There are situations in which a diaphragm of a microelectromechanical microphone can be subjected to sudden, large changes in air pressure. For example, the microelectromechanical microphone can fall on a hard surface during assembly into a device, such as a mobile telephone or wireless earbuds. Those sudden, large changes in air pressure can cause a substantial deformation of the diaphragm, resulting in damage to the diaphragm.
For some types of microelectromechanical microphones, overpressure valves in the diaphragm can be used to relieve some of the air pressure to which the microelectromechanical microphone is subjected. An overpressure valve can open during high-pressure load and, by relieving pressure, damage to the diaphragm can be avoided.
Unfortunately, overpressure valves can be detrimental to low frequency roll-off (LFRO) of a microelectromechanical microphone. In addition, overpressure valves can have rather slow opening times that may render them inadequate for abrupt, large changes in air pressure. Therefore, improved technologies for the reduction of damage to diaphragms in microelectromechanical microphones may be desired.
The following presents a simplified summary of one or more of the embodiments in order to provide a basic understanding of one or more of the embodiments. This summary is not an extensive overview of the embodiments described herein. It is intended to neither identify key or critical elements of the embodiments nor delineate any scope of embodiments or the claims. The sole purpose of this Summary is to present some concepts of the embodiments in a simplified form as a prelude to the more detailed description that is presented later.
In an embodiment, the disclosure provides a microelectromechanical microphone device. The microelectromechanical microphone device includes a flexible plate configured to be deformed by a pressure wave. The microelectromechanical microphone device also includes a rigid plate mechanically coupled to the flexible plate. The rigid plate defines multiple openings that permit passage of the pressure wave. The microelectromechanical microphone device further includes a stoppage member affixed to the rigid plate and extending perpendicularly relative to a surface of the rigid plate opposite a surface of the flexible plate. The stoppage member has a distal surface that is separated from the surface of the flexible plate by a clearance distance. The stoppage member limits motion of the flexible plate in response to the pressure wave including a threshold amplitude.
In another embodiment, the disclosure provides a microelectromechanical microphone device. The microelectromechanical microphone device includes a substrate defining an opening to receive a pressure wave. The microelectromechanical microphone device also includes a flexible plate mechanically coupled to the substrate and configured to be deformed by the pressure wave. The microelectromechanical microphone device further includes a stoppage member affixed to the flexible plate and extending perpendicularly relative to a surface of the flexible plate opposite a surface of the substrate. The stoppage member has a distal surface that is separated from the surface of the substrate by a clearance distance. The stoppage member limits motion of the flexible plate in response to the pressure wave including a threshold amplitude.
In yet another embodiment, the disclosure provides a device. The device includes a microelectromechanical microphone device including a substrate defining a first opening to receive a pressure wave; a flexible plate mechanically coupled to the substrate and configured to be deformed by the pressure wave; a rigid plate mechanically coupled to the flexible plate, the rigid plate defining multiple openings that permit passage of the pressure wave; and at least one stoppage member assembled in a spatial relationship with the flexible plate. The at least one stoppage member limiting motion of the flexible plate in response to the pressure wave including a threshold amplitude. The device also includes a circuit coupled to the microelectromechanical microphone device and configured to receive a first signal indicative of a capacitance representative of an amplitude of the pressure wave. The circuit is further configured to generate a second signal representative of an amplitude of the pressure wave.
Other embodiments and various examples, scenarios and implementations are described in more detail below. The following description and the drawings set forth certain illustrative embodiments of the specification. These embodiments are indicative, however, of but a few of the various ways in which the principles of the specification may be employed. Other advantages and novel features of the embodiments described will become apparent from the following detailed description of the specification when considered in conjunction with the drawings.
Embodiments of this disclosure address the issue of breakage of elements of microelectromechanical microphones when subjected to an abrupt, large change in air pressure. A microelectromechanical microphone can be subjected to substantial changes in air pressure during assembly of the microelectromechanical microphone into a device (such as a mobile telephone or a tablet computer) or during usage of the device, after assembly. In some situations, the microelectromechanical microphone can fall onto a hard surface in an assembly line. In other situations, the device containing the microelectromechanical microphone can fall. Substantial changes in air pressure can deflect a diaphragm of the microelectromechanical microphone by several or even tens of microns. Those changes can result in substantial stress in a vicinity of a suspension interface between the diaphragm and a support member within the microelectromechanical microphone. That stress can be particularly elevated in large microelectromechanical microphones with high signal-to-noise (SNR) ratio and fully suspended diaphragms. High stress may lead to the breakage of the diaphragm, with the ensuing failure of the microelectromechanical microphone.
Embodiments of this disclosure provide microelectromechanical microphones having stoppage members that limit a range of motion of diaphragms in the microelectromechanical microphones. In some embodiments, a stoppage member can be affixed to a backplate of the microelectromechanical microphone. The stoppage member can extend perpendicularly relative to a surface of the backplate opposite a surface of a diaphragm of the microelectromechanical microphone. The stoppage member can have a distal surface that is separated from the surface of the diaphragm by a clearance distance. The stoppage member can limit motion of the diaphragm in response to a pressure wave including a threshold amplitude. The threshold amplitude represents a threshold pressure (e.g., 0.1 bar, 0.5 bar, 1 bar, or 2 bar).
In other embodiments, a stoppage member can be affixed to the diaphragm of a microelectromechanical microphone. The stoppage member can extend perpendicularly relative to a surface of the diaphragm opposite a surface of a substrate of the microelectromechanical microphone. The stoppage member can have a distal surface that is separated from the surface of the substrate by a clearance distance. The stoppage member can limit motion of the diaphragm in response to a pressure wave including a threshold amplitude.
Regardless of the type of plate—diaphragm or backplate—to which a stoppage member is affixed to, the clearance distance can be uniform and can be within a range from about 10 nm to about 1 μm. Greater clearance distances can be implemented for microelectromechanical microphones that operate in rugged environments, whereas lesser clearance distances can be implemented for more fragile microelectromechanical microphones. In addition, in some embodiments, the stoppage member can be embodied in a discrete, localized structure. In other embodiments, the stoppage member can be embodied in an extended structure, such as an annular structure. Regardless of its structure, the stoppage member can have a uniform thickness within a range from about 0.5 μm to about 5.0 μm.
A stoppage member can be affixed to a plate, either a diaphragm or backplate, of a microelectromechanical microphone in numerous ways. In some cases, the stoppage member can be monolithically integrated into the plate. Further, a stoppage member can be formed from a same material as the material that constitutes the plate. In other embodiments, the stoppage member can be formed from a material that is different from the material that constitutes the plate. Simply as an illustration, the stoppage member can be formed from a dielectric material, such as silicon dioxide, aluminum oxide, silicon nitride, or aluminum nitride.
In contrast to conventional technologies, the incorporation of a stoppage member in a microelectromechanical microphone can provide fast response times to an intense pressure pulse, or train of pressure pulses, impinging on the diaphragm of the microelectromechanical microphone. Because the stoppage member can limit a range of motion of the diaphragm by structural contact with the diaphragm as the diaphragm deforms in response to a pressure pulse, a response time associated with inhibiting breakage of the diaphragm is comparable, if not the same as, the time duration of the air pressure pulse.
Further, the incorporation of a stoppage member into a microelectromechanical microphone does not alter a motion of the diaphragm responsive to acoustic waves having amplitudes corresponding to normal sound pressure intensities. Thus, the incorporation of one or several stoppage members is not detrimental to the performance of the microelectromechanical microphone.
With reference to the drawings,
In some embodiments, the opening defined by the substrate 110 can be axially symmetric about an axis 102 (denoted as z, for the sake of nomenclature). For instance, the opening can have a circular perimeter. In other embodiments, the opening can be centrosymmetric relative to a geometric center of the opening. For instance, the opening can have a square perimeter or a hexagonal perimeter.
The substrate 110 can be formed from, or can include, a semiconducting material or an electrically insulating material (silicon dioxide, aluminum oxide (such as sapphire), or aluminum nitride, for example). In some embodiments, the semiconducting material can include silicon (amorphous, polycrystalline or crystalline); germanium; a semiconductor compound formed from an element in group III and another element in group V (referred to as a III-V semiconductor); a semiconductor compound formed from an element in group II and an element in group VI (referred to as a II-VI semiconductor); or a combination of two or more of the foregoing materials. Such a combination can be embodied in an alloy or a composite. In one example, the substrate 110 can be embodied in a silicon substrate. In another example, the substrate 110 can be embodied in a GaAs substrate. In yet another example, the substrate 110 can be embodied in a sapphire substrate. In still another example, the substrate 110 can be embodied in ZnS substrate.
The microelectromechanical microphone die 100 also includes a flexible plate 120 that is mechanically coupled to the substrate 110. A dielectric member 114 mechanically couples the flexible plate 120 to the substrate 110. The dielectric member 114 can be referred to as a “bottom spacer” and extends between the substrate 110 and the flexible plate 120.
The flexible plate 120 can embody, or can constitute, a diaphragm of a microelectromechanical microphone that includes the microelectromechanical microphone die 100. In some embodiments, the flexible plate 120 can be formed from a semiconductor or an electrically conducting material (such as a doped semiconductor or a metal). For example, the flexible plate 120 can be formed from silicon (amorphous, polycrystalline or crystalline); germanium; a III-V semiconductor; a II-VI semiconductor; or a combination (such as an alloy) of two or more of the foregoing materials. As another example, the flexible plate 120 can be formed from gold, silver, platinum, titanium, other types of noble metals, aluminum, copper, tungsten, chromium, or an alloy of two or more of the foregoing metals. In other embodiments, the flexible plate 120 can be formed from a composite material containing a dielectric (e.g., silicon dioxide, aluminum oxide, silicon nitride, or similar) and a semiconductor as is disclosed herein. In yet other embodiments, the flexible plate 120 can be formed entirely from a dielectric material. In such embodiments, the dielectric material is charged and operates as an electret material.
The electromechanical microphone die 100 also includes a rigid plate 130 that is mechanically coupled to the flexible plate 120. A dielectric member 124 mechanically couples the rigid plate 130 to the flexible plate 120. The dielectric member 124 can be referred to as an “airgap spacer” and extends between the rigid plate 130 and the flexible plate 120.
The rigid plate 130 can define multiple openings that can permit passage of air that transports the pressure wave 106. More generally, such openings can permit passage of a fluid that transports the pressure wave 106. As is illustrated in
The rigid plate 130 can embody, or can constitute, a backplate of the microelectromechanical microphone that includes the microelectromechanical microphone die 100. In some embodiments, the rigid plate 130 can be formed from a semiconductor or an electrically conducting material (e.g., a doped semiconductor or a metal). For example, the rigid plate 130 can be formed from silicon (amorphous, polycrystalline, or crystalline); germanium; a semiconductor compound from group III; a III-V semiconductor; a II-VI semiconductor; or a combination (such as an alloy) of two or more of the foregoing. As another example, the rigid plate 130 can be formed from gold, silver, platinum, titanium, other types of noble metals, aluminum, copper, tungsten, chromium, or an alloy of two or more of the foregoing metals. In other embodiments, the rigid plate 130 can be formed from a composite material containing a dielectric (e.g., silicon dioxide, aluminum oxide, silicon nitride, or similar) and a semiconductor as is disclosed herein. In yet other embodiments, the rigid plate 130 can be formed entirely from a dielectric material. In such embodiments, the dielectric material is charged and operates as an electret material.
The dielectric member 124 can be formed from an electrically insulating material, e.g., amorphous silicon, silicon dioxide, aluminum oxide, silicon nitride, or similar insulators. In some embodiments, as is depicted in
In some embodiments, the rigid plate 130 and the flexible plate 120 can be formed from the same electrically conducting material, e.g., a doped semiconductor or a metal. More generally, the rigid plate 130 can be formed from the same or similar material(s) as the flexible plate 120. For example, the rigid plate 130 can be formed from amorphous silicon, polycrystalline silicon, crystalline silicon, germanium, an alloy of silicon and germanium, a III-V semiconductor, a II-VI semiconductor, a dielectric (e.g., silicon dioxide, aluminum oxide, silicon nitride, aluminum nitride, and so forth), or a combination (such as an alloy or a composite) of two or more of the foregoing materials.
The flexible plate 120 can be configured to be deformed by the pressure wave 106. Specifically, the flexible plate 120 can include a suspended section that covers the opening defined by the substrate 110. In some embodiments, the suspended section also can be axially symmetric about the axis 102. For example, the suspended section also can have a circular perimeter. The dielectric member 114 and the dielectric member 124 can serve as suspension supports about which the suspended section of the flexible plate 120 can bend in response to the pressure wave 106. As is illustrated in
The microelectromechanical microphone die 100 also includes a first stoppage member 140a that can be affixed to the flexible plate 120. The stoppage member 140a extends perpendicularly relative to a surface of the flexible plate 120, where the surface is opposite and essentially parallel to a surface of the substrate 110. The stoppage member 140a can be formed from a material that is different from the material that constitutes the flexible plate 120. For example, the material that constitutes the stoppage member 140 can be embodied in an electrically insulating material, such as silicon dioxide, aluminum oxide, silicon nitride, or aluminum nitride. In other embodiments, the stoppage member 140a can be formed from a same material as the material that constitutes the flexible plate 120.
The microelectromechanical microphone die 100 also includes a second stoppage member 140b that can be affixed to the flexible plate 120. The stoppage member 140b also extends perpendicularly relative to a surface of the flexible plate 120, where the surface is opposite and essentially parallel to a surface of the substrate 110. The stoppage member 140b can be formed from a material that is different from the material that constitutes the flexible plate 120. For example, the material that constitutes the stoppage member 140b can be embodied in an electrically insulating material, such as silicon dioxide, aluminum oxide, silicon nitride, or aluminum nitride. In other embodiments, the stoppage member 140b can be formed from a same material as the material that constitutes the flexible plate 120.
Diagram 150 in
In addition, diagram 180 in
While not shown in
Under positive pressure P(+) relative to atmospheric pressure (or the pressure of an environment in which the microelectromechanical microphone 100 operates), the flexible plate 120 can be deflected towards the rigid plate 130, in a positive direction along the axis 102. When the magnitude of P(+) is equal to or greater than the threshold pressure, the flexible plate 120 can deform the rigid plate 130 and the stoppage member 140 does not limit the range of motion of the flexible plate 120.
A stoppage member in accordance with aspects of this disclosure need not be assembled in a diaphragm of a microelectromechanical microphone in order to limit a range of motion of the diaphragm. The stoppage member also can be assembled in a backplate of the microelectromechanical microphone in order to limit the range of motion of the diaphragm.
The electromechanical microphone die 300 also includes a flexible plate 320 that is mechanically coupled to the substrate 110. The dielectric member 304 mechanically couples the flexible plate 320 to the substrate 110. As is illustrated in
The flexible plate 320 can embody, or can constitute, a diaphragm of a microelectromechanical microphone that includes the microelectromechanical microphone die 300. In some embodiments, the flexible plate 320 can be formed from a semiconductor or an electrically conducting material (such as a doped semiconductor or a metal). For example, the flexible plate 320 can be formed from silicon (amorphous, polycrystalline or crystalline); germanium; a III-V semiconductor; a II-VI semiconductor; or a combination (such as an alloy) of two or more of the foregoing materials. As another example, the flexible plate 320 can be formed from gold, silver, platinum, titanium, other types of noble metals, aluminum, copper, tungsten, chromium, or an alloy of two or more of the foregoing metals. In other embodiments, the flexible plate 320 can be formed from a composite material containing a dielectric (e.g., silicon dioxide, aluminum oxide, silicon nitride, or similar) and a semiconductor as is disclosed herein. In yet other embodiments, the flexible plate 320 can be formed entirely from a dielectric material. In such embodiments, the dielectric material is charged and operates as an electret material.
As noted, the electromechanical microphone die 300 includes the rigid plate 310 mechanically coupled to the flexible plate 320. The dielectric member 124 mechanically couples the rigid plate 310 to the flexible plate 120. The dielectric member 124 extends between the rigid plate 310 and the flexible plate 320.
The rigid plate 310 defines multiple openings that can permit passage of air that transports the pressure wave 106. As mentioned, more generally, such openings can permit passage of a fluid that transports the pressure wave 106. As is illustrated in
In some embodiments, the rigid plate 310 can be formed from a semiconductor or an electrically conducting material (e.g., a doped semiconductor or a metal). For example, the rigid plate 310 can be formed from silicon (amorphous, polycrystalline or crystalline); germanium; a semiconductor compound from group III; a III-V semiconductor; a II-VI semiconductor; or a combination (such as an alloy) of two or more of the foregoing. As another example, the rigid plate 310 can be formed from gold, silver, platinum, titanium, other types of noble metals, aluminum, copper, tungsten, chromium, or an alloy of two or more of the foregoing metals. In other embodiments, the rigid plate 310 can be formed from a composite material containing a dielectric (e.g., silicon dioxide, aluminum oxide, silicon nitride, or similar) and a semiconductor as is disclosed herein. In yet other embodiments, the movable plate 110 can be formed entirely from a dielectric material. In such embodiments, the dielectric material is charged and operates as an electret material.
In some embodiments, the rigid plate 310 and the flexible plate 320 can be formed from the same electrically conducting material, e.g., a doped semiconductor or a metal. More generally, the rigid plate 310 can be formed from the same or similar material(s) as the flexible plate 320. For example, the rigid plate 310 can be formed from amorphous silicon, polycrystalline silicon, crystalline silicon, germanium, an alloy of silicon and germanium, a III-V semiconductor, a II-VI semiconductor, a dielectric (silicon dioxide, silicon nitride, aluminum oxide, aluminum nitride, and so forth), or a combination (such as an alloy or a composite) of two or more of the foregoing materials.
The flexible plate 320 can be configured to be deformed by the pressure wave 106. Specifically, the flexible plate 320 can include a suspended section that covers the opening defined by the substrate 110. The suspended section also can be axially symmetric about the axis 102. For example, the suspended section also can have a circular perimeter. The dielectric member 304 and the dielectric member 124 can serve as suspension supports about which the suspended section of the flexible plate 320 can bend in response to the pressure wave 106. As is illustrated in
As mentioned, the microelectromechanical microphone 300 also includes the stoppage member 140a affixed to the rigid plate 310. The stoppage member 140a extends perpendicularly relative to a surface of the rigid plate 310, where the surface is opposite and essentially parallel to a surface of the flexible plate 320. The stoppage member 140a can be formed from a material that is different from the material that constitutes the rigid plate 310. For example, the material that constitutes the stoppage member 140a can be embodied in an electrically insulating material, such as silicon dioxide, aluminum oxide, silicon nitride, or aluminum nitride. In other embodiments, the stoppage member 140a can be formed from a same material as the material that constitutes the rigid plate 310.
The microelectromechanical microphone die 300 also includes the second stoppage member 140b affixed to the rigid plate 310. The stoppage member 140b also extends perpendicularly relative to a surface of the rigid plate 310, where the surface is opposite and essentially parallel to a surface of the flexible plate 320. The stoppage member 140b can be formed from a material that is different from the material that constitutes the rigid plate 310. For example, the material that constitutes the stoppage member 140b can be embodied in an electrically insulating material, such as silicon dioxide, aluminum oxide, silicon nitride, or aluminum nitride. In other embodiments, the stoppage member 140b can be formed from a same material as the material that constitutes the rigid plate 310.
Diagram 350 in
In addition, diagram 380 in
Under positive pressure P pressure that is greater than atmospheric pressure or a pressure of an environment in which a microelectromechanical microphone including the die 300 operates—the flexible plate 320 can be deflected towards the rigid plate 130, in a positive direction along the axis 102, as is shown in diagram 450. When the magnitude of P(+) is equal to or greater than the threshold pressure, such a deflection may cause the flexible plate 320 to deform the rigid plate 310. Such a deflection also can cause the stoppage member 140a to contact a surface of the flexible plate 320, as is shown in the diagram 450. By contacting the surface of the flexible plate 320, the stoppage member 140a can limit the range of motion of the flexible plate 320. As a result, although the flexible plate 320 may deform the rigid plate 130, stress in a vicinity of the interface between the suspended section of the flexible plate 320 and the dielectric member 124 can be maintained below a threshold amount that results in fracture of the flexible plate 320.
Regardless of type of plate—e.g., diaphragm or backplate—the stoppage member can be affixed to the plate in numerous ways. In one example, the stoppage member can be affixed by fusing a base of the stoppage member to a surface of the plate by means of a glue or another type of adhesive. In another example, the stoppage member can be affixed by monolithically integrating the stoppage member into the plate.
To that point,
The stoppage member 510 is embodied in an object of revolution and, thus, can have axial symmetry about an axis 504 that pierces the stoppage member 510 perpendicularly to a first planar surface 514 of the stoppage member 510. Because the stoppage member 510 is monolithically integrated into the plate 520, the stoppage member 510 has a section embedded into the plate 520. Such a section can be tapered, ending in a second planar surface 518 interfacing with a portion of the plate 520. It is noted that stoppage member 510 lack a portion with a distinct interface to the plate 520.
Similar to other stoppage members of this disclosure, a first material that forms the stoppage member 510 can be different from a second material that forms the plate 520. In some cases, the first material is a dielectric material and the second material is an electrical conductor material (such as polycrystalline silicon or a doped semiconductor). In one example, the dielectric material can be alumina, silicon nitride, or aluminum nitride
As is illustrated in
Stoppage members in accordance with aspects of this disclosure are not limited to objects of revolution. A stoppage member can have one of many shapes.
Stoppage member 710 can include a first planar surface 714 and a second planar surface 718 having respective circular perimeters. Diagram 715 presents a projection of the stoppage member 710 on a plane perpendicular to the axis 704, to illustrate the first planar surface 714 and the second planar surface 718. Stoppage member 720 can include a first planar surface 724 and a second planar surface 728 having respective circular perimeters. Diagram 725 presents a projection of the stoppage member 720 on a plane perpendicular to the axis 704, to illustrate the first planar surface 724 and the second planar surface 728. Stoppage member 730 can include a first planar surface 734 and a second planar surface 738 having respective circular perimeters. Diagram 735 presents a projection of the stoppage member 730 on a plane perpendicular to the axis 704, to illustrate the first planar surface 734 and the second planar surface 738. Diagram 745 presents a projection of the stoppage member 740 on a plane perpendicular to the axis 704, to illustrate the cross-section of the planar base 744.
Stoppage members having other cross-sections geometries also can be fabricated.
Embodiments of this disclosure are not limited to microelectromechanical microphones having a specific number of stoppage members. A microelectromechanical microphone in accordance with this disclosure can have a single stoppage member or multiple stoppage members. In embodiments in which the microelectromechanical microphone has multiple stoppage member, those members can be arranged in one of many configurations.
As an illustration,
The arrangement of the illustrated stoppage members is not exclusive. In addition, although eight stoppage members are illustrated in
It is noted that in some scenarios, a large number of stoppage members can be justified by a rugged nature of an environment in which the microphone device having stoppage members can operate. In other scenarios, however, a microelectromechanical microphone can be expected to operate in an environment in which such a device is unlikely to experience abrupt, large changes in atmospheric pressure.
In some embodiments, instead of being discrete, localized structures, a stoppage member can be extended across a plate—a diaphragm or a backplate—that constitutes a microelectromechanical microphone.
The disclosure is not limited to annular shapes. Stoppage members that are extended can have other closed-loop structures having non-circular perimeters.
At block 1220, a flexible plate mechanically coupled to the substrate can be formed. The flexible plate can be deformed by the pressure wave. The flexible plate can embody the diaphragm in the microelectromechanical microphone. The flexible plate can be formed from a semiconductor or an electrically conducting material. At block 1230, a rigid plate mechanically coupled to the flexible plate can be formed. The rigid plate defines multiple openings that permit passage of a fluid that transports the pressure wave. The rigid plate can be formed from a semiconductor or an electrically conducting material. The rigid plate can embody a backplate in the microelectromechanical microphone. In some embodiments, the rigid plate can embody the rigid plate 130 (
At block 1240, a stoppage member mechanically coupled to one of the flexible plate or the rigid plate can be formed. It is noted that, in some embodiments, block 1240 can be implemented during the implementation of block 1220 or block 1230, depending on whether the stoppage member is mechanically coupled to the flexible plate or the rigid plate. In some embodiments in which the stoppage member is mechanically coupled to the flexible plate, a pattern for the stoppage member can be defined before formation (e.g., deposition) of the flexible plate. Similarly, in some embodiments in which the stoppage member is mechanically coupled to the rigid plate, a pattern for the stoppage member can be defined before formation (e.g., deposition) of the rigid plate.
The formed stoppage member limits motion of the flexible plate in response to the pressure wave including a threshold amplitude. The stoppage member can be embodied in one of the stoppage member 140a or the stoppage member 140b (
Regardless of type of plate—e.g., flexible plate or rigid plate—the stoppage member can be affixed to the plate in numerous ways. In some embodiments, the stoppage member can be affixed by fusing a base of the stoppage member to a surface of the plate by means of a glue or another type of adhesive. In other embodiments, the stoppage member can be affixed by monolithically integrating the stoppage member into the plate. See
The microelectromechanical microphones having stoppage members in accordance with this disclosure can be packaged for operation within an electronic device (a mobile phone, a tablet computer, or a wireless earbud, for example) or other types of devices including consumer electronics and appliances, for example. As an illustration,
As is illustrated, the packaged microphone 1310 has a package base 1312 and a lid 1314 that form an interior chamber or housing that contains a microelectromechanical microphone chipset 1316. In addition, or in other embodiments, such a chamber can include a separate microphone circuit chipset 1318. The chipsets 1316 and 1318 are depicted in
As is illustrated, the lid 1314 can have an audio input port 1320 that is configured to receive audio signals (e.g., audible signals and/or ultrasonic signals) and can permit such signals to ingress into the chamber formed by the package base 1312 and the lid 1314. In additional or alternative embodiments, the audio port 1320 can be placed at another location. For example, the audio port 1312 can be placed at the package base 1312. As another example, the audio port 1312 can be placed at one of the side walls of the lid 1314. Regardless of the location of the audio port 1312, audio signals entering the interior chamber can interact with the microelectromechanical microphone chipset 1316 to produce an electrical signal representative of at least a portion of the received audio signals. With additional processing via external components (such as a speaker and accompanying circuitry), the electrical signal can produce an output audible signal corresponding to an input audible signal contained in the received audio signals.
In certain embodiments, the package base 1312 shown in
Adhesive or another type of fastening mechanism can secure or otherwise mechanically couple the microelectromechanical microphone chipset 1316 and the microphone circuit chipset 1318 to the package base 1312. Wirebonds or other type of electrical conduits can electrically connect the microelectromechanical microphone chipset 1316 and microphone circuit chipset 1318 to contact pads (not shown) on the interior of the package base 1312.
While
It is noted that the present disclosure is not limited with respect to the packaged microphone 1310 illustrated in
Various aspects of the embodiments of this disclosure are described herein with reference to flowchart illustrations and/or block diagrams of methods. The flowchart and block diagrams in the Figures illustrate the architecture, functionality, and operation of possible implementations of devices, methods, and products according to various embodiments of this disclosure. In this regard, each block in the flowchart or block diagrams can represent one or several operations for implementing the specified function(s). In some implementations, the functions noted in the blocks can occur out of the order noted in the Figures. For example, two blocks shown in succession can, in fact, be implemented substantially concurrently, or the blocks can sometimes be implemented in the reverse order.
In the present specification, the term “or” is intended to mean an inclusive “or” rather than an exclusive “or.” That is, unless specified otherwise, or clear from context, “X employs A or B” is intended to mean any of the natural inclusive permutations. That is, if X employs A; X employs B; or X employs both A and B, then “X employs A or B” is satisfied under any of the foregoing instances. Moreover, articles “a” and “an” as used in this specification and annexed drawings should generally be construed to mean “one or more” unless specified otherwise or clear from context to be directed to a singular form.
In addition, the terms “example” and “such as” are utilized herein to mean serving as an instance or illustration. Any embodiment or design described herein as an “example” or referred to in connection with a “such as” clause is not necessarily to be construed as preferred or advantageous over other embodiments or designs. Rather, use of the terms “example” or “such as” is intended to present concepts in a concrete fashion. The terms “first,” “second,” “third,” and so forth, as used in the claims and description, unless otherwise clear by context, is for clarity only and doesn't necessarily indicate or imply any order in time.
What has been described above includes examples of one or more embodiments of the disclosure. It is, of course, not possible to describe every conceivable combination of components or methodologies for purposes of describing these examples, and it can be recognized that many further combinations and permutations of the present embodiments are possible. Accordingly, the embodiments disclosed and/or claimed herein are intended to embrace all such alterations, modifications and variations that fall within the spirit and scope of the detailed description and the appended claims. Furthermore, to the extent that the term “includes” is used in either the detailed description or the claims, such term is intended to be inclusive in a manner similar to the term “comprising” as “comprising” is interpreted when employed as a transitional word in a claim.
This application claims the benefit of and priority to U.S. Provisional Application No. 63/002,021, filed Mar. 30, 2020, the content of which application is hereby incorporated by reference herein in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
20130161702 | Chen | Jun 2013 | A1 |
20160192082 | Uchida | Jun 2016 | A1 |
20160360322 | Liu | Dec 2016 | A1 |
20170013363 | Berger | Jan 2017 | A1 |
Number | Date | Country | |
---|---|---|---|
20210306727 A1 | Sep 2021 | US |
Number | Date | Country | |
---|---|---|---|
63002021 | Mar 2020 | US |