvious to one of ordinary skill in the art that the present invention may be practiced without these specific details. In other instances, well-known methods, procedures, components, and circuits have not been described in detail so as not to unnecessarily obscure aspects of the present invention.
In the following description of an embodiment of the present invention, reference is made to an exemplary microcontroller with an integrated system incorporated into a single functional device. It is appreciated that the exemplary microcontroller is illustrative only, and that embodiments of the present invention may be facilitated on any integrated circuit. The exemplary embodiments described herein do not, and are not meant to limit the application of embodiments of the present invention to microcontrollers, or to any specific integrated circuit device or type.
In the present embodiment, flash ROM 16 stores parameters describing microcontroller 10, allowing microcontroller 10 to be programmed during production, during system testing, or in the field. It is contemplated that microcontroller 10 may also be self-programmed remotely. System function blocks 25 are configurable system resources that can reduce the need for other microcontroller parts and external components.
With reference to
System timing block 19 system timing information used, among other things, for synchronizing and otherwise effectuating interfacing between system functionalities. System timing block 19, like SoC blocks 25, is programmable. Advantageously, this allows system timing block 19 to generate a myriad of different time bases, as required for any particular application the system is being configured to effectuate. These time bases may be fed into analog SoC blocks 20 and digital SoC blocks 1 DO, for use therein, via programmable interconnect 1000. Examples of analog functions requiring such time bases, executed by analog SoC blocks 20 include conversions, modulations, and the like. One striking example of a digital function requiring such time bases, executed by digital SoC blocks 100 is their universal asynchronous receiver transmitter (UART) functionality.
Referring to
The internal matrices of analog blocks 20 and digital blocks 100 may be constituted, in one embodiment, partially by a routing matrix (e.g., global mapping system 105;
Thus, each individual functional unit, e.g., sub-blocks A1 through AN and D1 through DM, may communicate and interact with each and/or any other functional unit. Which functional unit communicates with which other functional unit is programmable, via the configurablity of the programmable interconnect 1000. Advantageously, this allows users to choose communicative interactions between functional units, further promoting system flexibility. It is seen that programmable interconnect 1000 has an input global mapping unit 211 and an output global mapping unit 212. The global mapping units 211 and 212 promote the configurability of the system 10 (
A hierarchy of programmable interconnectivity is effectuated within system 10. Pin by pin configurable 1/0 transceivers 18 and input and output global mapping units 211 and 212, respectively, on programmable interconnect 1000, effectuate configurable interconnectivity between the system 10 and the “outside world,” as well as the microcontroller SRAM, ROM, and CPU components 12, 16, and 14, respectively (
Correspondingly, the memory function within each functional block 20 and 100 has specific functions allocated to them. These memory functionalities are registers (e.g., registers 50;
Other blocks affect autonomous system operations, such as interrupts. Thus, it is determined by configuring it whether a block will generate an interrupt into the computer system (e.g., the microcontroller) or not. Other registers within a block determine whether a block may accept data from the 1/0, or from a neighboring or distant other block. This is the function of the configuration registers (e.g., configuration registers 50:
Analog blocks 20 and digital blocks 100 share some similarities. However, analog blocks 20 have an added parametric setting register among its sub-blocks A1 through AN. Parametric settings effectuate functionalities related to physical parameters, such as potential voltages, current amperages, and ratios which cause amperage and/or voltage transitions to occur. Parametric settings may be varied by writing into, e.g., programming the parametric setting registers. To illustrate, if a block is implementing an A/D conversion function, a voltage value that the block generates, e.g., a signal amplitude, is detected by a set of registers. Writing to, e.g., programming the appropriate parametric setting register may cause the block to change its output signal potential amplitude.
Typically, all of the configuration settings on a digital block 100 is within a small set of registers, in one embodiment four registers per block. The registers' capacity is eight bits. Special hardware within the microcontroller loads into block 100 from a table 16T within flash ROM 16 (
Typically, configuration is static, and all blocks can be loaded with all of the requisite configuration register data in one operation. To change a particular subset of blocks from one configuration to another, another instruction is transferred from flash ROM 16 to the appropriate blocks. This is effectuated by a hardware subsystem 14S within the microcontroller CPU 14 that directly reads from flash ROM 16, over the internal address/system data bus 11, to the appropriate locale within SoC block 25. Advantageously, this informational sequencing is quite rapid, conserving time and computational resources. This hardware 14S may be thought of as a morph transmogrifier, loading new state tables to SoC block 25 functional units designated for a new functionality.
Further, configuration registers exist for the programmable interconnect 1000, analog block 20, digital block 100, pin by pin configurable I/O transceiver 18, and routing. Thus, every function can be assigned a configuration state, loaded, and changed as required for an exceedingly wide range of applications.
One possible functionality, which may be an application of a system incorporating features of the present embodiment, is analog to digital (A/D) conversion. In performing A/D conversion, it is necessary to get signals entering on certain of the pins constituting parts of pin by pin configurable I/O transceivers 18 into the SoC Block in the process. Owing to uncertainty in which block a user configuring the system 10 for A/D conversion will choose for performing the A/D conversion function, as well as uncertainty as to which pins the user will select for routing relevant signals, a mechanism is necessitated to achieve the requisite routing from the pin to the actual functional block inside the system; and vice versa, because a corresponding waveform will be generated in the functional block, which must be brought back out for use. Importantly, keeping in mind one advantageous feature of the present embodiment, that the design of embodiments of the present invention is not to dictate their applicability, but rather to effectuate implementation of the largest possible spectrum of applicability, the configurability of pin by pin configurable I/O transceivers 18, programmable interconnect 1000, and SoC blocks 25 may be crucial.
In as much as dictating a specific requisite pin locale from which a particular signal will emerge from system 10 is undesirable, a routing modality incorporating features of the present embodiment effectuate the redirection of signals to an almost arbitrary location on pin by pin configurable I/O transceivers 18. Advantageously, this simultaneously maximizes flexibility and greatly enhances user convenience and system applicability. In one embodiment, this designed inherent reconfigurability functions as an exceptionally flexible signal routing capability.
Referring again to both
Dedicated functionalities and/or peripherals 17 is interconnected with system bus 11. Dedicated functionalities and/or peripherals 17 may include a plethora of common functions of value to the function of system 10. A multiplier/accumulator (MAC) 1003 combines arithmetic logic functions of multiplication, counting, and storage of arithmetic results.
With reference to
A power on reset control unit 993 performs functions related to power supply stability, particularly on system startup. Power on reset control unit 993 works, in one embodiment, in conjunction with a brown-out detection unit 994, which detects substandard, subnominal power system parameters, which could have deleterious effects on system and/or microcontroller operation, and may generate interrupts and/or other warning and/or protective actions accordingly. The following co-pending US application is hereby incorporated by reference, Ser. No. 09/887,955, by Warren Snyder and Harold Kutz, entitled “Novel Power On Reset Circuit For A Microcontroller,” filed Jun. 22, 2001, and which is assigned to the assignee of the present invention. Further, the following co-pending US application is also hereby incorporated by reference, Ser. No. 09/887,923, by Warren Snyder and Harold Kutz, entitled “Novel Method and System For Interaction Between A Processor and A Power On Reset Circuit To Dynamically Control Power States In A Microcontroller,” filed. Jun. 22, 2001, and which is also assigned to the assignee of the present invention.
The following co-pending US application is hereby incorporated by reference, Ser. No. 09/909,047, by Monte Mar, entitled “An Analog Programmable System On A Chip Architecture,” filed Jul. 18, 2001, and which is assigned to the assignee of the present invention.
The present invention provides, in one embodiment, a programmable analog system architecture that is suited for a variety of applications and that can reduce development time and expenses. The programmable analog system architecture is integrated with a microcontroller that provides sequencing and programming instructions. The present invention introduces a single chip solution that contains a set of tailored analog blocks and elements that can be dynamically configured and reconfigured in different ways to implement a variety of different analog functions.
The analog system architecture can be generally referred to as an analog “programmable system-on-a-chip,” or PSoC, block. PSoC blocks can be used in those applications that typically require multiple chips that may be fabricated using different technologies. Implementation in embedded applications, including audio, wireless, handheld, data communications, Internet control, and industrial and consumer systems, is contemplated.
In the present embodiment, the analog blocks 20 are arranged on a single integrated circuit, or chip. The analog blocks 20 can be electrically coupled in different combinations to perform different analog functions. Each analog block 20 can also be configured according to the function to be performed. In the present embodiment, the analog blocks 20 include analog elements that have changeable characteristics that can be specified according to the function to be performed. Inputs received by an analog block are directed through the analog block according to the specified characteristics of the analog elements. The combination of analog blocks 20 and the characteristics of the analog elements, and hence the analog function to be performed, can be dynamically programmed. A number of registers are configurable to store programming data for the programmable digital circuit blocks.
In one embodiment, the analog blocks 20 include switched analog blocks that can be electrically coupled to and decoupled from one or more other analog blocks. That is, latches and switches can be dynamically configured so that signals can be passed from one block to another, while other blocks are bypassed. Accordingly, a set of analog blocks can be selectively combined to implement a particular analog function. Other analog functions can be implemented by selectively combining a different t of analog blocks. In one embodiment, the switched analog blocks are switched capacitor blocks. In another embodiment, two different types of switched capacitor blocks are used; the two types are distinguishable according to the type and number of inputs they receive and how those inputs are treated. In yet another embodiment, the analog blocks also include continuous time blocks.
In one embodiment, the continuous time blocks and the switched capacitor blocks are arranged in rows and columns in an array. In one such embodiment, the array includes a first row of continuous time blocks and multiple rows of switched capacitor blocks, where the first row of continuous time blocks is disposed between the switched capacitor blocks and an edge of the array. In one embodiment, the analog blocks in a column are each coupled to a respective digital bus (that is, there is a digital bus for each column of analog blocks).
The analog functions that can be performed using the system architecture and method of the present invention include (but are not limited to) an amplifier function, a digital-to-analog converter function, an analog-to-digital converter function, an analog driver function, a low band pass filter function, and a high band pass filter function. The programmable analog circuit blocks may, in one embodiment, be constituted by a matrix of n by m analog configurable system macros, n and m independently being an integer of at least two. Each of said analog configurable system macros is configured to provide one or more analog functions, which may also include gain functions, comparator functions, switched capacitor functions, filter functions, analog-to-digital conversion functions, digital-to-analog conversion functions, and amplifier functions, among others. The programmable analog circuit may, in one embodiment, be constituted by a matrix of n by m number of programmable analog circuit blocks, each coupled to an adjacent block and configured to provide at least one of a plurality of analog functions.
In the present embodiment, flash ROM 16 stores parameters describing microcontroller 10, allowing microcontroller 10 to be programmed during production, during system testing, or in the field. It is contemplated that microcontroller 10 may also be self-programmed remotely.
Analog blocks 20 are configurable system resources that can reduce the need for other microcontroller parts and external components. In the present embodiment, analog blocks 20 include an array of twelve blocks. A precision internal voltage reference provides accurate analog comparisons. A temperature sensor input is provided to the array of analog blocks to support applications like battery chargers and data acquisition without requiring external components.
In the present embodiment, there are three types of analog blocks: continuous time blocks, and two types of switched capacitor blocks (referred to herein as type A and type B). Continuous time blocks provide continuous time analog functions. Continuous time blocks are described in further detail in conjunction with
Switched capacitor blocks provide discrete time analog functions such as analog-to-digital conversion (ADC) and digital-to-analog conversion (DAC) functions. The key difference between the type A and type B switched capacitor blocks is in generating biquad filters (see
Analog functions supported by integrated circuit 10 comprising analog blocks 20 include, but are not limited to: 14-bit multi-slope and 12-bit delta-sigma ADC, successive approximation ADCs up to nine bits, DACs up to nine bits, programmable gain stages, sample and hold circuits, filters (high band pass and low band pass) with programmable coefficients, amplifiers, differential comparators, and temperature sensors.
In the present embodiment, the analog blocks 21a-l can be powered down individually to different power levels, so that it is not necessary for all of the blocks to be running at full power. In one embodiment, the analog blocks 21a-l have four power levels.
In accordance with one embodiment of the present invention, different combinations of analog blocks 20 can be selected according to the user programming in order to perform different functions. In one embodiment, individual analog blocks can be enabled and bypassed, respectively, by enabling and closing appropriate switches in response to the programming. Signals are thereby routed through the analog blocks 20 by enabling and closing programmable switches, so that the signals are routed to the analog blocks necessary to accomplish the particular analog function selected. Mechanisms other than switches may be used to enable and bypass analog blocks.
In the present embodiment, for each column 23a-d, there is a respective digital bus 24a-d and a respective analog bus 25a-d coupled to each analog block in the column. Any analog block on these buses can have its output enabled to drive the buses. The analog buses 25a-d are each a gated operational amplifier (op-amp) output. The digital buses 24a-d are each a comparator output derived by buffering the operational amplifier output through an inverter. In one embodiment, reference buses (not shown) are also provided to provide a reference voltage for ADC and DAC functions.
The continuous time blocks 21a-21d can be programmed to serve as a first-order isolation buffer, if necessary. In that case, data essentially flow through the array of analog blocks 20 from top to bottom (e.g., from row 22a to row 22c). However, if the signals do not need to be buffered, then the signals can arrive directly at a switched capacitor block in one row (e.g., row 22c), then be switched to another row (e.g., row 22b).
In
In the present embodiment, continuous time block 40 of
In the present embodiment, continuous time block 40 of
Continuous time block 40 also includes analog elements having characteristics that can be set and changed in response to the user's programming in accordance with the particular analog function to be implemented. In the present embodiment, continuous time block 40 includes programmable resistors 48a and 48b. In accordance with the present invention, the resistance of resistors 48a and 48b can be changed in response to the user's programming.
Continuing with reference to
With reference still to
PWR 50 is a bit stream for encoding the power level for continuous time block 40. C.PHASE 75 controls which internal clock phase the comparator data are latched on. C.LATCH 76 controls whether the latch is active or if it is always transparent. CS 78 controls a tn-state buffer that drives the comparator logic. OS 79 controls the analog output bus (ABUS 25). A complementary metal oxide semiconductor (CMOS) switch connects the op-amp output to ABUS 25.
With reference to
Continuing with reference to
In the present embodiment, switched capacitor block 90 includes a multiplicity of switches 91a, 91b, 93a, 93b, 94, 95, 96a, 96b and 97. Each of the switches 91a-b, 93a-b, 94, and 96a-b is assigned to a clock phase ϕ1 or ϕ2; that is, they are enabled or closed depending on the clock phase. Switches 93a-b, 94, and 96a-b are assigned to gated clocks and function in a known manner. Switches 95 and 97 are not clocked but instead are enabled or closed depending on the user's programming.
Switched capacitor block 90 also includes analog elements having characteristics that can be set and changed in response to the users programming in accordance with the particular analog function to be implemented. In the present embodiment, switched capacitor block 90 includes capacitors 92a-92e. In accordance with the present invention, the capacitance of capacitors 92a-e can be changed in response to the user's programming. In the present embodiment, the capacitors 92a-c are binarily weighted capacitors that allow the capacitor weights to be programmed by the user, while the capacitors 92d-e are either “in” or “auf” (that is, they are not binarily weighted) according to the user programming. In one embodiment, the binary encoding of capacitor size for capacitors 92a-c comprises 31 units (plus zero) each and the encoding of capacitor size for capacitors 92d-e is 16 units each.
Switched capacitor block 90 is configured such that it can be used for the input stage of a switched capacitor biquad filter. When followed by a type B switched capacitor block, the combination of blocks provides a complete switched capacitor biquad (see
Continuing with reference to
Referring to
With reference to
With reference to
Continuing with reference to
In the present embodiment, switched capacitor block 100 includes a multiplicity of switches 104a, 104b, 105a, 105b, 106a, 106b, 107, 108 and 109. Each of the switches 104a-b, 105a-b, 106a-b and 109 is assigned to a clock phase ϕ1 or ϕ2; that is, they are enabled or closed depending on the clock phase. Switches 105a-b, 106a-b and 109 are assigned to gated clocks and function in a known manner. Switches 107 and 108 are not clocked but instead are enabled or closed depending on the user's programming.
Switched capacitor block 100 also includes analog elements having characteristics that can be set and changed in response to the user's programming in accordance with the particular analog function to be implemented. In the present embodiment, switched capacitor block 100 includes programmable capacitors 111a-111e. In accordance with the present invention, the capacitance of capacitors 111a-e can be changed in response to the user's programming. In the present embodiment, the capacitors 111a-c are binarily weighted capacitors that allow the capacitor weights to be programmed by the user, while the capacitors 111d-e are either “in” or “out” (that is, they are not binarily weighted) according to the user programming. In one embodiment, the binary encoding of capacitor size for capacitors 111a-c comprises 31 units (plus zero) each and the encoding of capacitor size for capacitors 111d-e is 16 units each.
Switched capacitor block 100 is configured such that it can be used for the output stage of a switched capacitor biquad filter. When preceded by a type A switched capacitor block, the combination of blocks provides a complete switched capacitor biquad (see
Continuing with reference to
With reference to
As described above, integrated circuit 10 includes a plurality of analog blocks 20 (
In step 1520, the selected analog block is selectively and electrically coupled to one or more of the other analog blocks 20, depending on the particular analog function to be implemented and according to the user's programming. Certain analog blocks may be bypassed (not used) in the resultant circuit. Characteristics of elements in the analog blocks 20 can also be specified according to the user's programming, also depending on the particular analog function to be implemented.
In step 1530, the analog blocks 20 are reconfigured to perform a different analog function (e.g., a different combination of the analog blocks 20 can be selectively and electrically coupled to perform another function).
The following co-pending US application is hereby incorporated herein by reference, Ser. No. 09/909,045, by Warren Snyder, entitled “Digital Configurable Macro Architecture,” filed Jul. 18, 2001, and which is assigned to the assignee of the present invention. Further, the following co-pending US application is also hereby incorporated herein by reference, Ser. No. 09/909,109, by Warren Snyder, entitled “Configuring Digital Functions In A Digital Configurable Macro Architecture,” filed Jul. 18, 2001, and which is also assigned to the assignee of the present invention.
A new digital configurable macro architecture is described. The digital configurable macro architecture is well suited for microcontroller or controller designs. In particular, the foundation of the digital configurable macro architecture is a programmable digital circuit block. In an embodiment, programmable digital circuit blocks are 8-bit circuit modules that can be programmed to perform anyone of a variety of predetermined digital functions by changing the contents of a few registers therein, unlike a FPGA which is a generic device that can be programmed to perform any arbitrary digital function. Specifically, the circuit components of the programmable digital circuit block are designed for reuse in several of the predetermined digital functions such that to minimize the size of the programmable digital circuit block. The programmable digital circuit blocks can be configured, for example, as timers, counters, serial communication ports, cyclic redundancy generators/checkers (CRC), or pseudo random sequence generators (PRS). The user selects the digital function that is needed and configures the programmable digital circuit block accordingly.
The programmable digital circuit blocks can be configured to coupled in series or in parallel to handle more complex digital functions. For example, a 24-bit timer can be designed by coupling three 8-bit programmable digital circuit blocks that have been individually configured as 8-bit timers. Additionally, a first programmable digital circuit block that is configured as a CRC generator can feed a second programmable digital circuit block that is configured as a serial output communication port. A variety of mathematical functions such as addition, multiplication, exponential, logarithmic, arithmetic and floating point operations, and a plethora of other mathematical functions may be effectuated herein.
More importantly, the configuration of the programmable digital circuit block is determined by its small number of configuration registers. This provides much flexibility. In particular, the configuration of the programmable digital circuit block is fast and easy since changes in configuration are accomplished by changing the contents of the configuration registers, whereas the contents are generally a small number of configuration data bits. Thus, the programmable digital circuit block is dynamically configurable from one predetermined digital function to another predetermined digital function for real-time processing. The function of the registers described herein may be effectuated, in one embodiment, by latches.
The design of the programmable digital circuit block 100 in the digital configurable macro architecture was developed after examining and studying conventional microcontrollers to determine the types of digital functions that were implemented within various conventional microcontrollers. It was discovered that there were not very many different types of digital functions demanded in microcontroller applications. Furthermore, it was determined that these different types of digital functions had many circuit components in common. Moreover, it was determined that the digital functions were generally implemented as 8-bit or multiples of 8-bits because their length was generally based on the length of standard buses. This led to the development of the programmable digital circuit blocks 100, the building block of the digital configurable macro architecture.
In an embodiment, the programmable digital circuit block 100 is an 8-bit circuit module that can be programmed to perform anyone of a variety of predetermined digital functions (which are useful in microcontroller applications) by changing the contents of a few configuration registers 50 therein, unlike a FPGA which is a generic device that can be programmed to perform any arbitrary digital function. Specifically, the circuit components of the programmable digital circuit block 100 are designed for reuse in several of the predetermined digital functions such that to minimize the size of the programmable digital circuit block 100. Hence, the programmable digital circuit block 100 is highly efficient in terms of die area. In an embodiment, the programmable digital circuit block 100 can be configured as a timer, a counter, a pulse width modulator (PWM), a cyclic redundancy generator/checker (CRC), a pseudo random sequence generator (PRS), a dead zone delay, a UART (universal asynchronous receiver-transmitter) transmitter, a UART (universal asynchronous receiver-transmitter) receiver, a SPI (serial peripheral interface) Master, or a SPI (serial peripheral interface) Slave.
In another embodiment, the programmable digital circuit block 100 can be configured as a tinier, a counter, a pulse width modulator (PWM), a cyclic redundancy generator/checker (CRC), a pseudo random sequence generator (PRS), or a dead zone delay, whereas the digital communication functions (e.g., UART and SPI) are eliminated to further reduce the size of the programmable digital circuit block 100. In particular, the user selects the digital function that is needed and configures the programmable digital circuit block 100 accordingly. It should be understood that the programmable digital circuit block 100 can be designed to implement other digital functions.
In as much as a design can have an array of programmable digital circuit blocks 100, configurable to be coupled together in series or in parallel to handle more complex digital functions or to increase precision, a number of capabilities become achievable. As in the example recited above wherein a 24-bit timer can be designed by coupling three 8-bit programmable digital circuit blocks 100 that have been individually configured as 8-bit timers, other similar capabilities are achieved. For example, an 8-bit timer can be extended to 16- or 32-bit digital functions by similarly coupling multiple programmable digital circuit blocks 100 together. And in another example above, the capability of a first programmable digital circuit block configured as a CRC generator feeding a second programmable digital circuit block to configure a serial output communication port, illustrates achieving the advantages of reducing device programming and increasing its performance.
The configuration of the programmable digital circuit block 100 is determined by its configuration registers 50. The programmable digital circuit block 100 generally has one or more configuration registers 50. Importantly, a significant level of flexibility is thus achieved, in as much as the configuration of the programmable digital circuit block 100 may be made quickly, simply, and dynamically. It is achieved in one embodiment, by changing the contents of the configuration registers 50, which are generally a small number of configuration data bits. This dynamic configurability/reconfigurability between predetermined digital functions enables programmable digital circuit block 100 to effectuate, in one embodiment, real-time processing. In contrast FPGAs need to have their look-up tables re-programmed in order to have them implement a new digital function, a time-consuming task that not done in real-time processing.
Referring to
The configuration registers 50 are programmed via the system bus 90. Any device, such as a microprocessor using data stored in a RAM or flash memory, can program (or write to) the configuration registers. The configuration registers 50 receive and store a plurality of configuration data corresponding to anyone of the plurality of predetermined digital function described above. The programmed configuration registers 50 configure the programmable digital circuit block 100 to perform anyone of the predetermined digital functions based on the configuration data. Moreover, the configuration registers 50 can be dynamically programmed with the configuration data for real-time processing. In addition, the configuration data includes (1) bits for indicating one of the predetermined digital functions and configuring the selectable logic circuits 30, (2) bits for configuring and selecting the configurable inputs 20 and the configurable outputs 10 and the clock input 80, (3) bits for indicating the mode of the predetermined digital function (e.g., parity, no parity; etc.), (4) bits for indicating the length of the predetermine digital function if several programmable digital circuit block 100 are coupled together (e.g., 8-bit, 16-bit, 24-bit, etc.), and (5) bits for indicating and configuring the interface between adjacent programmable digital circuit blocks 100 that are coupled together (e.g., configuring and selecting the cascade inputs 70 and the cascade outputs 60 for serial or parallel interfacing).
In general, the number of bits in the configuration data is sufficiently small to enable the configuration registers 50 to be programmed on-the-fly so that the programmable digital circuit block 100 can be dynamically configured and interfaced. Thus, the programmable digital circuit blocks 100 can be configured as a timer for a first length of time, re-configured as a counter for a second length of time, re-configured as a PWM for a third length of time, and so on, for real-time processing. For example, it is possible for a single register write to configure the programmable digital circuit block 100 from a timer to a PWM or to a counter or to a CRC generator or etc. Some number of registers are configurable to store programming data for the programmable digital circuit blocks.
The connections 50A-50F between the configuration registers 50 and other components of the programmable digital circuit block 100 enable the configuration registers 50 to properly configure the programmable digital circuit block 100 to any one of the predetermined digital functions and to properly interface the programmable digital circuit block 100 with other programmable digital circuit blocks in series or in parallel.
Continuing with
Moreover, the selectable logic circuits 30 realize anyone of the variety of predetermined digital functions by using the data registers 40 to receive data, load data, capture data, etc. Thus, the data registers 40 are also reused in several of the predetermined digital functions as will be illustrated below.
Again referencing
As illustrated in
The cascade lines 205 enable the programmable digital circuit blocks 210A-210H to seamlessly interface to handle more complex digital functions or to increase precision. For example, a 32-bit counter can be designed by coupling four 8-bit programmable digital circuit blocks that have been individually configured as 8-bit counters. Similarly, the 8-bit counter can be extended to 16- or 24-bit digital functions by coupling multiple programmable digital circuit blocks together. Additionally, a first programmable digital circuit block that is configured as a CRC generator can feed a second programmable digital circuit block that is configured as a serial output communication port, reducing device programming and increasing performance.
Moreover, the exemplary programmable digital device 200 includes a signal bus for digitized analog signals, a clock bus, a system bus for programming the programmable digital circuit blocks 210A-210H, and a plurality of global data buses for transmitting data to/from the programmable digital circuit blocks 210A-210H.
As illustrated in
As illustrated in
In a programmable digital circuit according to one embodiment, at least three programmable digital circuit blocks are coupled in series and/or in parallel. Each programmable digital circuit block is (i) controlled by an n-bit register or look-up table containing programming information including a cascading bit and (ii) configured to provide at least one of a plurality of mathematical functions, wherein the cascading bit determines whether a particular programmable digital circuit block is coupled is series with an adjacent programmable digital circuit block, and when programmed, the programmable digital circuit provides at least one digital system function.
The following co-pending US application is hereby incorporated herein by reference, Ser. No. 09/953,423, by Warren Snyder, entitled “A Configurable Input/Output Interface For A Microcontroller,” filed Sep. 14, 2001, and which is assigned to the assignee of the present invention.
One embodiment of the present invention provides a configurable input/output interface which allows designers to specify which resource on the microcontroller device will be accessible to a given I/O pin. Furthermore, embodiments of the present invention can access the rest of the microcontroller device functions through a configurable interface and can be reconfigured dynamically (e.g., per clock cycle). The present invention provides a configurable input/output interface which gives designers the flexibility to easily create customized configurations which incur no NRE and require no unusual design skills.
The present invention is an input/output (I/O) pin with a configurable interface to a microprocessor, and to a global mapping which determines access to functional units on the microcontroller. The I/O pin can be selectively coupled to the global mapping or to the microprocessor on each clock cycle. The mapping configuration selectively couples a different functional unit or units of the microcontroller to access the I/O pin on each clock cycle. The interface between the I/O pin and the rest of the system can be dynamically configured by software created or modified by a user, or by hardware. The present invention facilitates repositioning pin locations on a microcontroller because it is a software modification rather than a hardware modification. The present invention further enables the microcontroller functions to be configured by the user rather than by the microcontroller vendor.
The functional units of DCSM 106 are programmable digital and analog units which can be configured and connected by a user as needed to create a customized microcontroller device. The digital units can be timers, controllers, serial communications units, Cycle Redundancy Check (CRC) generators, Universal Asynchronous Receiver/Transmitters (UARTs), etc. For functions that require higher precision or counting, the digital units can be combined. The analog units are programmable operational amplifier circuits which can be interconnected to create a desired amplifier circuit. Typical peripherals that can be created are amplifiers, programmable gain, digital to analog converters, analog to digital converters, analog drivers, and high-, low-, and band-pass filters, etc. Higher order user modules such as modems, complex motor control, and complete sensor signal chains can be created from these building blocks. The ability to program microcontroller device 101 to suit a particular application necessitates a reconfigurable 1/0 interface which is provided by the present invention.
In one embodiment, I/O pin 102 and configuration system 103 are integrated into a pin unit. A plurality of these integrated pin units are combined to create a port. However, each of the pin units in a port is still operable to be addressed individually by global mapping system 105. In one embodiment, 8 of these integrated pin units comprise each port. However, while the present embodiment recites an 8-pin port, the present invention is well suited to utilize ports with other numbers of pins as well. An 8 pin port is recited so that disproportionate amounts of addressing resources are not used by the I/O interfaces.
With reference to
Global mapping system 103 is maintained by a control program which supplies the logic to selectively couple I/O pin 102 with functional units of DCSM 106. The programming of the control program is done by the user which allows greater flexibility than using a pre-determined mapping scheme provided by a silicon vendor. The control program also facilitates reconfiguring pin assignment because it is now a software modification rather than a hardware modification.
Customer firmware initializes a particular mapping by writing the configuration to registers associated with the global map. The configuration of the mapping can be changed at any time (e.g., per clock cycle). The global mapping system allows, for example, 4 separate functional units on DCSM 106 to send 4 different signals through the same I/O pin by coupling a particular signal from a functional unit of the DCSM to the 110 pin from cycle to cycle. In another example, a single clock signal can be simultaneously coupled to 4 different I/O pins. This facilitates interfacing with resources on microcontroller device 101 in multiple ways, either from a single or multiple pin configuration.
With reference to
With reference to
With reference to
With reference to
With reference to
Referring to
Configuration registers 216 can also be configured to provide a variety of system functions for the I/O interface of the present invention and which can be reconfigured at any time (e.g., per clock cycle). For example, configuration registers 216 provide the capability for programmable pull-up or pull-down resistors, programmable interrupts per pin (e.g., positive edge triggered, negative edge triggered, or triggered on any change), programmable interrupt polarities and modes, and programmable drive strength. In one embodiment of the present invention, there are 8 configuration registers for each I/O pin allowing a maximum of 256 functions which could be defined for each pin. However, 2 or more registers can be used to control a particular pin function. For example, 2 registers can be used for the I/O driver to provide 4 drive strength levels, 2 registers used for interrupt polarity, etc. Thus the present invention is well suited to various register configurations to provide more or less system functions as needed.
Referring to
With reference to
With reference to
With reference to
A global routing matrix (e.g., global mapping system 105;
Exemplary Circuit
It is appreciated that an exemplary circuit (e.g., circuit 10;
In the exemplary circuit at least one of the programmable digital circuit blocks is coupled to at least one of another of the digital circuit blocks. Further, in the exemplary circuit, at one of the programmable analog circuit blocks is coupled to at least one of another of the analog circuit blocks. This enables the exemplary circuit to effectuate at least one analog and/or digital system function.
A programmable memory (e.g., flash ROM 16, registers 50;
A number of input and/or output blocks (e.g., pin by pin configurable I/O transducers 18;
In the present exemplary circuit, a number of registers is configured to store programming data for the programmable digital circuit blocks. Some number of latches is configured to store programming data for the programmable analog circuit blocks.
A global routing matrix (e.g., global mapping system 105;
Programmable digital blocks may programmatically communicate with other programmable digital blocks. Programmable analog blocks may programmatically communicate with other analog blocks. Further, programmable digital blocks and programmable analog blocks may programmatically intercommunicate.
The programmable analog circuit blocks may, in one embodiment, be constituted by a matrix of n by m analog configurable system macros, n and m independently being an integer of at least two. Each of said analog configurable system macros is configured to provide one or more analog functions, which may include gain functions, comparator functions, switched capacitor functions, filter functions, analog-to-digital conversion functions, digital-to-analog conversion functions, and amplifier functions, among others. The programmable analog circuit, constituted by a matrix of n by m number of programmable analog circuit blocks, each coupled to an adjacent block and configured to provide at least one of a plurality of analog functions. In the exemplary circuit herein, at least two of the number of programmable digital circuit blocks are coupled in series to provide a digital system function.
In the programmable digital circuit according to one embodiment, at least three programmable digital circuit blocks are coupled in series and/or in parallel. Each programmable digital circuit block is (i) controlled by an n-bit register or look-up table containing programming information including a cascading bit and (ii) configured to provide at least one of a plurality of mathematical functions, wherein the cascading bit determines whether a particular programmable digital circuit block is coupled is series with an adjacent programmable digital circuit block, and when programmed, the programmable digital circuit provides at least one digital system function.
Exemplary System
Thus, an exemplary system (e.g., system 10;
The system is further constituted by an interconnecting mechanism, and the functionality further constituted by a first sub-functionality (e.g., analog SoC blocks 20;
Further, the exemplary system herein is constituted in part by a timing functionality (e.g., system timing block 19;
With reference to
In step 2920, an interconnection state between analog and digital functionalities, and between the functionalities and the rest of the system, including an integrated circuit, which in one embodiment may be a microcontroller, is selected. The interconnection state is one capable of effectuating the selected function. The interconnection state may be set within a programmable interconnecting mechanism (e.g., programmable interconnect 1002;
A connectability state is then selected; step 2930. The connectability state is one capable of effectuating a functional connection with an external entity, which can be any other system, electronic device, communication medium, or any other functional entity outside of the system. The connectability state may be set within a programmable, e.g., configurable, electrical and/or communicative coupling mechanism (e.g., pin by pin configurable 110 transceivers;
In step 2940, it is determined whether or not a timing function is to be configured. Process 2900 proceeds as determined by the outcome of this decision.
If in step 2940, it is decided that a timing function is to be configured, a time base is selected in step 2945. The time base, in one embodiment, may be any of a myriad of possible timing and/or other periodic signals of various waveforms, generated by a system timing functionality (e.g., system timing block 19;
For example, in certain functional situations, a digital functionality may be configured to perform a UART function, which would require a particular time base input from the system timing functionality. In another example, an analog functionality may be configured to perform a conversion and/or modulation function, which would also require a particular time base input from the system timing functionality.
After selection of a time base (step 2945), or if it was determined in step 2940 that no timing function was to be configured, process 2900 proceeds via step 2950, wherein the selected function, interconnection state, and connectability state (and time base, if selected in step 2945) are implemented. The implementation of the function, interconnection state, and connectability state (and time base, if selected in step 2945) may, in one embodiment, be implemented simultaneously. In another embodiment, the may be implemented sequentially. In yet another embodiment, they may be implemented by a combination of simultaneous and sequential actions. Process 2900 is complete upon full, successful execution of step 2950.
Process 2900 may be implemented by any effective mechanism for effectuating a user input upon the system, including, but not limited to, generation and transmission of appropriate electrical, electronic, optical, digital, analog, and/or any other communicative signals provided to the system by any effective external agent, such as a computer system or any other signal generating and inputting system. Thus, process 2900 may be implemented by a programmed agent operating automatically and executing a program to effectuate process 2900 and its corresponding purposes.
In summary, the present invention provides an integrated system with a microcontroller and integrated circuits (IC), on a single chip to effectuate a system on a chip, including analog and digital functionality, and a method of configuring such an integrated system. The present invention also provides a system on a chip, which has sufficient flexibility to function in a very wide range of multiple applications, including applications wherein integrated analog functionalities are required. Further, the present invention provides a method of programming and dynamically reconfiguring a system on a chip, and a system on a chip, which is so programmable and dynamically reconfigurable. Further still, the present invention provides a system on a chip, which achieves the foregoing advantages and yet is relatively inexpensive and simple to configure, apply, use, and reconfigure.
Embodiments of the present invention are directed to a microcontroller device having a microprocessor, programmable memory components, and programmable analog and digital blocks. The programmable analog and digital blocks are configurable based on programming information stored in the memory components. Programmable interconnect logic, also programmable from the memory components, is used to couple the programmable analog and digital blocks as needed. The advanced microcontroller design also includes programmable input/output blocks for coupling selected signals to external pins. The memory components also include user programs that the embedded microprocessor executes. These programs may include instructions for programming the digital and analog blocks “on-the-fly,” e.g., dynamically. In one implementation, there are a plurality of programmable digital blocks and a plurality of programmable analog blocks.
The foregoing descriptions of specific embodiments of the present invention have been presented for purposes of illustration and description. They are not intended to be exhaustive or to limit the invention to the precise forms disclosed, and obviously many modifications and variations are possible in light of the above teaching. The embodiments were chosen and described in order to best explain he principles of the invention and its practical application, to thereby enable others skilled in the art to best utilize the invention and various embodiments with various modifications as are suited to the particular use contemplated. It is intended that the scope of the invention be defined by the Claims appended hereto and their equivalents.
An embodiment of the present invention, a microcontroller programmable system on a chip is thus described. While the present invention has been described in particular embodiments, it should be appreciated that the present invention should not be construed as limited by such embodiments, but rather construed according to the below claims.
This application is a continuation of U.S. patent application Ser. No. 15/453,492, filed Mar. 8, 2017, which is a continuation of U.S. patent application Ser. No. 14/866,439, filed Sep. 25, 2015, which is a continuation of U.S. patent application Ser. No. 13/966,028, filed Aug. 13, 2013, issued as U.S. Pat. No. 9,286,254 on Mar. 15, 2016, which is a continuation of U.S. patent application Ser. No. 13/169,656, filed Jun. 27, 2011, issued as U.S. Pat. No. 8,555,032 on Oct. 8, 2013, which is a continuation of U.S. patent application Ser. No. 10/033,027, filed on Oct. 22, 2001 issued as U.S. Pat. No. 8,176,296 on May 8, 2012, which claims priority to U.S. Provisional Patent Application No. 60/243,708, filed on Oct. 26, 2000, all of which are hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
3600690 | Graham | Aug 1971 | A |
3725804 | Langan | Apr 1973 | A |
3740588 | Stratton et al. | Jun 1973 | A |
3805245 | Brooks et al. | Apr 1974 | A |
3810036 | Bloedom | May 1974 | A |
3831113 | Ahmed | Aug 1974 | A |
3845328 | Hollingsworth | Oct 1974 | A |
3940760 | Brokaw | Feb 1976 | A |
4061987 | Nagahama | Dec 1977 | A |
4134073 | MacGregor | Jan 1979 | A |
4138671 | Comer et al. | Feb 1979 | A |
4176258 | Jackson | Nov 1979 | A |
4250464 | Schade | Feb 1981 | A |
4272760 | Prazak et al. | Jun 1981 | A |
4283713 | Philipp | Aug 1981 | A |
4326135 | Jarrett et al. | Apr 1982 | A |
4344067 | Lee | Aug 1982 | A |
4380083 | Andersson et al. | Apr 1983 | A |
4438404 | Philipp | Mar 1984 | A |
4475151 | Philipp | Oct 1984 | A |
4497575 | Philipp | Feb 1985 | A |
4604363 | Newhouse et al. | Aug 1986 | A |
4608502 | Dijkmans et al. | Aug 1986 | A |
4656603 | Dunn | Apr 1987 | A |
4670838 | Kawata | Jun 1987 | A |
4689740 | Moelands et al. | Aug 1987 | A |
4692718 | Roza et al. | Sep 1987 | A |
4701907 | Collins | Oct 1987 | A |
4727541 | Mori et al. | Feb 1988 | A |
4736097 | Philipp | Apr 1988 | A |
4740966 | Goad | Apr 1988 | A |
4755766 | Metz | Jul 1988 | A |
4757534 | Matyas et al. | Jul 1988 | A |
4773024 | Faggin et al. | Sep 1988 | A |
4794558 | Thompson | Dec 1988 | A |
4802103 | Faggin et al. | Jan 1989 | A |
4802119 | Heene et al. | Jan 1989 | A |
4807183 | Kung et al. | Feb 1989 | A |
4809345 | Tabata et al. | Feb 1989 | A |
4812684 | Yamagiwa et al. | Mar 1989 | A |
4813013 | Dunn | Mar 1989 | A |
4827401 | Hrustich et al. | May 1989 | A |
4831546 | Mitsuta et al. | May 1989 | A |
4833418 | Quintus et al. | May 1989 | A |
4868525 | Dias | Sep 1989 | A |
4876466 | Kondou et al. | Oct 1989 | A |
4876534 | Mead et al. | Oct 1989 | A |
4878200 | Asghar et al. | Oct 1989 | A |
4879461 | Philipp | Nov 1989 | A |
4879688 | Turner et al. | Nov 1989 | A |
4885484 | Gray | Dec 1989 | A |
4907121 | Hrassky | Mar 1990 | A |
4910417 | El Gamal | Mar 1990 | A |
4922492 | Fasang | May 1990 | A |
4935702 | Mead et al. | Jun 1990 | A |
4939637 | Pawloski | Jul 1990 | A |
4942540 | Black et al. | Jul 1990 | A |
4947169 | Smith et al. | Aug 1990 | A |
4953928 | Anderson et al. | Sep 1990 | A |
4962342 | Mead et al. | Oct 1990 | A |
4964074 | Suzuki et al. | Oct 1990 | A |
4969087 | Tanagawa et al. | Nov 1990 | A |
4970408 | Hanke et al. | Nov 1990 | A |
4972372 | Ueno | Nov 1990 | A |
4977381 | Main | Dec 1990 | A |
4980652 | Tarusawa et al. | Dec 1990 | A |
4999519 | Kitsukawa et al. | Mar 1991 | A |
5043674 | Bonaccio et al. | Aug 1991 | A |
5049758 | Mead et al. | Sep 1991 | A |
5050168 | Paterson | Sep 1991 | A |
5053949 | Allison et al. | Oct 1991 | A |
5055827 | Philipp | Oct 1991 | A |
5059920 | Anderson et al. | Oct 1991 | A |
5068622 | Mead et al. | Nov 1991 | A |
5073759 | Mead et al. | Dec 1991 | A |
5083044 | Mead et al. | Jan 1992 | A |
5088822 | Warren | Feb 1992 | A |
5095284 | Mead | Mar 1992 | A |
5097305 | Mead et al. | Mar 1992 | A |
5099191 | Galler et al. | Mar 1992 | A |
5107146 | El-Ayat | Apr 1992 | A |
5107149 | Platt et al. | Apr 1992 | A |
5109261 | Mead et al. | Apr 1992 | A |
5119038 | Anderson et al. | Jun 1992 | A |
5120996 | Mead et al. | Jun 1992 | A |
5122800 | Philipp | Jun 1992 | A |
5126685 | Platt et al. | Jun 1992 | A |
5126759 | Small et al. | Jun 1992 | A |
5127103 | Hill et al. | Jun 1992 | A |
5128871 | Schmitz | Jul 1992 | A |
5136188 | Ha et al. | Aug 1992 | A |
5140197 | Grider | Aug 1992 | A |
5142247 | Lada, Jr. et al. | Aug 1992 | A |
5144242 | Zeilenga et al. | Sep 1992 | A |
5144582 | Steele | Sep 1992 | A |
5146106 | Anderson et al. | Sep 1992 | A |
5150079 | Williams et al. | Sep 1992 | A |
5155836 | Jordan et al. | Oct 1992 | A |
5159292 | Canfield et al. | Oct 1992 | A |
5159335 | Veneruso | Oct 1992 | A |
5160899 | Anderson et al. | Nov 1992 | A |
5161124 | Love | Nov 1992 | A |
5165054 | Platt et al. | Nov 1992 | A |
5166562 | Allen et al. | Nov 1992 | A |
5175884 | Suarez | Dec 1992 | A |
5179531 | Yamaki | Jan 1993 | A |
5184061 | Lee et al. | Feb 1993 | A |
5196740 | Austin | Mar 1993 | A |
5198817 | Walden et al. | Mar 1993 | A |
5200751 | Smith | Apr 1993 | A |
5202687 | Distinti | Apr 1993 | A |
5204549 | Platt et al. | Apr 1993 | A |
5206582 | Ekstedt et al. | Apr 1993 | A |
5220512 | Watkins et al. | Jun 1993 | A |
5225991 | Dougherty | Jul 1993 | A |
5230000 | Mozingo et al. | Jul 1993 | A |
5235617 | Mallard, Jr. | Aug 1993 | A |
5241492 | Girardeau, Jr. | Aug 1993 | A |
5243554 | Allen et al. | Sep 1993 | A |
5245262 | Moody et al. | Sep 1993 | A |
5248843 | Billings | Sep 1993 | A |
5248873 | Allen et al. | Sep 1993 | A |
5258760 | Moody et al. | Nov 1993 | A |
5260592 | Mead et al. | Nov 1993 | A |
5260979 | Parker et al. | Nov 1993 | A |
5270963 | Allen et al. | Dec 1993 | A |
5276407 | Mead et al. | Jan 1994 | A |
5276739 | Krokstad et al. | Jan 1994 | A |
5276890 | Arai | Jan 1994 | A |
5280199 | Itakura | Jan 1994 | A |
5280202 | Chan et al. | Jan 1994 | A |
5289023 | Mead | Feb 1994 | A |
5303329 | Mead et al. | Apr 1994 | A |
5304955 | Atriss et al. | Apr 1994 | A |
5305017 | Gerpheide | Apr 1994 | A |
5305312 | Fornek et al. | Apr 1994 | A |
5307381 | Ahuja | Apr 1994 | A |
5313618 | Pawloski | May 1994 | A |
5317202 | Waizman | May 1994 | A |
5319370 | Signore et al. | Jun 1994 | A |
5319771 | Takeda | Jun 1994 | A |
5321828 | Phillips et al. | Jun 1994 | A |
5324958 | Mead et al. | Jun 1994 | A |
5325512 | Takahashi | Jun 1994 | A |
5329471 | Swoboda et al. | Jul 1994 | A |
5331215 | Allen et al. | Jul 1994 | A |
5331315 | Crosette | Jul 1994 | A |
5331571 | Aronoff et al. | Jul 1994 | A |
5334952 | Maddy et al. | Aug 1994 | A |
5335342 | Pope et al. | Aug 1994 | A |
5336936 | Allen et al. | Aug 1994 | A |
5339213 | O'Callaghan | Aug 1994 | A |
5339262 | Rostoker et al. | Aug 1994 | A |
5341044 | Ahanin et al. | Aug 1994 | A |
5341267 | Whitten et al. | Aug 1994 | A |
5345195 | Cordoba et al. | Sep 1994 | A |
5349303 | Gerpheide | Sep 1994 | A |
5355097 | Scott et al. | Oct 1994 | A |
5357626 | Johnson et al. | Oct 1994 | A |
5361290 | Akiyama | Nov 1994 | A |
5371524 | Herczeg et al. | Dec 1994 | A |
5371860 | Mura et al. | Dec 1994 | A |
5371878 | Coker | Dec 1994 | A |
5371883 | Gross et al. | Dec 1994 | A |
5374787 | Miller et al. | Dec 1994 | A |
5377333 | Nakagoshi et al. | Dec 1994 | A |
5378935 | Korhonen et al. | Jan 1995 | A |
5381515 | Platt et al. | Jan 1995 | A |
5384467 | Plimon et al. | Jan 1995 | A |
5384745 | Konishi et al. | Jan 1995 | A |
5384910 | Torres | Jan 1995 | A |
5390173 | Spinney et al. | Feb 1995 | A |
5392784 | Gudaitis | Feb 1995 | A |
5394522 | Sanchez-Frank et al. | Feb 1995 | A |
5396245 | Rempfer | Mar 1995 | A |
5398261 | Marbot | Mar 1995 | A |
5399922 | Kiani et al. | Mar 1995 | A |
5408194 | Steinbach et al. | Apr 1995 | A |
5408235 | Doyle et al. | Apr 1995 | A |
5414308 | Lee et al. | May 1995 | A |
5414380 | Floyd et al. | May 1995 | A |
5416895 | Anderson et al. | May 1995 | A |
5422823 | Agrawal et al. | Jun 1995 | A |
5424689 | Gillig et al. | Jun 1995 | A |
5426378 | Ong | Jun 1995 | A |
5426384 | May | Jun 1995 | A |
5428319 | Marvin et al. | Jun 1995 | A |
5430395 | Ichimaru | Jul 1995 | A |
5430687 | Hung et al. | Jul 1995 | A |
5430734 | Gilson | Jul 1995 | A |
5432476 | Tran | Jul 1995 | A |
5438672 | Dey | Aug 1995 | A |
5440305 | Signore et al. | Aug 1995 | A |
5442772 | Childs et al. | Aug 1995 | A |
5451887 | El Avat et al. | Sep 1995 | A |
5453904 | Higashiyama et al. | Sep 1995 | A |
5455525 | Ho et al. | Oct 1995 | A |
5455731 | Parkinson | Oct 1995 | A |
5455927 | Huang | Oct 1995 | A |
5457410 | Ting | Oct 1995 | A |
5457479 | Cheng | Oct 1995 | A |
5463591 | Aimoto et al. | Oct 1995 | A |
5479603 | Stone et al. | Dec 1995 | A |
5479643 | Bhaskar et al. | Dec 1995 | A |
5479652 | Dreyer et al. | Dec 1995 | A |
5481471 | Naglestad et al. | Jan 1996 | A |
5488204 | Mead et al. | Jan 1996 | A |
5491458 | Mccune, Jr. et al. | Feb 1996 | A |
5493246 | Anderson | Feb 1996 | A |
5493723 | Beck et al. | Feb 1996 | A |
5495077 | Miller et al. | Feb 1996 | A |
5495593 | Elmer et al. | Feb 1996 | A |
5495594 | Mackenna et al. | Feb 1996 | A |
5497119 | Tedrow et al. | Mar 1996 | A |
5499192 | Knapp et al. | Mar 1996 | A |
5500823 | Martin et al. | Mar 1996 | A |
5517198 | Mcewan | May 1996 | A |
5519854 | Wall | May 1996 | A |
5521529 | Agrawal et al. | May 1996 | A |
5530444 | Tice et al. | Jun 1996 | A |
5530673 | Tobita et al. | Jun 1996 | A |
5530813 | Paulsen et al. | Jun 1996 | A |
5537057 | Leong et al. | Jul 1996 | A |
5541878 | LeMoncheck et al. | Jul 1996 | A |
5542055 | Amini et al. | Jul 1996 | A |
5543588 | Bisset et al. | Aug 1996 | A |
5543590 | Gillespie et al. | Aug 1996 | A |
5543591 | Gillespie et al. | Aug 1996 | A |
5544067 | Rostoker et al. | Aug 1996 | A |
5544311 | Harenberg et al. | Aug 1996 | A |
5546433 | Tran et al. | Aug 1996 | A |
5546562 | Patel | Aug 1996 | A |
5552725 | Ray et al. | Sep 1996 | A |
5552748 | D'Shaughnessy | Sep 1996 | A |
5554951 | Gough | Sep 1996 | A |
5555452 | Callaway et al. | Sep 1996 | A |
5555907 | Philipp | Sep 1996 | A |
5557762 | Okuaki et al. | Sep 1996 | A |
5559502 | Schutte | Sep 1996 | A |
5559996 | Fujioka | Sep 1996 | A |
5563526 | Hastings et al. | Oct 1996 | A |
5563529 | Seltzer et al. | Oct 1996 | A |
5564010 | Henry et al. | Oct 1996 | A |
5564108 | Hunsaker et al. | Oct 1996 | A |
5565658 | Gerpheide et al. | Oct 1996 | A |
5566702 | Philipp | Oct 1996 | A |
5572665 | Nakabayashi | Nov 1996 | A |
5572719 | Biesterfeldt | Nov 1996 | A |
5574678 | Gorecki | Nov 1996 | A |
5574852 | Bakker et al. | Nov 1996 | A |
5574892 | Christensen | Nov 1996 | A |
5579353 | Parmenter et al. | Nov 1996 | A |
5587945 | Lin et al. | Dec 1996 | A |
5587957 | Kowalczyk et al. | Dec 1996 | A |
5590354 | Klapproth et al. | Dec 1996 | A |
5594388 | D'Shaughnessy et al. | Jan 1997 | A |
5594734 | Worsley et al. | Jan 1997 | A |
5594876 | Getzlaff et al. | Jan 1997 | A |
5594890 | Yamaura et al. | Jan 1997 | A |
5598408 | Nickolls et al. | Jan 1997 | A |
5600262 | Kolze | Feb 1997 | A |
5604450 | Borkar et al. | Feb 1997 | A |
5604466 | Dreps et al. | Feb 1997 | A |
5608892 | Wakerly | Mar 1997 | A |
5614861 | Harada | Mar 1997 | A |
5625316 | Chambers et al. | Apr 1997 | A |
5625583 | Hyatt | Apr 1997 | A |
5629857 | Brennan | May 1997 | A |
5629891 | LeMoncheck et al. | May 1997 | A |
5630052 | Shah | May 1997 | A |
5630057 | Hait | May 1997 | A |
5630102 | Johnson et al. | May 1997 | A |
5631577 | Freidin et al. | May 1997 | A |
5633766 | Hase et al. | May 1997 | A |
5635745 | Hoeld | Jun 1997 | A |
5642295 | Smayling | Jun 1997 | A |
5646544 | Iadanza | Jul 1997 | A |
5646901 | Sharpe-Geisler et al. | Jul 1997 | A |
5648642 | Miller et al. | Jul 1997 | A |
5651035 | Tozun et al. | Jul 1997 | A |
5652893 | Ben-Meir et al. | Jul 1997 | A |
5661433 | LaRosa et al. | Aug 1997 | A |
5663900 | Bhandari et al. | Sep 1997 | A |
5663965 | Seymour | Sep 1997 | A |
5664199 | Kuwahara | Sep 1997 | A |
5666480 | Leung et al. | Sep 1997 | A |
5668550 | Coleman, Jr. | Sep 1997 | A |
5670915 | Cooper et al. | Sep 1997 | A |
5673198 | Lawman et al. | Sep 1997 | A |
5675825 | Dreyer et al. | Oct 1997 | A |
5677691 | Hosticka et al. | Oct 1997 | A |
5680070 | Anderson et al. | Oct 1997 | A |
5682032 | Philipp | Oct 1997 | A |
5684434 | Mann et al. | Nov 1997 | A |
5684952 | Stein | Nov 1997 | A |
5686844 | Hull et al. | Nov 1997 | A |
5687325 | Chang | Nov 1997 | A |
5689195 | Cliff et al. | Nov 1997 | A |
5689196 | Schutte | Nov 1997 | A |
5691664 | Anderson et al. | Nov 1997 | A |
5691898 | Rosenberg et al. | Nov 1997 | A |
5694063 | Burlison et al. | Dec 1997 | A |
5696952 | Pontarelli | Dec 1997 | A |
5699024 | Manlove et al. | Dec 1997 | A |
5703871 | Pope et al. | Dec 1997 | A |
5706453 | Cheng et al. | Jan 1998 | A |
5708589 | Beauvais | Jan 1998 | A |
5708798 | Lynch et al. | Jan 1998 | A |
5710906 | Ghosh et al. | Jan 1998 | A |
5712969 | Zimmermann et al. | Jan 1998 | A |
5721931 | Gephardt et al. | Feb 1998 | A |
5724009 | Collins et al. | Mar 1998 | A |
5727170 | Mitchell et al. | Mar 1998 | A |
5728933 | Schultz et al. | Mar 1998 | A |
5729704 | Stone et al. | Mar 1998 | A |
5730165 | Philipp | Mar 1998 | A |
5732277 | Kodosky et al. | Mar 1998 | A |
5734272 | Belot et al. | Mar 1998 | A |
5734334 | Hsieh et al. | Mar 1998 | A |
5737557 | Sullivan | Apr 1998 | A |
5737760 | Grimmer et al. | Apr 1998 | A |
5745011 | Scott | Apr 1998 | A |
5748048 | Moyal | May 1998 | A |
5748875 | Tzori | May 1998 | A |
5751164 | Sharpe-Geisler et al. | May 1998 | A |
5752013 | Christensen et al. | May 1998 | A |
5754552 | Allmond et al. | May 1998 | A |
5754826 | Gamal et al. | May 1998 | A |
5757298 | Manley et al. | May 1998 | A |
5757368 | Gerpheide et al. | May 1998 | A |
5758058 | Milburn | May 1998 | A |
5761128 | Watanabe | Jun 1998 | A |
5763909 | Mead et al. | Jun 1998 | A |
5764714 | Stansell et al. | Jun 1998 | A |
5767457 | Gerpheide et al. | Jun 1998 | A |
5774704 | Williams | Jun 1998 | A |
5777399 | Shibuya | Jul 1998 | A |
5781030 | Agrawal et al. | Jul 1998 | A |
5781747 | Smith et al. | Jul 1998 | A |
5784545 | Anderson et al. | Jul 1998 | A |
5790957 | Heidari | Aug 1998 | A |
5796183 | Hourmand | Aug 1998 | A |
5797028 | Gulick et al. | Aug 1998 | A |
5799176 | Kapusta et al. | Aug 1998 | A |
5801958 | Dangelo et al. | Sep 1998 | A |
5802073 | Platt | Sep 1998 | A |
5802290 | Casselman | Sep 1998 | A |
5805792 | Swoboda et al. | Sep 1998 | A |
5805897 | Glowny | Sep 1998 | A |
5808883 | Hawkes | Sep 1998 | A |
5811987 | Ashmore, Jr. et al. | Sep 1998 | A |
5812698 | Platt et al. | Sep 1998 | A |
5815505 | Mills | Sep 1998 | A |
5818254 | Agrawal et al. | Oct 1998 | A |
5818444 | Alimpich et al. | Oct 1998 | A |
5818736 | Leibold | Oct 1998 | A |
5819028 | Manghirmalani et al. | Oct 1998 | A |
5822387 | Mar | Oct 1998 | A |
5822531 | Gorczyca et al. | Oct 1998 | A |
5826093 | Assouad et al. | Oct 1998 | A |
5828693 | Mays et al. | Oct 1998 | A |
5835405 | Tsui et al. | Nov 1998 | A |
5838583 | Varadarajan et al. | Nov 1998 | A |
5841078 | Miller et al. | Nov 1998 | A |
5841996 | Nolan et al. | Nov 1998 | A |
5844256 | Mead et al. | Dec 1998 | A |
5844265 | Mead et al. | Dec 1998 | A |
5844404 | Caser et al. | Dec 1998 | A |
5848285 | Kapusta et al. | Dec 1998 | A |
5850156 | Wittman | Dec 1998 | A |
5852733 | Chien et al. | Dec 1998 | A |
5854625 | Frisch et al. | Dec 1998 | A |
5857109 | Taylor | Jan 1999 | A |
5861583 | Schediwy et al. | Jan 1999 | A |
5861875 | Gerpheide | Jan 1999 | A |
5864242 | Allen et al. | Jan 1999 | A |
5864392 | Winklhofer et al. | Jan 1999 | A |
5867046 | Sugasawa | Feb 1999 | A |
5867399 | Rostoker et al. | Feb 1999 | A |
5869979 | Bocchino | Feb 1999 | A |
5870004 | Lu | Feb 1999 | A |
5870309 | Lawman | Feb 1999 | A |
5870345 | Stecker | Feb 1999 | A |
5872464 | Gradinariu | Feb 1999 | A |
5874958 | Ludolph | Feb 1999 | A |
5875293 | Bell et al. | Feb 1999 | A |
5877633 | Ng et al. | Mar 1999 | A |
5877656 | Mann et al. | Mar 1999 | A |
5878425 | Redpath | Mar 1999 | A |
5880411 | Gillespie et al. | Mar 1999 | A |
5880598 | Duong | Mar 1999 | A |
5883623 | Cseri | Mar 1999 | A |
5886582 | Stansell | Mar 1999 | A |
5887189 | Birns et al. | Mar 1999 | A |
5889236 | Gillespie et al. | Mar 1999 | A |
5889723 | Pascucci | Mar 1999 | A |
5889936 | Chan | Mar 1999 | A |
5889988 | Held | Mar 1999 | A |
5894226 | Koyama | Apr 1999 | A |
5894243 | Hwang | Apr 1999 | A |
5894565 | Furtek et al. | Apr 1999 | A |
5895494 | Scalzi et al. | Apr 1999 | A |
5896068 | Moyal | Apr 1999 | A |
5896330 | Gibson | Apr 1999 | A |
5898345 | Namura et al. | Apr 1999 | A |
5900780 | Hirose et al. | May 1999 | A |
5901062 | Burch et al. | May 1999 | A |
5903718 | Marik | May 1999 | A |
5905398 | Todsen et al. | May 1999 | A |
5909544 | Anderson et al. | Jun 1999 | A |
5911059 | Profit, Jr. | Jun 1999 | A |
5914465 | Allen et al. | Jun 1999 | A |
5914633 | Comino et al. | Jun 1999 | A |
5914708 | LaGrange et al. | Jun 1999 | A |
5917356 | Casal et al. | Jun 1999 | A |
5920310 | Faggin et al. | Jul 1999 | A |
5923264 | Lavelle et al. | Jul 1999 | A |
5926566 | Wang et al. | Jul 1999 | A |
5929710 | Bien | Jul 1999 | A |
5930148 | Bjorksten et al. | Jul 1999 | A |
5930150 | Cohen et al. | Jul 1999 | A |
5931959 | Kwiat | Aug 1999 | A |
5933023 | Young | Aug 1999 | A |
5933356 | Rostoker et al. | Aug 1999 | A |
5933816 | Keanah et al. | Aug 1999 | A |
5935233 | Jeddeloh | Aug 1999 | A |
5935266 | Thurnhofer et al. | Aug 1999 | A |
5939904 | Fetterman et al. | Aug 1999 | A |
5939949 | Olgaard et al. | Aug 1999 | A |
5941991 | Kageshima | Aug 1999 | A |
5942733 | Allen et al. | Aug 1999 | A |
5943052 | Allen et al. | Aug 1999 | A |
5945878 | Westwick et al. | Aug 1999 | A |
5949632 | Barreras, Sr. et al. | Sep 1999 | A |
5952888 | Scott | Sep 1999 | A |
5956279 | Mo et al. | Sep 1999 | A |
5959871 | Pierzchala et al. | Sep 1999 | A |
5963075 | Hiiragizawa | Oct 1999 | A |
5963105 | Nguyen | Oct 1999 | A |
5963503 | Lee | Oct 1999 | A |
5964893 | Circello et al. | Oct 1999 | A |
5966027 | Kapusta et al. | Oct 1999 | A |
5966532 | Mcdonald et al. | Oct 1999 | A |
5968135 | Teramoto et al. | Oct 1999 | A |
5969513 | Clark | Oct 1999 | A |
5969632 | Diamant et al. | Oct 1999 | A |
5973368 | Pearce et al. | Oct 1999 | A |
5974235 | Nunally et al. | Oct 1999 | A |
5977791 | Veenstra | Nov 1999 | A |
5978584 | Nishibata et al. | Nov 1999 | A |
5978937 | Miyamori et al. | Nov 1999 | A |
5982105 | Masters | Nov 1999 | A |
5982229 | Wong et al. | Nov 1999 | A |
5982241 | Nguyen et al. | Nov 1999 | A |
5983277 | Heile et al. | Nov 1999 | A |
5986479 | Mohan | Nov 1999 | A |
5987246 | Thomsen et al. | Nov 1999 | A |
5988902 | Holehan | Nov 1999 | A |
5994939 | Johnson et al. | Nov 1999 | A |
5996032 | Baker | Nov 1999 | A |
5998408 | Nickolls et al. | Dec 1999 | A |
5999725 | Barbier et al. | Dec 1999 | A |
6002268 | Sasaki et al. | Dec 1999 | A |
6002398 | Wilson | Dec 1999 | A |
6003054 | Oshima et al. | Dec 1999 | A |
6003107 | Ranson et al. | Dec 1999 | A |
6003133 | Moughanni et al. | Dec 1999 | A |
6005814 | Mulholland et al. | Dec 1999 | A |
6005904 | Knapp et al. | Dec 1999 | A |
6008685 | Kunst | Dec 1999 | A |
6008703 | Perrott et al. | Dec 1999 | A |
6009270 | Mann | Dec 1999 | A |
6009496 | Tsai | Dec 1999 | A |
6011407 | New | Jan 2000 | A |
6012835 | Thompson et al. | Jan 2000 | A |
6014135 | Fernandes | Jan 2000 | A |
6014509 | Furtek et al. | Jan 2000 | A |
6014723 | Tremblay et al. | Jan 2000 | A |
6016554 | Skrovan et al. | Jan 2000 | A |
6016563 | Fleisher | Jan 2000 | A |
6018559 | Azegami et al. | Jan 2000 | A |
6023422 | Allen et al. | Feb 2000 | A |
6023565 | Lawman et al. | Feb 2000 | A |
6026134 | Duffy et al. | Feb 2000 | A |
6026501 | Hohl et al. | Feb 2000 | A |
6028271 | Gillespie et al. | Feb 2000 | A |
6028959 | Wang et al. | Feb 2000 | A |
6031365 | Sharpe-Geisler | Feb 2000 | A |
6031366 | Mitsuishi | Feb 2000 | A |
6032268 | Swoboda et al. | Feb 2000 | A |
6034538 | Abramovici | Mar 2000 | A |
6034541 | Kopec, Jr. et al. | Mar 2000 | A |
6035320 | Kiriaki et al. | Mar 2000 | A |
6037807 | Wu et al. | Mar 2000 | A |
6038551 | Barlow et al. | Mar 2000 | A |
6041406 | Mann | Mar 2000 | A |
6043695 | O'Sullivan | Mar 2000 | A |
6043719 | Lin et al. | Mar 2000 | A |
6049223 | Lytle et al. | Apr 2000 | A |
6049225 | Huang et al. | Apr 2000 | A |
6051772 | Cameron et al. | Apr 2000 | A |
6052035 | Nolan et al. | Apr 2000 | A |
6052524 | Pauna | Apr 2000 | A |
6055584 | Bridges et al. | Apr 2000 | A |
6057705 | Wojewoda et al. | May 2000 | A |
6058263 | Voth | May 2000 | A |
6058452 | Rangasayee et al. | May 2000 | A |
6061511 | Marantz et al. | May 2000 | A |
6066961 | Lee et al. | May 2000 | A |
6070003 | Gove et al. | May 2000 | A |
6072334 | Chang | Jun 2000 | A |
6072803 | Allmond et al. | Jun 2000 | A |
6075941 | Itoh et al. | Jun 2000 | A |
6079985 | Wohl et al. | Jun 2000 | A |
6081140 | King | Jun 2000 | A |
6094730 | Lopez et al. | Jul 2000 | A |
6097211 | Couts-Martin et al. | Aug 2000 | A |
6097432 | Mead et al. | Aug 2000 | A |
6101457 | Barch et al. | Aug 2000 | A |
6101617 | Burckhartt et al. | Aug 2000 | A |
6104217 | Magana | Aug 2000 | A |
6104325 | Liaw et al. | Aug 2000 | A |
6107769 | Saylor et al. | Aug 2000 | A |
6107826 | Young et al. | Aug 2000 | A |
6107882 | Gabara et al. | Aug 2000 | A |
6110223 | Southgate et al. | Aug 2000 | A |
6111431 | Estrada | Aug 2000 | A |
6112264 | Beasley et al. | Aug 2000 | A |
6121791 | Abbott | Sep 2000 | A |
6121805 | Thamsirianunt et al. | Sep 2000 | A |
6121965 | Kenney et al. | Sep 2000 | A |
6125416 | Warren | Sep 2000 | A |
6130548 | Koifman | Oct 2000 | A |
6130551 | Agrawal et al. | Oct 2000 | A |
6130552 | Jefferson et al. | Oct 2000 | A |
6133773 | Garlepp et al. | Oct 2000 | A |
6134181 | Landry | Oct 2000 | A |
6134516 | Wang et al. | Oct 2000 | A |
6137308 | Nayak | Oct 2000 | A |
6140853 | Lo | Oct 2000 | A |
6141376 | Shaw | Oct 2000 | A |
6141764 | Ezell | Oct 2000 | A |
6144327 | Distinti et al. | Nov 2000 | A |
6148104 | Wang et al. | Nov 2000 | A |
6148441 | Woodward | Nov 2000 | A |
6149299 | Aslan et al. | Nov 2000 | A |
6150866 | Eto et al. | Nov 2000 | A |
6154055 | Cliff et al. | Nov 2000 | A |
6154064 | Proebsting | Nov 2000 | A |
6157024 | Chapdelaine et al. | Dec 2000 | A |
6157270 | Tso | Dec 2000 | A |
6161199 | Szeto et al. | Dec 2000 | A |
6166367 | Cho | Dec 2000 | A |
6166960 | Marneweck et al. | Dec 2000 | A |
6167077 | Ducaroir et al. | Dec 2000 | A |
6167364 | Stellenberg et al. | Dec 2000 | A |
6167559 | Furtek et al. | Dec 2000 | A |
6169383 | Sabin et al. | Jan 2001 | B1 |
6172428 | Jordan | Jan 2001 | B1 |
6172571 | Moyal et al. | Jan 2001 | B1 |
6173419 | Barnett | Jan 2001 | B1 |
6175914 | Mann | Jan 2001 | B1 |
6175949 | Gristede et al. | Jan 2001 | B1 |
6181163 | Agrawal et al. | Jan 2001 | B1 |
6183131 | Holloway et al. | Feb 2001 | B1 |
6185127 | Myers et al. | Feb 2001 | B1 |
6185450 | Seguine et al. | Feb 2001 | B1 |
6185522 | Bakker | Feb 2001 | B1 |
6185703 | Guddat et al. | Feb 2001 | B1 |
6185732 | Mann et al. | Feb 2001 | B1 |
6188228 | Philipp | Feb 2001 | B1 |
6188241 | Gauthier et al. | Feb 2001 | B1 |
6188381 | Van Der et al. | Feb 2001 | B1 |
6188391 | Seely et al. | Feb 2001 | B1 |
6188975 | Gay | Feb 2001 | B1 |
6191603 | Muradali et al. | Feb 2001 | B1 |
6191660 | Mar et al. | Feb 2001 | B1 |
6191998 | Reddy et al. | Feb 2001 | B1 |
6192431 | Dabral et al. | Feb 2001 | B1 |
6198303 | Rangasayee | Mar 2001 | B1 |
6201407 | Kapusta et al. | Mar 2001 | B1 |
6201829 | Schneider | Mar 2001 | B1 |
6202044 | Tzori | Mar 2001 | B1 |
6204687 | Schultz et al. | Mar 2001 | B1 |
6205574 | Dellinger et al. | Mar 2001 | B1 |
6208572 | Adams et al. | Mar 2001 | B1 |
6211708 | Klemmer | Apr 2001 | B1 |
6211715 | Terauchi | Apr 2001 | B1 |
6211741 | Dalmia | Apr 2001 | B1 |
6215352 | Sudo | Apr 2001 | B1 |
6216254 | Pesce et al. | Apr 2001 | B1 |
6219729 | Keats et al. | Apr 2001 | B1 |
6222528 | Gerpheide et al. | Apr 2001 | B1 |
6223144 | Barnett et al. | Apr 2001 | B1 |
6223147 | Bowers | Apr 2001 | B1 |
6223272 | Coehlo et al. | Apr 2001 | B1 |
RE37195 | Kean | May 2001 | E |
6225866 | Kubota et al. | May 2001 | B1 |
6236242 | Hedberg | May 2001 | B1 |
6236275 | Dent | May 2001 | B1 |
6236278 | Olgaard | May 2001 | B1 |
6236593 | Hong et al. | May 2001 | B1 |
6239389 | Allen et al. | May 2001 | B1 |
6239798 | Ludolph et al. | May 2001 | B1 |
6240375 | Sonoda | May 2001 | B1 |
6243654 | Johnson et al. | Jun 2001 | B1 |
6246258 | Lesea | Jun 2001 | B1 |
6246410 | Bergeron et al. | Jun 2001 | B1 |
6249167 | Oguchi et al. | Jun 2001 | B1 |
6249447 | Boylan et al. | Jun 2001 | B1 |
6253250 | Evans et al. | Jun 2001 | B1 |
6253754 | Roohparvar | Jul 2001 | B1 |
6262717 | Donohue et al. | Jul 2001 | B1 |
6263302 | Hellestrand et al. | Jul 2001 | B1 |
6263339 | Hirsch | Jul 2001 | B1 |
6263484 | Yang | Jul 2001 | B1 |
6271679 | Mcclintock et al. | Aug 2001 | B1 |
6272646 | Rangasayee et al. | Aug 2001 | B1 |
6275117 | Abugharbieh et al. | Aug 2001 | B1 |
6278568 | Cloke et al. | Aug 2001 | B1 |
6280391 | Olson et al. | Aug 2001 | B1 |
6281753 | Corsi et al. | Aug 2001 | B1 |
6282547 | Hirsch | Aug 2001 | B1 |
6282551 | Anderson et al. | Aug 2001 | B1 |
6286127 | King et al. | Sep 2001 | B1 |
6288707 | Philipp | Sep 2001 | B1 |
6289300 | Brannick et al. | Sep 2001 | B1 |
6289478 | Kitagaki | Sep 2001 | B1 |
6289489 | Bold et al. | Sep 2001 | B1 |
6292028 | Tomita | Sep 2001 | B1 |
6294932 | Watarai | Sep 2001 | B1 |
6294962 | Mar | Sep 2001 | B1 |
6298320 | Buckmaster et al. | Oct 2001 | B1 |
6304014 | England et al. | Oct 2001 | B1 |
6304101 | Nishihara | Oct 2001 | B1 |
6304790 | Nakamura et al. | Oct 2001 | B1 |
6307413 | Dalmia et al. | Oct 2001 | B1 |
6310521 | Dalmia | Oct 2001 | B1 |
6310568 | Kurooka | Oct 2001 | B1 |
6310611 | Caldwell | Oct 2001 | B1 |
6311149 | Ryan et al. | Oct 2001 | B1 |
6314530 | Mann | Nov 2001 | B1 |
6320184 | Winklhofer et al. | Nov 2001 | B1 |
6320282 | Caldwell | Nov 2001 | B1 |
6321369 | Heile et al. | Nov 2001 | B1 |
6323846 | Westerman et al. | Nov 2001 | B1 |
6324628 | Chan | Nov 2001 | B1 |
6324672 | Lawman et al. | Nov 2001 | B1 |
6326859 | Goldman et al. | Dec 2001 | B1 |
6332137 | Hori et al. | Dec 2001 | B1 |
6332201 | Chin et al. | Dec 2001 | B1 |
6337579 | Mochida | Jan 2002 | B1 |
6338109 | Snyder et al. | Jan 2002 | B1 |
6339815 | Feng et al. | Jan 2002 | B1 |
6342907 | Petty et al. | Jan 2002 | B1 |
6345383 | Ueki | Feb 2002 | B1 |
6347395 | Payne et al. | Feb 2002 | B1 |
6351789 | Green | Feb 2002 | B1 |
6353452 | Hamada et al. | Mar 2002 | B1 |
6355980 | Callahan | Mar 2002 | B1 |
6356862 | Bailey | Mar 2002 | B2 |
6356958 | Lin | Mar 2002 | B1 |
6356960 | Jones et al. | Mar 2002 | B1 |
6359950 | Gossmann et al. | Mar 2002 | B2 |
6362697 | Pulvirenti | Mar 2002 | B1 |
6363463 | Mattison | Mar 2002 | B1 |
6366174 | Berry et al. | Apr 2002 | B1 |
6366300 | Ohara et al. | Apr 2002 | B1 |
6366874 | Lee et al. | Apr 2002 | B1 |
6366878 | Grunert | Apr 2002 | B1 |
6369660 | Wei et al. | Apr 2002 | B1 |
6371878 | Bowen | Apr 2002 | B1 |
6373285 | Konishi | Apr 2002 | B1 |
6373954 | Malcolm, Jr. et al. | Apr 2002 | B1 |
6374370 | Bockhaus et al. | Apr 2002 | B1 |
6374380 | Bockhaus et al. | Apr 2002 | B1 |
6377009 | Philipp | Apr 2002 | B1 |
6377575 | Mullaney et al. | Apr 2002 | B1 |
6377646 | Sha | Apr 2002 | B1 |
6380811 | Zarubinsky et al. | Apr 2002 | B1 |
6380929 | Platt | Apr 2002 | B1 |
6380931 | Gillespie et al. | Apr 2002 | B1 |
6384947 | Ackerman et al. | May 2002 | B1 |
6385742 | Kirsch et al. | May 2002 | B1 |
6388109 | Schwarz et al. | May 2002 | B1 |
6388464 | Lacey et al. | May 2002 | B1 |
6396302 | New et al. | May 2002 | B2 |
6396657 | Suzuki | May 2002 | B1 |
6397232 | Cheng-Hung et al. | May 2002 | B1 |
6401230 | Ahanessians et al. | Jun 2002 | B1 |
6404204 | Farruggia et al. | Jun 2002 | B1 |
6404445 | Galea et al. | Jun 2002 | B1 |
6407953 | Cleeves | Jun 2002 | B1 |
6408432 | Herrmann et al. | Jun 2002 | B1 |
6411665 | Chan et al. | Jun 2002 | B1 |
6411974 | Graham et al. | Jun 2002 | B1 |
6414671 | Gillespie et al. | Jul 2002 | B1 |
6421698 | Hong | Jul 2002 | B1 |
6421817 | Mohan et al. | Jul 2002 | B1 |
6424175 | Vangal et al. | Jul 2002 | B1 |
6425109 | Choukalos et al. | Jul 2002 | B1 |
6429882 | Abdelnur et al. | Aug 2002 | B1 |
6430305 | Decker | Aug 2002 | B1 |
6433645 | Mann et al. | Aug 2002 | B1 |
6434187 | Beard et al. | Aug 2002 | B1 |
6437805 | Sojoodi et al. | Aug 2002 | B1 |
6438565 | Ammirato et al. | Aug 2002 | B1 |
6438735 | McElvain et al. | Aug 2002 | B1 |
6438738 | Elayda | Aug 2002 | B1 |
6441073 | Tanaka et al. | Aug 2002 | B1 |
6445211 | Saripella | Sep 2002 | B1 |
6449628 | Wasson | Sep 2002 | B1 |
6449755 | Beausang et al. | Sep 2002 | B1 |
6449761 | Greidinger et al. | Sep 2002 | B1 |
6452437 | Takeuchi et al. | Sep 2002 | B1 |
6452514 | Philipp | Sep 2002 | B1 |
6453175 | Mizell et al. | Sep 2002 | B2 |
6453461 | Chaiken | Sep 2002 | B1 |
6456304 | Angiulo et al. | Sep 2002 | B1 |
6457355 | Philipp | Oct 2002 | B1 |
6457479 | Zhuang et al. | Oct 2002 | B1 |
6460172 | Farre et al. | Oct 2002 | B1 |
6460175 | Ferri et al. | Oct 2002 | B1 |
6463488 | San Juan | Oct 2002 | B1 |
6466036 | Philipp | Oct 2002 | B1 |
6466078 | Stiff | Oct 2002 | B1 |
6466898 | Chan | Oct 2002 | B1 |
6473069 | Gerpheide | Oct 2002 | B1 |
6473825 | Worley et al. | Oct 2002 | B1 |
6477691 | Bergamaschi et al. | Nov 2002 | B1 |
6480921 | Mansoorian et al. | Nov 2002 | B1 |
6483343 | Faith et al. | Nov 2002 | B1 |
6487700 | Fukushima | Nov 2002 | B1 |
6489899 | Ely et al. | Dec 2002 | B1 |
6490213 | Mu et al. | Dec 2002 | B1 |
6492834 | Lytle et al. | Dec 2002 | B1 |
6496969 | Feng et al. | Dec 2002 | B2 |
6496971 | Lesea et al. | Dec 2002 | B1 |
6498720 | Glad | Dec 2002 | B2 |
6499134 | Buffet et al. | Dec 2002 | B1 |
6499359 | Washeleski et al. | Dec 2002 | B1 |
6504403 | Bangs et al. | Jan 2003 | B2 |
6507214 | Snyder | Jan 2003 | B1 |
6507215 | Piasecki et al. | Jan 2003 | B1 |
6507857 | Yalcinalp | Jan 2003 | B1 |
6509758 | Piasecki et al. | Jan 2003 | B2 |
6512395 | Lacey et al. | Jan 2003 | B1 |
6516428 | Wenzel et al. | Feb 2003 | B2 |
6522128 | Ely et al. | Feb 2003 | B1 |
6523416 | Takagi et al. | Feb 2003 | B2 |
6525593 | Mar | Feb 2003 | B1 |
6526556 | Stoica et al. | Feb 2003 | B1 |
6529791 | Takagi | Mar 2003 | B1 |
6530065 | McDonald et al. | Mar 2003 | B1 |
6534970 | Ely et al. | Mar 2003 | B1 |
6535061 | Darmawaskita et al. | Mar 2003 | B2 |
6535200 | Philipp | Mar 2003 | B2 |
6535946 | Bryant et al. | Mar 2003 | B1 |
6536028 | Katsioulas et al. | Mar 2003 | B1 |
6539534 | Bennett | Mar 2003 | B1 |
6542025 | Kutz et al. | Apr 2003 | B1 |
6542844 | Hanna | Apr 2003 | B1 |
6542845 | Grucci et al. | Apr 2003 | B1 |
6542998 | Vorbach et al. | Apr 2003 | B1 |
6546297 | Gaston et al. | Apr 2003 | B1 |
6552933 | Roohparvar | Apr 2003 | B2 |
6553057 | Sha et al. | Apr 2003 | B1 |
6554469 | Thomson et al. | Apr 2003 | B1 |
6556044 | Langhammer et al. | Apr 2003 | B2 |
6557164 | Faustini | Apr 2003 | B1 |
6559685 | Green | May 2003 | B2 |
6560306 | Duffy et al. | May 2003 | B1 |
6560699 | Konkle | May 2003 | B1 |
6563391 | Mar | May 2003 | B1 |
6564179 | Belhaj | May 2003 | B1 |
6564334 | Zattiero et al. | May 2003 | B1 |
6566961 | Dasgupta et al. | May 2003 | B2 |
6567426 | van Hook et al. | May 2003 | B1 |
6567932 | Edwards et al. | May 2003 | B2 |
6570557 | Westerman et al. | May 2003 | B1 |
6571331 | Henry et al. | May 2003 | B2 |
6571373 | Devins et al. | May 2003 | B1 |
6574590 | Kershaw et al. | Jun 2003 | B1 |
6574739 | Kung et al. | Jun 2003 | B1 |
6575373 | Nakano | Jun 2003 | B1 |
6577258 | Ruha et al. | Jun 2003 | B2 |
6578174 | Zizzo | Jun 2003 | B2 |
6580329 | Sander | Jun 2003 | B2 |
6581191 | Schubert et al. | Jun 2003 | B1 |
6587093 | Shaw et al. | Jul 2003 | B1 |
6587995 | Duboc et al. | Jul 2003 | B1 |
6588004 | Southgate et al. | Jul 2003 | B1 |
6590422 | Dillon | Jul 2003 | B1 |
6590517 | Swanson | Jul 2003 | B1 |
6590589 | Sluiman et al. | Jul 2003 | B1 |
6591369 | Edwards et al. | Jul 2003 | B1 |
6592626 | Bauchot et al. | Jul 2003 | B1 |
6594796 | Chiang | Jul 2003 | B1 |
6594799 | Robertson et al. | Jul 2003 | B1 |
6597212 | Wang et al. | Jul 2003 | B1 |
6597824 | Newberg et al. | Jul 2003 | B2 |
6598178 | Yee et al. | Jul 2003 | B1 |
6600346 | Macaluso | Jul 2003 | B1 |
6600351 | Bisanti et al. | Jul 2003 | B2 |
6600480 | Natoli | Jul 2003 | B2 |
6600575 | Kohara | Jul 2003 | B1 |
6601189 | Edwards et al. | Jul 2003 | B1 |
6601236 | Curtis | Jul 2003 | B1 |
6603330 | Snyder | Aug 2003 | B1 |
6603348 | Preuss et al. | Aug 2003 | B1 |
6604179 | Volk et al. | Aug 2003 | B2 |
6606731 | Baum et al. | Aug 2003 | B1 |
6608472 | Kutz et al. | Aug 2003 | B1 |
6610936 | Gillespie et al. | Aug 2003 | B2 |
6611220 | Snyder | Aug 2003 | B1 |
6611276 | Muratori et al. | Aug 2003 | B1 |
6611856 | Liao et al. | Aug 2003 | B1 |
6611952 | Prakash et al. | Aug 2003 | B1 |
6613098 | Sorge et al. | Sep 2003 | B1 |
6614260 | Welch et al. | Sep 2003 | B1 |
6614320 | Sullam et al. | Sep 2003 | B1 |
6614374 | Gustavsson et al. | Sep 2003 | B1 |
6614458 | Lambert et al. | Sep 2003 | B1 |
6615167 | Devins et al. | Sep 2003 | B1 |
6617888 | Volk | Sep 2003 | B2 |
6618854 | Mann | Sep 2003 | B1 |
6621356 | Gotz et al. | Sep 2003 | B2 |
6624640 | Lund et al. | Sep 2003 | B2 |
6625765 | Krishnan | Sep 2003 | B1 |
6628163 | Dathe et al. | Sep 2003 | B2 |
6628311 | Fang | Sep 2003 | B1 |
6631508 | Williams | Oct 2003 | B1 |
6634008 | Dole | Oct 2003 | B1 |
6634009 | Molson et al. | Oct 2003 | B1 |
6636096 | Schaffer et al. | Oct 2003 | B2 |
6636169 | Distinti et al. | Oct 2003 | B1 |
6637015 | Ogami et al. | Oct 2003 | B1 |
6639586 | Gerpheide | Oct 2003 | B2 |
6642857 | Schediwy et al. | Nov 2003 | B1 |
6643151 | Nebrigic et al. | Nov 2003 | B1 |
6643810 | Whetsel | Nov 2003 | B2 |
6649924 | Philipp et al. | Nov 2003 | B1 |
6650581 | Hong et al. | Nov 2003 | B2 |
6658498 | Carney et al. | Dec 2003 | B1 |
6658633 | Devins et al. | Dec 2003 | B2 |
6661288 | Morgan et al. | Dec 2003 | B2 |
6661410 | Casebolt et al. | Dec 2003 | B2 |
6661724 | Snyder et al. | Dec 2003 | B1 |
6664978 | Kekic et al. | Dec 2003 | B1 |
6664991 | Chew et al. | Dec 2003 | B1 |
6667642 | Moyal | Dec 2003 | B1 |
6667740 | Ely et al. | Dec 2003 | B2 |
6670852 | Hauck | Dec 2003 | B1 |
6671869 | Davidson et al. | Dec 2003 | B2 |
6673308 | Hino et al. | Jan 2004 | B2 |
6677814 | Low et al. | Jan 2004 | B2 |
6677932 | Westerman | Jan 2004 | B1 |
6678645 | Rajsuman et al. | Jan 2004 | B1 |
6678877 | Perry et al. | Jan 2004 | B1 |
6680632 | Meyers et al. | Jan 2004 | B1 |
6680731 | Gerpheide et al. | Jan 2004 | B2 |
6681280 | Miyake et al. | Jan 2004 | B1 |
6681359 | Au et al. | Jan 2004 | B1 |
6683462 | Shimizu | Jan 2004 | B2 |
6683930 | Dalmia | Jan 2004 | B1 |
6686787 | Ling | Feb 2004 | B2 |
6686860 | Gulati et al. | Feb 2004 | B2 |
6690224 | Moore | Feb 2004 | B1 |
6691193 | Wang et al. | Feb 2004 | B1 |
6691301 | Bowen | Feb 2004 | B2 |
6697754 | Alexander | Feb 2004 | B1 |
6701340 | Gorecki et al. | Mar 2004 | B1 |
6701487 | Ogami et al. | Mar 2004 | B1 |
6701508 | Bartz et al. | Mar 2004 | B1 |
6703961 | Mueck et al. | Mar 2004 | B2 |
6704381 | Moyal et al. | Mar 2004 | B1 |
6704879 | Parrish | Mar 2004 | B1 |
6704889 | Veenstra et al. | Mar 2004 | B2 |
6704893 | Bauwens et al. | Mar 2004 | B1 |
6705511 | Dames et al. | Mar 2004 | B1 |
6711226 | Williams et al. | Mar 2004 | B1 |
6711731 | Weiss | Mar 2004 | B2 |
6713897 | Caldwell | Mar 2004 | B2 |
6714066 | Gorecki et al. | Mar 2004 | B2 |
6714817 | Daynes et al. | Mar 2004 | B2 |
6715132 | Bartz et al. | Mar 2004 | B1 |
6717436 | Kress et al. | Apr 2004 | B2 |
6717474 | Chen et al. | Apr 2004 | B2 |
6718294 | Bortfeld | Apr 2004 | B1 |
6718520 | Merryman et al. | Apr 2004 | B1 |
6718533 | Schneider et al. | Apr 2004 | B1 |
6720876 | Burgess | Apr 2004 | B1 |
6724220 | Snyder et al. | Apr 2004 | B1 |
6725441 | Keller et al. | Apr 2004 | B1 |
6728900 | Meli | Apr 2004 | B1 |
6728902 | Kaiser et al. | Apr 2004 | B2 |
6730863 | Gerpheide et al. | May 2004 | B1 |
6731552 | Perner | May 2004 | B2 |
6732068 | Sample et al. | May 2004 | B2 |
6732347 | Camilleri et al. | May 2004 | B1 |
6738858 | Fernald et al. | May 2004 | B1 |
6742220 | Nagai et al. | Jun 2004 | B2 |
6744323 | Moyal et al. | Jun 2004 | B1 |
6745369 | May et al. | Jun 2004 | B1 |
6748569 | Brooke et al. | Jun 2004 | B1 |
6750852 | Gillespie et al. | Jun 2004 | B2 |
6750876 | Atsatt et al. | Jun 2004 | B1 |
6750889 | Livingston | Jun 2004 | B1 |
6754101 | Terzioglu et al. | Jun 2004 | B2 |
6754723 | Kato | Jun 2004 | B2 |
6754765 | Chang et al. | Jun 2004 | B1 |
6754849 | Tamura | Jun 2004 | B2 |
6757882 | Chen et al. | Jun 2004 | B2 |
6765407 | Snyder | Jul 2004 | B1 |
6768337 | Kohno et al. | Jul 2004 | B2 |
6768352 | Maher et al. | Jul 2004 | B1 |
6769622 | Tournemille et al. | Aug 2004 | B1 |
6771552 | Fujisawa | Aug 2004 | B2 |
6774644 | Eberlein | Aug 2004 | B2 |
6781456 | Pradhan | Aug 2004 | B2 |
6782068 | Wilson et al. | Aug 2004 | B1 |
6784821 | Lee | Aug 2004 | B1 |
6785881 | Bartz et al. | Aug 2004 | B1 |
6788116 | Cook et al. | Sep 2004 | B1 |
6788221 | Ely et al. | Sep 2004 | B1 |
6788521 | Nishi | Sep 2004 | B2 |
6791356 | Haycock et al. | Sep 2004 | B2 |
6791377 | Ilchmann et al. | Sep 2004 | B2 |
6792584 | Eneboe et al. | Sep 2004 | B1 |
6798218 | Kasperkovitz | Sep 2004 | B2 |
6798299 | Mar et al. | Sep 2004 | B1 |
6799198 | Huboi et al. | Sep 2004 | B1 |
6806771 | Hildebrant et al. | Oct 2004 | B1 |
6806782 | Motoyoshi et al. | Oct 2004 | B2 |
6809275 | Cheng et al. | Oct 2004 | B1 |
6809566 | Xin-Leblanc | Oct 2004 | B1 |
6810442 | Lin et al. | Oct 2004 | B1 |
6815979 | Ooshita Takeshi | Nov 2004 | B2 |
6816544 | Bailey et al. | Nov 2004 | B1 |
6817005 | Mason et al. | Nov 2004 | B2 |
6819142 | Viehmann et al. | Nov 2004 | B2 |
6823282 | Snyder | Nov 2004 | B1 |
6823497 | Schubert et al. | Nov 2004 | B2 |
6825689 | Snyder | Nov 2004 | B1 |
6825869 | Bang | Nov 2004 | B2 |
6828824 | Betz et al. | Dec 2004 | B2 |
6829727 | Pawloski | Dec 2004 | B1 |
6834384 | Fiorella, II et al. | Dec 2004 | B2 |
6836169 | Richmond et al. | Dec 2004 | B2 |
6839774 | Ahn et al. | Jan 2005 | B1 |
6842710 | Gehring et al. | Jan 2005 | B1 |
6847203 | Conti et al. | Jan 2005 | B1 |
6850117 | Weber et al. | Feb 2005 | B2 |
6850554 | Sha et al. | Feb 2005 | B1 |
6853598 | Chevallier | Feb 2005 | B2 |
6854067 | Kutz et al. | Feb 2005 | B1 |
6856433 | Hatano et al. | Feb 2005 | B2 |
6859884 | Sullam | Feb 2005 | B1 |
6862240 | Burgan | Mar 2005 | B2 |
6864710 | Lacey et al. | Mar 2005 | B1 |
6865429 | Schneider et al. | Mar 2005 | B1 |
6865504 | Larson et al. | Mar 2005 | B2 |
6868500 | Kutz et al. | Mar 2005 | B1 |
6871253 | Greeff et al. | Mar 2005 | B2 |
6871331 | Bloom et al. | Mar 2005 | B1 |
6873203 | Paul et al. | Mar 2005 | B1 |
6873210 | Mulder et al. | Mar 2005 | B2 |
6876941 | Nightingale | Apr 2005 | B2 |
6880086 | Kidder et al. | Apr 2005 | B2 |
6888453 | Lutz et al. | May 2005 | B2 |
6888538 | Ely et al. | May 2005 | B2 |
6892310 | Kutz et al. | May 2005 | B1 |
6892322 | Snyder | May 2005 | B1 |
6893724 | Lin et al. | May 2005 | B2 |
6894928 | Owen | May 2005 | B2 |
6895530 | Moyer et al. | May 2005 | B2 |
6897390 | Caldwell et al. | May 2005 | B2 |
6898703 | Ogami et al. | May 2005 | B1 |
6900663 | Roper et al. | May 2005 | B1 |
6901014 | Son et al. | May 2005 | B2 |
6901563 | Ogami et al. | May 2005 | B1 |
6903402 | Miyazawa | Jun 2005 | B2 |
6903613 | Mitchell et al. | Jun 2005 | B1 |
6904570 | Foote et al. | Jun 2005 | B2 |
6910126 | Mar et al. | Jun 2005 | B1 |
6911857 | Stiff | Jun 2005 | B1 |
6917661 | Scott et al. | Jul 2005 | B1 |
6922821 | Nemecek | Jul 2005 | B1 |
6924668 | Muller et al. | Aug 2005 | B2 |
6934674 | Douezy et al. | Aug 2005 | B1 |
6937075 | Lim et al. | Aug 2005 | B2 |
6940356 | Mcdonald et al. | Sep 2005 | B2 |
6941336 | Mar | Sep 2005 | B1 |
6941538 | Hwang et al. | Sep 2005 | B2 |
6944018 | Caldwell | Sep 2005 | B2 |
6949811 | Miyazawa | Sep 2005 | B2 |
6949984 | Siniscalchi | Sep 2005 | B2 |
6950954 | Sullam et al. | Sep 2005 | B1 |
6950990 | Rajarajan et al. | Sep 2005 | B2 |
6952778 | Snyder | Oct 2005 | B1 |
6954511 | Tachimori | Oct 2005 | B2 |
6954904 | White | Oct 2005 | B2 |
6956419 | Mann et al. | Oct 2005 | B1 |
6957180 | Nemecek | Oct 2005 | B1 |
6957242 | Snyder | Oct 2005 | B1 |
6961686 | Kodosky et al. | Nov 2005 | B2 |
6963233 | Puccio et al. | Nov 2005 | B2 |
6963908 | Lynch et al. | Nov 2005 | B1 |
6966039 | Bartz et al. | Nov 2005 | B1 |
6967511 | Sullam | Nov 2005 | B1 |
6967960 | Bross et al. | Nov 2005 | B1 |
6968346 | Hekmatpour | Nov 2005 | B2 |
6969978 | Dening | Nov 2005 | B2 |
6970844 | Bierenbaum | Nov 2005 | B1 |
6971004 | Pleis et al. | Nov 2005 | B1 |
6972597 | Kim | Dec 2005 | B2 |
6973400 | Cahill-O'Brien et al. | Dec 2005 | B2 |
6975123 | Malang et al. | Dec 2005 | B1 |
6980060 | Boerstler et al. | Dec 2005 | B2 |
6981090 | Kutz et al. | Dec 2005 | B1 |
6983047 | Chadha et al. | Jan 2006 | B1 |
6988192 | Snider | Jan 2006 | B2 |
6996796 | Sanchez et al. | Feb 2006 | B2 |
6996799 | Cismas et al. | Feb 2006 | B1 |
7005933 | Shutt | Feb 2006 | B1 |
7009444 | Scott | Mar 2006 | B1 |
7010773 | Bartz et al. | Mar 2006 | B1 |
7015735 | Kimura et al. | Mar 2006 | B2 |
7017145 | Taylor | Mar 2006 | B2 |
7017409 | Zielinski et al. | Mar 2006 | B2 |
7020854 | Killian et al. | Mar 2006 | B2 |
7023215 | Steenwyk | Apr 2006 | B2 |
7023257 | Sullam | Apr 2006 | B1 |
7024636 | Weed | Apr 2006 | B2 |
7024654 | Bersch et al. | Apr 2006 | B2 |
7026861 | Steenwyk | Apr 2006 | B2 |
7030513 | Caldwell | Apr 2006 | B2 |
7030656 | Lo et al. | Apr 2006 | B2 |
7030688 | Dosho et al. | Apr 2006 | B2 |
7030782 | Ely et al. | Apr 2006 | B2 |
7034603 | Brady et al. | Apr 2006 | B2 |
7042301 | Sutardja | May 2006 | B2 |
7046035 | Piasecki et al. | May 2006 | B2 |
7047166 | Dancea | May 2006 | B2 |
7055035 | Allison et al. | May 2006 | B2 |
7058921 | Hwang et al. | Jun 2006 | B1 |
7073158 | Mccubbrey | Jul 2006 | B2 |
7076420 | Snyder et al. | Jul 2006 | B1 |
7079166 | Hong | Jul 2006 | B1 |
7086014 | Bartz et al. | Aug 2006 | B1 |
7088166 | Reinschmidt et al. | Aug 2006 | B1 |
7089175 | Nemecek et al. | Aug 2006 | B1 |
7091713 | Erdelyi et al. | Aug 2006 | B2 |
7092980 | Mar et al. | Aug 2006 | B1 |
7098414 | Caldwell | Aug 2006 | B2 |
7099818 | Nemecek et al. | Aug 2006 | B1 |
7100133 | Meiyappan et al. | Aug 2006 | B1 |
7103108 | Beard | Sep 2006 | B1 |
7109978 | Gillespie et al. | Sep 2006 | B2 |
7117485 | Wilkinson et al. | Oct 2006 | B2 |
7119550 | Kitano et al. | Oct 2006 | B2 |
7119602 | Davis | Oct 2006 | B2 |
7124376 | Zaidi et al. | Oct 2006 | B2 |
7127630 | Snyder | Oct 2006 | B1 |
7129793 | Gramegna | Oct 2006 | B2 |
7129873 | Kawamura | Oct 2006 | B2 |
7132835 | Arcus | Nov 2006 | B1 |
7133140 | Lukacs et al. | Nov 2006 | B2 |
7133793 | Ely et al. | Nov 2006 | B2 |
7133945 | Lau | Nov 2006 | B2 |
7138841 | Li et al. | Nov 2006 | B1 |
7138868 | Sanchez et al. | Nov 2006 | B2 |
7139530 | Kusbel | Nov 2006 | B2 |
7141968 | Hibbs et al. | Nov 2006 | B2 |
7141987 | Hibbs et al. | Nov 2006 | B2 |
7149316 | Kutz et al. | Dec 2006 | B1 |
7150002 | Anderson et al. | Dec 2006 | B1 |
7151528 | Taylor et al. | Dec 2006 | B2 |
7152027 | Andrade et al. | Dec 2006 | B2 |
7154294 | Liu et al. | Dec 2006 | B2 |
7161936 | Barrass et al. | Jan 2007 | B1 |
7162410 | Nemecek et al. | Jan 2007 | B1 |
7171455 | Gupta et al. | Jan 2007 | B1 |
7176701 | Wachi et al. | Feb 2007 | B2 |
7178096 | Rangan et al. | Feb 2007 | B2 |
7180342 | Shutt et al. | Feb 2007 | B1 |
7185162 | Snyder | Feb 2007 | B1 |
7185321 | Roe et al. | Feb 2007 | B1 |
7188063 | Snyder | Mar 2007 | B1 |
7193901 | Ruby et al. | Mar 2007 | B2 |
7199783 | Wenstrand et al. | Apr 2007 | B2 |
7200507 | Chen et al. | Apr 2007 | B2 |
7206733 | Nemecek | Apr 2007 | B1 |
7212189 | Shaw et al. | May 2007 | B2 |
7221187 | Snyder et al. | May 2007 | B1 |
7227389 | Gong et al. | Jun 2007 | B2 |
7236921 | Nemecek et al. | Jun 2007 | B1 |
7250825 | Wilson et al. | Jul 2007 | B2 |
7256588 | Howard et al. | Aug 2007 | B2 |
7265633 | Stiff | Sep 2007 | B1 |
7266632 | Dao et al. | Sep 2007 | B2 |
7266768 | Ferlitsch et al. | Sep 2007 | B2 |
7281846 | Mcleod | Oct 2007 | B2 |
7282905 | Chen et al. | Oct 2007 | B2 |
7283151 | Nihei et al. | Oct 2007 | B2 |
7283410 | Hsu et al. | Oct 2007 | B2 |
7287112 | Pleis et al. | Oct 2007 | B1 |
7288977 | Stanley | Oct 2007 | B2 |
7290244 | Peck et al. | Oct 2007 | B2 |
7295049 | Moyal et al. | Nov 2007 | B1 |
7298124 | Kan et al. | Nov 2007 | B2 |
7299307 | Early et al. | Nov 2007 | B1 |
7301835 | Joshi et al. | Nov 2007 | B2 |
7305510 | Miller | Dec 2007 | B2 |
7307485 | Snyder et al. | Dec 2007 | B1 |
7308608 | Pleis et al. | Dec 2007 | B1 |
7312616 | Snyder | Dec 2007 | B2 |
7323879 | Kuo et al. | Jan 2008 | B2 |
7324380 | Negut et al. | Jan 2008 | B2 |
7332976 | Brennan | Feb 2008 | B1 |
7340693 | Martin et al. | Mar 2008 | B2 |
7342405 | Eldridge et al. | Mar 2008 | B2 |
7358714 | Watanabe et al. | Apr 2008 | B2 |
7360005 | Lin | Apr 2008 | B2 |
7367017 | Maddocks et al. | Apr 2008 | B2 |
7373437 | Seigneret et al. | May 2008 | B2 |
7376001 | Joshi et al. | May 2008 | B2 |
7376904 | Cifra et al. | May 2008 | B2 |
7386740 | Kutz et al. | Jun 2008 | B2 |
7392011 | Jacomb-Hood | Jun 2008 | B1 |
7400183 | Sivadasan et al. | Jul 2008 | B1 |
7406674 | Ogami et al. | Jul 2008 | B1 |
7421251 | Westwick et al. | Sep 2008 | B2 |
7436207 | Rogers et al. | Oct 2008 | B2 |
7446657 | Shaffer et al. | Nov 2008 | B2 |
7461274 | Merkin | Dec 2008 | B2 |
7466307 | Trent, Jr. et al. | Dec 2008 | B2 |
7542533 | Jasa et al. | Jun 2009 | B2 |
7552415 | Sanchez et al. | Jun 2009 | B2 |
7554847 | Lee | Jun 2009 | B2 |
7609178 | Son et al. | Oct 2009 | B2 |
7613943 | Bakker et al. | Nov 2009 | B2 |
7616509 | Qureshi et al. | Nov 2009 | B2 |
7672827 | Schapira et al. | Mar 2010 | B1 |
7809545 | Ciolti et al. | Oct 2010 | B2 |
7825688 | Snyder et al. | Nov 2010 | B1 |
8026739 | Sullam et al. | Sep 2011 | B2 |
8042093 | Ogami | Oct 2011 | B1 |
8176296 | Snyder | May 2012 | B2 |
8179161 | Williams et al. | May 2012 | B1 |
8358150 | Snyder et al. | Jan 2013 | B1 |
8487655 | Kutz et al. | Jul 2013 | B1 |
8555032 | Snyder | Oct 2013 | B2 |
8558578 | Williams et al. | Oct 2013 | B1 |
8736303 | Snyder et al. | May 2014 | B2 |
9143134 | Kutz et al. | Sep 2015 | B1 |
20010002129 | Zimmerman et al. | May 2001 | A1 |
20010010083 | Satoh | Jul 2001 | A1 |
20010038392 | Humpleman et al. | Nov 2001 | A1 |
20010043081 | Rees | Nov 2001 | A1 |
20010044927 | Kamiewicz | Nov 2001 | A1 |
20010045861 | Bloodworth et al. | Nov 2001 | A1 |
20010047509 | Mason et al. | Nov 2001 | A1 |
20020007467 | Ma et al. | Jan 2002 | A1 |
20020010716 | Mccartney et al. | Jan 2002 | A1 |
20020016706 | Cooke et al. | Feb 2002 | A1 |
20020023110 | Fortin et al. | Feb 2002 | A1 |
20020033803 | Holzrichter et al. | Mar 2002 | A1 |
20020042696 | Garcia et al. | Apr 2002 | A1 |
20020052729 | Kyung et al. | May 2002 | A1 |
20020059543 | Cheng et al. | May 2002 | A1 |
20020063688 | Shaw et al. | May 2002 | A1 |
20020065646 | Waldie et al. | May 2002 | A1 |
20020068989 | Ebisawa et al. | Jun 2002 | A1 |
20020073119 | Richard | Jun 2002 | A1 |
20020073380 | Cooke | Jun 2002 | A1 |
20020080186 | Frederiksen | Jun 2002 | A1 |
20020085020 | Carroll | Jul 2002 | A1 |
20020091739 | Ferlitsch et al. | Jul 2002 | A1 |
20020099863 | Comeau et al. | Jul 2002 | A1 |
20020108006 | Snyder | Aug 2002 | A1 |
20020109722 | Rogers et al. | Aug 2002 | A1 |
20020116168 | Kim | Aug 2002 | A1 |
20020121679 | Bazarjani et al. | Sep 2002 | A1 |
20020122060 | Markel | Sep 2002 | A1 |
20020129334 | Dane et al. | Sep 2002 | A1 |
20020133771 | Barnett | Sep 2002 | A1 |
20020133794 | Kanapathippillai et al. | Sep 2002 | A1 |
20020138516 | Igra | Sep 2002 | A1 |
20020144099 | Muro et al. | Oct 2002 | A1 |
20020145433 | Morrise et al. | Oct 2002 | A1 |
20020152234 | Estrada et al. | Oct 2002 | A1 |
20020152449 | Lin | Oct 2002 | A1 |
20020156885 | Thakkar | Oct 2002 | A1 |
20020156929 | Hekmatpour | Oct 2002 | A1 |
20020156998 | Casselman | Oct 2002 | A1 |
20020161802 | Gabrick et al. | Oct 2002 | A1 |
20020166100 | Meding | Nov 2002 | A1 |
20020174134 | Goykhman | Nov 2002 | A1 |
20020174411 | Feng et al. | Nov 2002 | A1 |
20020188910 | Zizzo | Dec 2002 | A1 |
20020191029 | Gillespie et al. | Dec 2002 | A1 |
20030011639 | Webb | Jan 2003 | A1 |
20030014447 | White | Jan 2003 | A1 |
20030025734 | Boose et al. | Feb 2003 | A1 |
20030033588 | Alexander | Feb 2003 | A1 |
20030041235 | Meyer | Feb 2003 | A1 |
20030056071 | Triece et al. | Mar 2003 | A1 |
20030058469 | Buis et al. | Mar 2003 | A1 |
20030061409 | Rudusky | Mar 2003 | A1 |
20030061572 | McClannahan et al. | Mar 2003 | A1 |
20030062889 | Ely et al. | Apr 2003 | A1 |
20030066057 | RuDusky | Apr 2003 | A1 |
20030067919 | Qiao et al. | Apr 2003 | A1 |
20030080755 | Kobayashi | May 2003 | A1 |
20030086300 | Noyes et al. | May 2003 | A1 |
20030097640 | Abrams et al. | May 2003 | A1 |
20030105620 | Bowen | Jun 2003 | A1 |
20030126947 | Margaria | Jul 2003 | A1 |
20030135842 | Frey et al. | Jul 2003 | A1 |
20030149961 | Kawai et al. | Aug 2003 | A1 |
20030210832 | Benton | Nov 2003 | A1 |
20030229482 | Cook et al. | Dec 2003 | A1 |
20030229877 | Bersch et al. | Dec 2003 | A1 |
20040018711 | Madurawe | Jan 2004 | A1 |
20040054821 | Warren et al. | Mar 2004 | A1 |
20040141392 | Lee et al. | Jul 2004 | A1 |
20040153802 | Kudo et al. | Aug 2004 | A1 |
20040205553 | Hall et al. | Oct 2004 | A1 |
20040205617 | Light | Oct 2004 | A1 |
20040205695 | Fletcher | Oct 2004 | A1 |
20040221238 | Cifra et al. | Nov 2004 | A1 |
20050024341 | Gillespie et al. | Feb 2005 | A1 |
20050066152 | Garey | Mar 2005 | A1 |
20050143968 | Odom et al. | Jun 2005 | A9 |
20050240917 | Wu | Oct 2005 | A1 |
20050248534 | Kehlstadt | Nov 2005 | A1 |
20050280453 | Hsieh | Dec 2005 | A1 |
20060015862 | Odom et al. | Jan 2006 | A1 |
20060031768 | Shah et al. | Feb 2006 | A1 |
20060032680 | Elias et al. | Feb 2006 | A1 |
20060097991 | Hotelling et al. | May 2006 | A1 |
20060273804 | Delorme et al. | Dec 2006 | A1 |
20070139074 | Reblewski | Jun 2007 | A1 |
20070214389 | Severson et al. | Sep 2007 | A1 |
20070258458 | Kapoor | Nov 2007 | A1 |
20080086668 | Jefferson et al. | Apr 2008 | A1 |
20080095213 | Lin et al. | Apr 2008 | A1 |
20080158165 | Geaghan et al. | Jul 2008 | A1 |
20080186052 | Needham et al. | Aug 2008 | A1 |
20080259998 | Venkataraman et al. | Oct 2008 | A1 |
20080294806 | Swindle et al. | Nov 2008 | A1 |
20090066427 | Brennan | Mar 2009 | A1 |
20090322305 | De | Dec 2009 | A1 |
20120086471 | Snyder et al. | Apr 2012 | A1 |
Number | Date | Country |
---|---|---|
19710829 | Sep 1998 | DE |
19742577 | Nov 1998 | DE |
0308503 | Mar 1989 | EP |
0308583 | Mar 1989 | EP |
368398 | May 1990 | EP |
0369816 | May 1990 | EP |
0450863 | Oct 1991 | EP |
0499383 | Aug 1992 | EP |
0499383 | Aug 1992 | EP |
0639816 | Feb 1995 | EP |
0871223 | Oct 1998 | EP |
1170671 | Jan 2002 | EP |
1191423 | Mar 2002 | EP |
1205848 | May 2002 | EP |
1713252 | Oct 2006 | EP |
405055842 | Mar 1993 | JP |
06021732 | Jan 1994 | JP |
404095408 | Mar 2002 | JP |
4083405 | Apr 2008 | JP |
197907 | Feb 2004 | TW |
9532478 | Nov 1995 | WO |
9532478 | Nov 1995 | WO |
9532481 | Nov 1995 | WO |
9617305 | Jun 1996 | WO |
9834376 | Aug 1998 | WO |
9909712 | Feb 1999 | WO |
Entry |
---|
U.S. Appl. No. 11/322,044, filed Dec. 28, 2005, Stiff, Jonathon. |
“An Analog PPL-Based Clock and Data Recovery Circuit with High Input Jitter Tolerance;” Sun, Reprinted from IEEE Journal of Solid-State Circuits, 1989; 4 pages. |
“Electronic Circuit Protector-Circuit Breaker;” IBM Technical Disclosure Bulletin; vol. 36, Issue 8, Aug. 1, 1993; 1 page. |
“PSoC Designer: Integrated Development Environment User Guide”; Jul. 17, 2001; Cypress MicroSystems; Revision 1.11; all pages. |
“PSoC designer: Integrated development environment, getting started 25-minute tutorial, version 1.0,” Cypress Microsystems., Cypress Microsystems, Inc. CMS10006A, Jul. 3, 2001; 25 pages. |
“PSoC technology complete changes 8-bit MCU system design”, Cypress Microsystems, Inc. retrieved from <http>://www.archive.org/web/20010219005250/http://cypressmicro.com-/t . . . >, Feb. 19, 2001; 21 pages. |
Andrews, “Roadmap for Extending IEEE 1149.1 for Hierarchical Control of Locally-Stored, Standardized command Set, Test Programs,” IEEE, 1994; 7 pages. |
U.S. Appl. No. 09/924,734: “Programmable Microcontroller (PSoC) Architecture (Mixed Analog/ Digital)”; Snyder et al., filed Aug. 7, 2001; 28 pages. |
U.S. Appl. No. 09/998,848: “Design System Providing Automatic Source Code Generation for Personalization and Parameterization of User Modules” Kenneth Y. Ogami et al., filed Nov. 15, 2001; 49 pages. |
U.S. Appl. No. 11/799,439: Programmable Microcontroller Architecture(Mixed Analog/Digital) Warren Snyder et al., filed Apr. 30, 2007; 33 pages. |
U.S. Appl. No. 12/902,137: “Programmable Microcontroller Architecture(Mixed Analog/Digital),” Warren Snyder, filed Oct. 11, 2010; 33 pages. |
U.S. Appl. No. 13/169,656: “Microcontroller Programmable System on a Chip,” Warren Snyder et. al., Filed Jun. 27, 2011; 130 pages. |
U.S. Appl. No. 13/328,385: “PSOC Architecture” Warren Snyder et al., filed Dec. 16, 2011; 19 pages. |
U.S. Appl. No. 14/283,888: “PSOC Architecture,” Warren S. Snyder et al., filed May 21, 2014; 19 pages. |
Ashok Bindra, “Programmable SoC Delivers A New Level of System Flexibility”; Electronic Design; Nov. 6, 2000; 11 pages. |
Atmel Corporation: AT90SC Summary: “Secure Microcontrollers for Smart Cards,” Oct. 1999; 7 pages. |
Azim et al., “A Custom DSP Chip to Implement a Robot Motion Controller Proceedings of the IEEE Custom Integrated Circuits Conference,” May 1988, pp. 8.7.1-8.7.5; 6 pages. |
Catthoor et al., “Architectural Strategies for an transactions on Acoustics, Speech, and Signal Application-Specific Synchronous Multiprocessor Environment,” IEEE Processing; vol. 36, No. 2, Feb. 1988, pp. 265-284; 20 pages. |
Ching et al., “An In-Curcuit-Emulator for TMS320C25,” IEEE, 1994, pp. 51-56; 6 pages. |
Cypress MicroSystem, Inc. “Cypress Customer Forums” retrieved from <http://www.cypress.com/forums/messageview/>; Nov. 30, 2004; 1 page. |
Cypress MicroSystem, Inc. “PsoC Designer: Integrated Development Environment User Guide”; Rev. 1.18; Sep. 8, 2003; 193 pages. |
Cypress MicroSystems, Inc. “Cypress MicroSystems Unveils Programmable System-On-A-Chip for Embedded Internet, Communications, and Consumer Systems” Nov. 13, 2000; 3 pages. |
Dahl et al., “Emulation of the Sparcle Microprocessor with the MIT Virtual Wires Emulation System,” 1994, IEEE, pp. 14-22; 9 pages. |
Dirk Killat, “A One-Chip Solution for Electronic Ballasts in Fluorescent Lamps,” Power Electronics, http://powerelectronics.com/mag/power_onechip_solution_electronic/, dated Mar. 1, 2004, accessed Sep. 13, 2005; 4 pages. |
Durham et al., “Circuit Architectures for High Linearity Monolithic Continuous-Time Filtering,” IEEE, 1992; 7 pages. |
Durham et al., “High-Linearity Conitnuous-Time Filter in 5-V VLSI CMOS,” IEEE, 1992; 8 pages. |
Durham et al., “Integrated Continuous-Time Balanced Filters for 16-bit DSP Interfaces,” IEEE, 1993; 6 pages. |
Duvvuru et al., “Evaluation of a Branch Target Address Cache,” 1995, IEEE, pp. 173-180; 8 pages. |
Ebeling et al., “Validating VLSI Circuit Layout by Wirelist Comparison,” Sep. 1983, In the Proceedings of the IEEE International Conference on Computer Aided Design (ICCAD-83), pp. 172-173; 2 pages. |
Ebling, “Gemini II: A Second Generation Layout Validation Program;” 1988; in proceedings of the IEEE International Conference on Computer Aided Design (ICCAD-88); 4 pages. |
Fasang. P.P. et al., Design for Testability for Mixed Analog/Digital ASICs, 1988, IEEE. 4 pages. |
Frank Goodenough, “Analog Counterparts of FPGAS Ease System Design,” Electronic Design, Penton Publishing, Cleveland, OH, Oct. 14, 1994, vol. 42, No. 21, pp. 63-66, 68; 10 pages. |
Fred Eady, “PSoC 101,” Circuit Cellar, Aug. 2004, accessed Sep. 13, 2005, http://www.circuitcellar.com/library/print/0804/eady169/2.htm; 4 pages. |
Haberl et al., “Self Testable Boards with Standard IEEE 1149.5 Module Test and Maintenance (MTM) Bus Interface,” IEEE, 1994; 6 pages. |
Hamblen, “Rapid Prototyping Using Field-Programmable Logic Devices” Jun. 2000, IEEE; 9 pages. |
Hintz et al., “Microcontrollers,” 1992, McGraw-Hill, pp. 29-37; 11 pages. |
John Mangino, “Using DMA with High Performance Peripherals to Maximize System Performance,” 2007, Texas Instruments, pp. 1-23; 23 pages. |
Karayiannis et al., “Using XML for Representation and Visualization of Elaborated VHDL-AMS Models,” Oct. 2000, IEEE, VHDL International Users Forum Fall Workshop, Proceedings, pp. 83-87. |
Khan et al.; “FPGA Architectures for Asic Hardware Emulators”; IEEE 1993, pp. 336-340; 5 pages. |
M. Mooris Mano, “Computer System Architecture,” 1982, Prentice-Hall, 2nd Edition, pp. 261-264 and 435-440; 14 pages. |
Miguel, “Implementation of a Universal Boot Monitor for an ARM-Based System,” May 2005, TU Berlin, Germany, Thesis, Chapter 4: pp. 53-100. |
Milor, Linda S., A Tutorial Introduction to Research on Analog and Mixed-Signal Circuit Testing., 1998, IEEE, 19 pages. |
Ohlrich et al., “Sub-Gemini: Identifying Subcircuits using a Fast Subgraph Isomorphism Algorithm;” Jun. 1993; in proceedings of the 30th IEEE/ACM Design Automation Conference; 7 pages. |
Pastermak et al.; “In-Circuit-Emulation in ASIC Architecture Core Designs,” IEEE, 1989, pp. P6-4.1-P6-4.4; 4 pages. |
Robert A. Blauschild, “WP 3.5: An Integrated Time Reference,” ISSCC94/Session 3, Analog Techniques/Paper WP 15, Feb. 1994, pp. 56-58; 4 pages. |
Robinson, Gordon D., “Why 1149.1 (JTAG) Really Works”, May 1994, Conference Proceedings Electro/94 International, May 10-12, 1994, Combined Volumes, pp. 749-754; 6 pages. |
Sedra, Adel S. et al., “Microelectronic Circuits,” 3rd Edition, Oxford University Press, pp. xiii-xx and 861-883, 1991; 20 pages. |
Stephen Walters, “Computer-Aided Prototyping for ASIC-Based Systems,” 1991, IEEE Design & Test of Computers, vol. 8, Issue 2, pp. 4-10; 8 pages. |
Texas Instruments, “TXS320C6000 Optimizing Compiler User's Guide,” Apr. 2001, Texas Instruments, Chapter 1: pp. 1-7 and Chapter 2: pp. 1-44. |
USPTO Advisory Action for U.S. Appl. No. 09/998,848 dated Feb. 24, 2010; 3 pages. |
USPTO Advisory Action for U.S. Appl. No. 09/998,848 dated Sep. 7, 2005; 3 pages. |
USPTO Advisory Action for U.S. Appl. No. 11/799,439 dated Mar. 20, 2009; 3 pages. |
USPTO Advisory Action for U.S. Appl. No. 13/211,329 dated Jan. 15, 2015; 2 pages. |
USPTO Advisory Action for U.S. Appl. No. 13/211,329 dated May 1, 2014; 2 pages. |
USPTO Advisory Action for U.S. Appl. No. 13/211,329 dated Aug. 8, 2016; 2 pages. |
USPTO Advisory Action for U.S. Appl. No. 13/211,329 dated Oct. 29, 2015; 3 pages. |
U.S. Appl. No. 10/033,027: “Microcontrollable Programmable System on a Chip,” Warren Snyder, filed Oct. 22, 2001; 117 pages. |
U.S. Appl. No. 10/803,030: “Programmable Microcontroller Architecture (Mixed Analog/Digital)”, Snyder et al., filed Mar. 16, 2004; 13 pages. |
USPTO Final Rejection for U.S. Appl. No. 09/998,848 dated Jun. 14, 2005; 17 pages. |
USPTO Final Rejection for U.S. Appl. No. 09/998,848 dated Jul. 25, 2006; 16 pages. |
USPTO Final Rejection for U.S. Appl. No. 09/998,848 dated Aug. 10, 2007; 14 pages. |
USPTO Final Rejection for U.S. Appl. No. 09/998,848 dated Nov. 24, 2008; 15 pages. |
USPTO Final Rejection for U.S. Appl. No. 09/998,848 dated Dec. 10, 2009; 16 pages. |
USPTO Final Rejection for U.S. Appl. No. 10/033,027 dated Jun. 8, 2007; 8 pages. |
USPTO Final Rejection for U.S. Appl. No. 10/033,027 dated Aug. 9, 2006; 6 pages. |
USPTO Final Rejection for U.S. Appl. No. 10/033,027 dated Oct. 31, 2005; 24 pages. |
USPTO Final Rejection for U.S. Appl. No. 11/799,439 dated Dec. 18, 2008; 6 pages. |
USPTO Final Rejection for U.S. Appl. No. 11/818,005 dated May 24, 2010; 8 pages. |
USPTO Final Rejection for U.S. Appl. No. 13/211,329 dated Feb. 11, 2014; 11 pages. |
USPTO Final Rejection for U.S. Appl. No. 13/211,329 dated May 19, 2016; 11 pages. |
USPTO Final Rejection for U.S. Appl. No. 13/211,329 dated Jun. 28, 2017; 15 pages. |
USPTO Final Rejection for U.S. Appl. No. 13/211,329 dated Aug. 13, 2015; 11 pages. |
USPTO Final Rejection for U.S. Appl. No. 13/211/329 dated Oct. 27, 2014; 11 pages. |
USPTO Final Rejection for U.S. Appl. No. 13/328,385 dated Jul. 2, 2013; 5 pages. |
Non Final Rejection for U.S. Appl. No. 10/033,027 dated Apr. 20, 2005; 20 pages. |
Non Final Rejection for U.S. Appl. No. 10/033,027 dated Oct. 18, 2004; 17 pages. |
Non Final Rejection for U.S. Appl. No. 13/328,385 dated Apr. 2, 2013; 8 pages. |
Non Final Rejection for U.S. Appl. No. 09/924,734 dated May 8, 2002; 6 pages. |
Non Final Rejection for U.S. Appl. No. 09/924,734 dated Jun. 11, 2003; 7 pages. |
Non Final Rejection for U.S. Appl. No. 09/998,848 dated Jan. 26, 2006; 17 pages. |
Non Final Rejection for U.S. Appl. No. 09/998,848 dated Jan. 29, 2007; 13 pages. |
USPTO Non Final Rejection for U.S. Appl. No. 09/998,848 dated Feb. 22, 2008; 15 pages. |
USPTO Non Final Rejection for U.S. Appl. No. 09/998,848 dated May 12, 2009; 16 pages. |
USPTO Non Final Rejection for U.S. Appl. No. 09/998,848 dated Jun. 21, 2010; 15 pages. |
USPTO Non Final Rejection for U.S. Appl. No. 09/998,848 dated Dec. 21, 2004; 14 pages. |
USPTO Non Final Rejection for U.S. Appl. No. 10/033,027 dated Mar. 15, 2011; 6 pages. |
USPTO Non Final Rejection for U.S. Appl. No. 10/033,027 dated Apr. 26, 2006; 26 pages. |
USPTO Non Final Rejection for U.S. Appl. No. 10/033,027 dated Dec. 18, 2008; 5 pages. |
USPTO Non Final Rejection for U.S. Appl. No. 10/033,027 dated Dec. 21, 2006; 31 pages. |
USPTO Non Final Rejection for U.S. Appl. No. 10/803,030 dated Jun. 8, 2005; 4 pages. |
USPTO Non Final Rejection for U.S. Appl. No. 11/799,439 dated May 29, 2008; 8 pages. |
USPTO Non Final Rejection for U.S. Appl. No. 11/799,439 dated Nov. 2, 2007; 7 pages. |
USPTO Non-Final Rejection for U.S. Appl. No. 12/902,137 dated Mar. 11, 2011; 9 pages. |
USPTO Non-Final Rejection for U.S. Appl. No. 13/169,656 dated Sep. 13, 2012; 11 pages. |
USPTO Non-Final Rejection for U.S. Appl. No. 13/211,329 dated Jan. 14, 2016; 10 pages. |
USPTO Non-Final Rejection for U.S. Appl. No. 13/211,329 dated Feb. 24, 2017; 13 pages. |
USPTO Non-Final Rejection for U.S. Appl. No. 13/211,329 dated Mar. 26, 2015; 10 pages. |
USPTO Non-Final Rejection for U.S. Appl. No. 13/211,329 dated Jun. 19, 2014; 12 pages. |
USPTO Non-Final Rejection for U.S. Appl. No. 13/211,329 dated Oct. 5, 2016; 13 pages. |
USPTO Non-Final Rejection for U.S. Appl. No. 13/211,329 dated Oct. 7, 2013; 7 pages. |
USPTO Non-Final Rejection for U.S. Appl. No. 14/283,888 dated Aug. 10, 2016; 7 pages. |
USPTO Non-Final Rejection for U.S. Appl. No. 14/976,580 dated May 16, 2016; 6 pages. |
USPTO Notice of Allowance for U.S. Appl. No. 09/924,734 dated Jan. 31, 2003; 6 pages. |
USPTO Notice of Allowance for U.S. Appl. No. 09/924,734 dated Feb. 5, 2003; 4 pages. |
USPTO Notice of Allowance for U.S. Appl. No. 09/924,734 dated Nov. 17, 2003; 6 pages. |
USPTO Notice of Allowance for U.S. Appl. No. 09/998,848 dated Feb. 17, 2011; 7 pages. |
USPTO Notice of Allowance for U.S. Appl. No. 09/998,848 dated Jun. 10, 2011; 8 pages. |
USPTO Notice of Allowance for U.S. Appl. No. 09/998,848 dated Oct. 13, 2010; 4 pages. |
USPTO Notice of Allowance for U.S. Appl. No. 10/033,027 dated Mar. 31, 2009; 7 pages. |
USPTO Notice of Allowance for U.S. Appl. No. 10/033,027 dated Jun. 29, 2010; 4 pages. |
USPTO Notice of Allowance for U.S. Appl. No. 10/033,027 dated Aug. 18, 2011; 5 pages. |
USPTO Notice of Allowance for U.S. Appl. No. 10/033,027 dated Oct. 15, 2010; 4 pages. |
USPTO Notice of Allowance for U.S. Appl. No. 10/033,027 dated Dec. 13, 2011; 5 pages. |
USPTO Notice of Allowance for U.S. Appl. No. 10/033,027 dated Feb. 18, 2010; 4 pages. |
USPTO Notice of Allowance for U.S. Appl. No. 10/033,027 dated Sep. 2, 2009; 4 pages. |
USPTO Notice of Allowance for U.S. Appl. No. 10/803,030 dated Jan. 08, 2007; 6 pages. |
USPTO Notice of Allowance for U.S. Appl. No. 11/799,439 dated Feb. 5, 2010; 4 pages. |
USPTO Notice of Allowance for U.S. Appl. No. 11/799,439 dated Jun. 1, 2010; 4 pages. |
USPTO Notice of Allowance for U.S. Appl. No. 11/799,439 dated Jun. 25, 2009; 6 pages. |
USPTO Notice of Allowance for U.S. Appl. No. 11/799,439 dated Sep. 13, 2010; 4 pages. |
USPTO Notice of Allowance for U.S. Appl. No. 11/799,439 dated Oct. 13, 2009; 4 pages. |
USPTO Notice of Allowance for U.S. Appl. No. 12/902,137 dated Feb. 27, 2012; 5 pages. |
USPTO Notice of Allowance for U.S. Appl. No. 12/902,137 dated Mar. 30, 2012; 5 pages. |
USPTO Notice of Allowance for U.S. Appl. No. 12/902,137 dated Jun. 8, 2012; 5 pages. |
USPTO Notice of Allowance for U.S. Appl. No. 12/902,137 dated Aug. 5, 2011; 7 pages. |
USPTO Notice of Allowance for U.S. Appl. No. 12/902,137 dated Aug. 8, 2012; 7 pages. |
USPTO Notice of Allowance for U.S. Appl. No. 12/902,137 dated Sep. 19, 2012; 6 pages. |
USPTO Notice of Allowance for U.S. Appl. No. 12/902,137 dated Oct. 26, 2012; 5 pages. |
USPTO Notice of Allowance for U.S. Appl. No. 12/902,137 dated Dec. 7, 2011; 5 pages. |
USPTO Notice of Allowance for U.S. Appl. No. 13/169,656 dated Jan. 17, 2013; 7 pages. |
USPTO Notice of Allowance for U.S. Appl. No. 13/169,656 dated Mar. 25, 2013; 6 pages. |
USPTO Notice of Allowance for U.S. Appl. No. 13/169,656 dated Jul. 9, 2013; 9 pages. |
USPTO Notice of Allowance for U.S. Appl. No. 13/328,385 dated Jan. 17, 2014; 5 pages. |
USPTO Notice of Allowance for U.S. Appl. No. 13/328,385 dated Sep. 23, 2013; 8 pages. |
USPTO Notice of Allowance for U.S. Appl. No. 13/328,385 dated Nov. 18, 2013; 7 pages. |
USPTO Notice of Allowance for U.S. Appl. No. 13/966,028 dated Jun. 17, 2015; 9 pages. |
USPTO Notice of Allowance for U.S. Appl. No. 14/283,888 dated Jan. 6, 2016; 6 pages. |
USPTO Notice of Allowance for U.S. Appl. No. 14/283,888 dated Mar. 14, 2017; 5 pages. |
USPTO Notice of Allowance for U.S. Appl. No. 14/283,888 dated Apr. 18, 2016; 6 pages. |
USPTO Notice of Allowance for U.S. Appl. No. 14/283,888 dated May 7, 2015; 9 pages. |
USPTO Notice of Allowance for U.S. Appl. No. 14/283,888 dated Jun. 28, 2017; 5 pages. |
USPTO Notice of Allowance for U.S. Appl. No. 14/283,888 dated Sep. 10, 2015; 6 pages. |
USPTO Notice of Allowance for U.S. Appl. No. 14/283,888 dated Nov. 16, 2016; 8 pages. |
USPTO Notice of Allowance for U.S. Appl. No. 14/866,439 dated Jan. 23, 2017; 8 pages. |
USPTO Notice of Allowance for U.S. Appl. No. 14/866,439 dated Jun. 1, 2017; 5 pages. |
USPTO Notice of Allowance for U.S. Appl. No. 14/976,580 dated Mar. 15, 2017; 5 pages. |
USPTO Notice of Allowance for U.S. Appl. No. 14/976,580 dated Jun. 27, 2017; 5 pages. |
USPTO Notice of Allowance for U.S. Appl. No. 14/976,580 dated Aug. 17, 2016; 8 pages. |
USPTO Notice of Allowance for U.S. Appl. No. 14/976,580 dated Nov. 30, 2016; 5 pages. |
Xerox, “Mesa Debugger Documentation,” Apr. 1979; Xerox Systems Development Department; Version 5.0, pp. 1-30; 33 pages. |
Yahoo Answers:, “What is the meaning of cascade connection in electrical engineering?” retrieved on Aug. 7, 2015 from https://answers.yahoo.com/question/index?, 1 page. |
USPTO Advisory Action for U.S. Appl. No. 13/211,329 dated Sep. 14, 2017; 2 pages. |
USPTO Non-Final Rejection for U.S. Appl. No. 15/453,492 dated Sep. 22, 2017; 12 pages. |
USPTO Notice of Allowance for U.S. Appl. No. 14/976,580 dated Oct. 27, 2017; 4 pages. |
USPTO Non Final Rejection for U.S. Appl. No. 13/211,329 dated Dec. 19, 2017; 12 pages. |
USPTO Final Rejection for U.S. Appl. No. 13/211,329 dated May 9, 2018; 16 pages. |
USPTO Final Rejection for U.S. Appl. No. 15/453,492 dated Apr. 10, 2018; 11 pages. |
European Patent Office examination report for International Application 01125564.3 dated May 18, 2018; 12 pages. |
USPTO Advisory Action for U.S. Appl. No. 13/211,329 dated Aug. 6, 2018; 4 pages. |
USPTO Non Final Rejection for U.S. Appl. No. 15/453,492 dated Aug. 23, 2018; 6 pages. |
Number | Date | Country | |
---|---|---|---|
20170185558 A1 | Jun 2017 | US |
Number | Date | Country | |
---|---|---|---|
60243708 | Oct 2000 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15453492 | Mar 2017 | US |
Child | 15455393 | US | |
Parent | 14866439 | Sep 2015 | US |
Child | 15453492 | US | |
Parent | 13966028 | Aug 2013 | US |
Child | 14866439 | US | |
Parent | 13169656 | Jun 2011 | US |
Child | 13966028 | US | |
Parent | 10033027 | Oct 2001 | US |
Child | 13169656 | US |