This invention provides a treatment tool and tissue collection system for remove of outer layers of skin to provide a revitalized, fresh skin surface. This objective is to remove dead and old skin cells without damaging the remaining skin surface and without the use of powdered abrasive materials because these materials may result in undesirable side effects.
Dermabrasion, also referred to as microdermabrasion, is a process for removal of dead cells from the outermost layer of the skin, referred to as the epidermis, clean out blocked pores, and enhance skin tone. Additionally, the margins of acne scars and other traumatic scars can be erased and aging spots and sun damaged skin can be polish off. Still further, charred tissue, following a burn injury must be removed to enhance healing of the underlying tissue. This must be accomplished without injuring the lower two layers, namely, the dermis and the subcutaneous layer or lower dermis. Typically, the skin surface is treated a minimum of 5 times spaced 7 to 10 days apart. This is then followed by periodic maintenance sessions. The benefits are:
Use of abrasion techniques can be traced back to the ancient Egyptians who used alabaster and pumice to remove blemishes and rough spots and to make the skin smooth and soft. More recently, abrasive tipped devices or rotating brushes and cylinders coated with abrasive particles, such as diamond dust, have been used to remove skin layers (U.S. Pat. No. 2,712,823; U.S. Pat. No. 2,867,214; U.S. Pat. No. 2,881,763; U.S. Pat. No. 2,921,585). U.S. Pat. No. 5,800,446 describes a stick, glove finger tip or glove palm coated with an abrasive material which is rubbed over the skin surface to provide a polishing action. U.S. Pat. No. 3,964,212 directed to a pneumatic grinding machine for flat surfaces, incorporates a rotating grinding tool enclosed in a housing with air flowing over the surface to collect dust created by the grinding operation. U.S. Pat. No. 4,378,804 is directed to a skin abrasion device which uses flowing water to rotate an abrasive brush and create a vacuum to remove loosened skin particles. The rotating brush is usually used in conjunction with a liquid detergent or medicinal compound applied to the skin surface being scrubbed. Chemicals, ultrasonic oscillating tips (U.S. Pat. No. 5,012,797) and lasers have also been used for a more aggressive abrasion. U.S. Pat. No. 5,037,431 describes the use of a pressurized jet of a liquid, such as water or sterile saline, to fragment and remove diseased tissue without harming surrounding healthy tissue. This device operates in conjunction with vacuum aspiration to remove the liquid and fragmented tissue.
The present trend is to abrade the skin surface using powdered aluminum oxide or a liquid topical composition containing suspended aluminum oxide (U.S. Pat. No. 4,957,747). U.S. Pat. No. 5,037,432 provides for the pressurized delivery, using compressed air, of a powdered, abrasive substance and the removal of the abrasive substance and loosened skin tissue using a vacuum. The abrasive substance is typically microcrystals of quartz, metal, or aluminum oxide. The powdered abrasive is blown through a wand which has a hole in the skin contact end to provide access of the abrasive to the skin surface being treated. An alternative is to cause the aluminum oxide powders to flow by applying a vacuum to the exhaust side of a container holding the abrasive powder and entraining the powder in a flowing gas stream. The powder is then drawn by the vacuum through a treatment tool, across the skin surface to abrade or rub off the epidermis and then recovered along with the skin particles in a collection chamber (U.S. Pat. No. 5,100,412; U.S. Pat. No. 5,207,234; U.S. Pat. No. 5,810,842). This process is similar to “bead-blasting”. A potential disadvantage of all of these techniques is that particles can be lodged in the skin and a substantial amount of aluminum oxide and cells, which have to be properly disposed of, may be left behind on or in the skin.
While no toxic effects have been shown from aluminum oxide left on or in the skin, this material has been shown to cause inflammatory changes to the lungs in workers who have inhaled aluminum oxide. ( Schwarz, Y, et al., “Evaluation of Workers Exposed to Dust Containing Hard Metals and Aluminum Oxide” Am J of Ind Med, 34(20; 177-82) 1999 Aug.). Also, the eyes must be protected from the highly abrasive dust, which can injure the cornea. Therefore, it is recommended that workers using these devices wear breathing masks and glasses to provide protection from ophthalmic and respiratory damage. Similar protection is suggested for patients being treated. It is also possible that particles of the abrasive material can be left imbedded in the skin surface resulting in long term irritation and provide a situs for bacterial infections.
The device for microdermabrasion comprises a hollow tube with and abrasive material permanent attached to a skin contacting end. The abrasive coated tip is moved over the skin surface while a vacuum is applied through the tube to the skin surface to remove cells abraded from the skin surface. The vacuum also causes the skin to be held in intimate contact with the abrasive tip during the treatment procedure.
The invention provides the capability to perform microdermabrasion without the potential health risks or hazards of using a flowing, powdered metallic substance such as aluminum oxide. This is generally accomplished by the use of a tube having a treatment tip with an abrasive material permanently attached thereto. The term “tube” or “tubular” used herein refers to an elongated hollow structure of any cross section, which includes, but is not limited to, a round, oval, square or rectangle cross section. The abrasive coated end piece, which may also have various different shaped cross sections, may be secured to the treatment tip or be removable and interchangeable. The abrasive tip is rubbed over the skin surface being treated. The tube and related instrumentation also provides a vacuum collection and an optional filter system for collection of the skin cells removed by the procedure, the skin cells being aspirated through a hole or holes in the central portion of the abrasive tip. The vacuum also aids in making an intimate contact between the skin and the abrasive coated tip.
A lower hollow extension 34 extending from the filter assembly 18 fits into a matching hole on the main housing. 10. The filter assembly 18 is easily removable so that it can be replaced after each patient and disposed of. The filtration pad 28 inside the filter housing 18 catches the debris but allows air to easily flow through the pad. The lower hollow extension 34 allows air pulled through the filter assembly 18 to be drawn into the vacuum pump 24.
Referring to
The dimensions and materials used to construct the wand assembly 20 are not critical. However, a preferred treatment tip 22 is formed from a 12 mm OD stainless steel tube with a 6 mm ID and a diamond coated end. The stainless steel/diamond tool can be steam or chemical sterilized between uses without damage. A first alternative would be to have a single use or single patient tube, which is made of plastic, the end being coated with aluminum oxide, or similar abrasive materials. The abrasive can also be adhered with an adhesive. A further alternative would be a tube, which could be stainless steel, plastic or other stiff tubular material, with a suitable removable and replaceable tip or a tip with an abrasive end surface formed by a machining process.
The end of the tube can also be made abrasive by machining the surface as shown in
Besides providing different means of abrasion on the end of the treatment tip 22, the contour or shape of the tip can be varied.
The device uses a vacuum pump 24 which generates a constant level of vacuum, which is controlled (lessened) by the venting of air into the system by the valve 16 mounted in the housing 10. As an alternative, the full vacuum can be applied to the wand assembly 20. The level of vacuum can then be decreased by air vented into the system through vent hole 50 by adjusting flow control valve 52 mounted on the wand 22 or treatment tube 20, as shown in
While the treatment tube can be used alone to abrade the skin and the vacuum system can be configured to primarily pick up the loosened skin cells, it has been found that applying the vacuum through the hole 38 in the end of the treatment tip 40 provides an unexpected advantage. The skin being treated is pulled against the abrasive tip, thus increasing the effectiveness of the tissue abrasion and removal process. Sealing off ambient air raises the level of vacuum and makes the abrasion more aggressive. The concave tip as shown in
As a further variation, the treatment tip 22 can have an enlarged abrasive coated end 56, 58 which is flat and slopped or sloped and concave such as shown in
To use devices embodying the invention the vacuum is applied, through the treatment tool, to the area of the skin to be treated while the abrasive surface, which surrounds the applied vacuum, is moved over the skin surface to be treated. The abrasive tip is typically moved over the skin surface in a circular motion. However, a combination of vertical and horizontal movements of the tip, with or without the circular movements, may also be used to assure that the skin area is uniformly treated. Also, if a particular skin blemish or abnormality is to be treated. The tip motion can be restricted to that particular portion of the skin.
The further embodiment shown in
Presently, devices to remove this dead and charred tissue are called diamond fraises. Fraises are cylinders coated with diamond abrasive which are rotated with an electric motor. These are essentially high-speed, hand-held grinders. The procedure is messy even though there are guards which are suppose to reduce the spray generated. Besides the mess and potential medical risk to medical practitioners performing the abrasion, it is very difficult to uniformly remove the desired tissue.
An additional use of this embodiment is to reduce major scars. These scars can be caused by severe acne, where the skin is heavily indented, or in the case of trauma, the scar may protrude above the skin surface.
A device which can uniformly remove both the charred material resulting from bums and reduce trauma scaring is shown in
The hand piece 150 is constructed as shown in
As indicated above, the console 110 houses the vacuum pump 111, the vacuum gauge 112 and the control valve 113. The adjustable vacuum is used to provide a negative pressure between the skin surface 131 and the abrasive 130 on the rotating disc 132. The vacuum also sweeps away the debris and irrigation fluid. The fluid and debris is separated from the air by a filter in the collection system 118. Irrigation fluid, contained in a sterile reservoir 119, is supplied to the abrading surface by the tube 138.
To operate the system, the vacuum is set to a low pressure (for example 10 in-hg) and the motor speed is set to the desired speed (for example 15,000 RPM). The open end of the hand piece 150 is placed against the skin surface 131. The vacuum causes the skin to bulge slightly and be sucked into the open tip 152 of the hand piece 150, bringing it into contact with the abrasive surface. The reduced (negative) pressure also causes the irrigation fluid to flow into the hand piece, thus lubricating and cooling the surface to be abraded. The on-off button 117 is depressed starting the motor. The hand piece is then moved along the surface, abrading and removing the tissue that comes into contact with the abrasive surface. The debris flows through the vacuum tubing 139 and into the collection chamber/filter 118.
As indicated above, the abrasive surface can be provided in many ways, such as by a diamond coating, machined surface, or even a raise surface such as in a common cheese grater.
Also, the size can be varied from a large abrasive surface for burns to a pencil point abrader for small surgical scars.
While the invention has been shown and described with reference to different embodiments thereof, it will be appreciated by those skilled in the art that variations in form, detail, compositions and operation may be made without departing from the spirit and scope of the invention as defined by the accompanying claims.
For example, the vacuum does not have to be provided by a vacuum pump with controller housing but can be provided by a centrally located vacuum system such as may be available in a hospital or medical facility. However, to prevent contamination of the vacuum system the filter assembly should be provided to collect the tissue removed. The abrasive tip has been described as formed by adhering or attaching an abrasive material thereto or machining the surface of the tip to create a roughened surface. However, one skilled in the art will recognize that there are numerous chemical and mechanical processes to create a roughened surface on the end of the treatment tip sufficient for performing the process described herein.
This application is a National Stage Application filed under 35 USC §371 claiming benefit of PCT/US00/42049 filed Nov. 9, 2000, which was designated as a CIP of U.S. application Ser. No. 09/440,020 filed Nov. 12, 1999, now U.S. Pat. No. 6,241,739 issued Jun. 5, 2001.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US00/42049 | 11/9/2000 | WO | 00 | 7/3/2001 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO01/41651 | 6/14/2001 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2701559 | Cooper | Feb 1955 | A |
2712823 | Kurtin | Jul 1955 | A |
2867214 | Wilson | Jan 1959 | A |
2881763 | Robbins | Apr 1959 | A |
2921585 | Schumann | Jan 1960 | A |
3214869 | Stryker | Nov 1965 | A |
3964212 | Karden | Jun 1976 | A |
4121388 | Wilson | Oct 1978 | A |
4378804 | Cortese | Apr 1983 | A |
4646482 | Chitjian | Mar 1987 | A |
4957747 | Stiefel | Sep 1990 | A |
5012797 | Liang et al. | May 1991 | A |
5035089 | Tillman et al. | Jul 1991 | A |
5037431 | Summers et al. | Aug 1991 | A |
5037432 | Molinari | Aug 1991 | A |
5100412 | Rosso | Mar 1992 | A |
5122153 | Harrel | Jun 1992 | A |
5207234 | Rosso | May 1993 | A |
5612797 | Liang et al. | Mar 1997 | A |
5800446 | Banuchi | Sep 1998 | A |
5810842 | Di Fiore et al. | Sep 1998 | A |
5882201 | Salem | Mar 1999 | A |
5971999 | Naldoni | Oct 1999 | A |
6042552 | Cornier | Mar 2000 | A |
6299620 | Shadduck et al. | Oct 2001 | B1 |
6423078 | Bays et al. | Jul 2002 | B1 |
6629983 | Ignon | Oct 2003 | B1 |
6641591 | Shadduck | Nov 2003 | B1 |
20020107527 | Burres | Aug 2002 | A1 |
Number | Date | Country |
---|---|---|
0564392 | Oct 1993 | EP |
9800524 | Jan 1998 | FR |
WO 0067692 | Nov 2000 | WO |
Number | Date | Country | |
---|---|---|---|
Parent | 09440020 | Nov 1999 | US |
Child | 09869787 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09869787 | Jul 2001 | US |
Child | 11027590 | US |