The present invention relates to microelectromechanical (MEM) safing and arming devices as may be utilized in energetic components comprising pyrotechnic and explosive materials. The present invention additionally relates to MEM devices that can function to prevent an un-intentional operation of a energetic component by blocking an explosive train and, can function to allow an intentional operation of an energetic component, by completing an explosive train.
The accompanying drawings, which are incorporated in and form part of the specification, illustrate several embodiments of the present invention and, together with the description, serve to explain the principles of the invention. The drawings provided herein are not drawn to scale.
Microelectromechanical (MEM) safing and arming (safe and arm) devices may be utilized in energetic components comprising pyrotechnic and explosive materials. MEM safing and arming devices can function to prevent an un-intentional operation of a energetic component by blocking an explosive train and, can function to allow an intentional operation of an energetic component, by completing an explosive train. Energetic components that can utilize MEM safing and arming devices can be found in air bag deployment systems, initiators for rocket propellants and boosters, munitions and pyrotechnics. The following prophetic examples serve to illustrate the methods and apparatus according to the present invention.
Microelectromechanical (MEM) fabrication technologies including surface micromachining, methods based on integrated circuit (IC) manufacturing, e.g. semiconductor device manufacture, bulk micromachining, focused ion beam (FIB) processing, LIGA (an acronym based on the first letters for the German words for lithography, electroplating and molding) and combinations thereof, can be used to form microsystems, microsensors and microactuators. These MEM fabrication technologies can provide for batch fabrication of multiple devices, that are fully assembled as-fabricated, requiring little to no post fabrication assembly. Dimensions of structures fabricated by MEM technologies can range from on the order of 0.1 μm, to on the order of a few millimeters, and include silicon, polysilicon, glass, dielectric and metallic structures that are either unsupported (i.e. free standing) or alternatively can be adhered to a substrate, or built up upon a substrate during manufacture. Substrates can comprise ceramics, glass-ceramics, low-temperature co-fireable ceramics (LTCC), quartz, glass, a printed wiring board (e.g. manufactured of polymeric materials including polytetrafluoroethylene, polyimide, epoxy, glass filled epoxy), silicon (e.g. silicon wafers) and metals. Dielectric layers for example, polymeric, silicon-oxide, silicon-nitride, glass and ceramic layers can be applied to the surface of conductive substrates (e.g. metallic and silicon substrates) to electrically isolate individual MEM structures or MEM elements within a structure. Embodiments of the present invention fabricated in MEM technologies, can comprise safe and arm devices that are highly integrated and compact, and are readily insertable into the explosive train of energetic components.
In the context of the present disclosure, MEM devices are defined to be those devices manufactured using one or more of the MEM fabrication technologies described above, and having dimensions ranging from on the order of 0.1 μm, to on the order of a few millimeters. An explosive train is defined herein as a succession of one or more initiating, igniting, detonating, and explosive (e.g. booster) charges, arranged to cause an energetic material within the explosive train, to combust, explode, and spontaneously release energy. Elements within an explosive train can include: electrically heated wires, spark gaps, bridge wires, silicon bridgewires (SCBs), reactive initiators (e.g. a layer structure of exothermically reacting materials such as aluminum and palladium, and titanium and boron), slappers (e.g. exploding foil initiators), chip slappers, detonators, explosive charges and other energetic materials (i.e. pyrotechnics and fuels). Energetic components include components and devices that comprise energetic materials such as explosives, propellants, fuels, gas generating materials, combustibles, unstable and metastable materials. The energetic materials within an energetic component can be arranged in an explosive train. The path of an energetic train is defined herein to be path of energy transfer from one element within the explosive train, to another element within the explosive train.
In embodiments of the invention, the aperture 114 can contain a charge of energetic material 112, e.g. a pellet of explosive material (for example, silver azide, lead azide, copper azide, and lead styphnate) that can be placed in alignment with the explosive train (i.e. when the interrupter 102 is in the non-interrupting state) for transferring energy from the initiator 106 to the booster 108. In other embodiments of the invention, the interrupter can be arranged to move other elements that may comprise an explosive train, either into or out of line. The interrupter 102 can be formed of an elongated member operated by a linear drive mechanism, or alternatively can be provided in the form of a paddle, shuttle, or shutter in linearly or rotatably actuated arrangements.
In
In
In
In the embodiment of the invention illustrated in
The actuators 201a-c can comprise linear and rotary actuators fabricated in MEM technologies including electrostatic, electromagnetic, piezoelectric, magnetostrictive and thermal actuators, that can be actuated through the application of electrical, magnetic, thermal and optical signals as inputs to the device. MEM device 200 can be fabricated on a substrate (not shown) providing mechanical support for the actuators, interrupter and latches, including slideable supports as rails and guides (not shown). Embodiments of the interrupter 202 can be arranged to align an aperture 204 to an explosive train 206 including a clearance hole through a substrate, or an interrupter can be arranged to extend beyond the perimeter of a substrate to operate upon an explosive train, for example, that is adjacent to the substrate. As described above, embodiments can make use of an interrupter having an aperture that contains an energetic material, or that operates to move one or more elements of an explosive train, into and out of line.
The drive signals applied to the actuators 201a-c can comprise alternating current (AC) and direct current (DC) electrical signals. In the embodiment illustrated in
Embodiments of the MEM safe arm device 200, for example fabricated by a MEM technology wherein a plurality of metallic layers are sequentially deposited upon the surface of a substrate and patterned, can comprise a series of stacked layers of soft magnetic materials (for example nickel, iron, alloys of nickel and iron, and alloys of nickel and iron including cobalt, silicon, manganese and molybdenum). Individual layers can be electro-deposited and patterned on top of a preceding layer, to define a desired mechanical structure. Sacrificial materials, materials that are ultimately removed in the manufacturing process, can be incorporated into the layered stack-up to define eventual spacings, clearances and gaps between elements comprising the mechanical structure. Suitable substrates include ceramics, glass-ceramics, quartz, glass, polymeric materials (e.g. printed wiring board materials), silicon (e.g. silicon wafers) and metals. Dielectric layers for example, polymeric, silicon-oxide, silicon-nitride, glass and ceramic layers can be applied to the surface of conductive substrates (e.g. metallic and silicon substrates) to electrically isolate individual MEM structures or MEM elements within a structure. In embodiments fabricated using electrodeposition processes, a layer (e.g. a seed layer) comprising an electrically conductive material can be deposited upon a surface of a non-conducting substrate, allowing for patterning and electro-deposition of subsequent layers. The seed layer can be removed (e.g. by etching) during the fabrication process to provide for electrical isolation of the various elements of the MEM device 200. Use of highly conductive metallic layers (e.g. copper, silver and gold) can be incorporated into MEM fabrication technologies to produce electrical conductors such as coils 203c. Metals such as nickel, copper, iron, boron, chromium, titanium, samarium, neodymium, manganese, lanthanum, calcium, tungsten and aluminum (and alloys thereof) can be incorporated into the fabrication process to tailor the electrical and magnetic performance of the MEM structures. For example using a nickel-iron alloy to form the armature of an actuator, for example 201c, and using copper to form the coils of the actuator.
In
Likewise in
In
The variable reluctance motor 306 (e.g. a linear variable reluctance actuator) is illustrated as comprising three phases as exhibited by the three pairs of poles 314a-c, each pole piece comprising two teeth. For simplicity in the illustration, only the left half of each symmetrical pole pair 314a-c is indicated. Each pole pair 314a-c can be driven (e.g. actuated) independently by applying separate drive signals to the corresponding coils 318a-c. The teeth of the poles 314a-c are arranged with respect to the teeth of the traveler 316 so that at any given time, only the teeth of one of the pole pairs (e.g. pole pair 314a in the illustration) are aligned to corresponding teeth on the traveler 316. The teeth of the remaining pole pairs are offset by a distance of ⅓ (e.g. pole pair 314b) and ⅔ (e.g. pole pair 314c) of the spacing of the teeth on the traveler 316. In this arrangement, the traveler 316 and therefore the interrupter 302, will be actuated only when drive signals are applied to the coils 318a-c, in a proper sequence.
For the example as shown in
The use of actuators that are operated by differing drive signals, for the example in
In this example, MEM safe arm device 400 is built up using eleven layers, deposited, patterned, and planarized, on a polished alumina substrate 402, having lateral dimensions of 6 mm on a side. Polished alumina substrates are available in a wide range of thicknesses (e.g. 0.25 mm to 1.28 mm), typically have on the order of 96% alumina content, and are available with surface finishes on the order of 1 μm. The thickness of each of the eleven layers, from the first layer deposited on the substrate up through the final layer are designed to be: 12, 3, 50, 50, 3, 50, 50, 50, 3, 50 and 50 μm respectively. The maximum thickness of a structural member, for example the thickness of the interrupter 404 (shown in the interrupted state) is 370 μm, and would comprise the “soft” magnetic material nickel (and nickel alloys). The diameter of the aperture 406 through the interrupter 404 is 500 μm. Other elements of the MEM safe and arm device 400 include electrical solenoid actuators 408 and 410, coupled to latching pins 412 and 414 respectively, and a three phase linear variable reluctance actuator 416 comprising a traveler 418, coupled to interrupter 404. In this design, the actuator 416 and traveler 418 are configured to slideably move the interrupter 404, a distance of approximately 1 mm along the axis of the traveler and interrupter (to the right as shown).
The teeth on traveler 418 are 50 μm wide and spaced 50 μm apart, as are the corresponding teeth on the pole pieces of the linear variable reluctance actuator 416. Coils on the actuators, for example 420, comprise 50 μm wide lines spaced 50 μm apart. Vertical gaps in the structure, for example at 422 to isolate the coil 420 from the armature 424 of the linear variable reluctance actuator 416, are 3 μm. Electrical pads, for example at 426, for interconnecting the MEM device 400 to external control electronics, are 250 μm on a side, and are connected to conductors, for example at 428, that are nominally 75 μm wide. Latching pins 412 and 414 are approximately 50 μm in diameter and are separated from interrupter 404 by a horizontal clearance gap 430 that can range from on the order of 10 μm to 50 μm. This same clearance gap is intended to be used between moving structures and their supporting guides, for example between the interrupter 404 and guide rail 432.
The entire structure of MEM safe arm device 400 can be constructed of nickel (and nickel iron alloy) layers deposited on substrate 402, while alternative embodiments can comprise using copper (and higher conductivity metals) for example, in electrical conductors, pads and coils, for example at 428, 426 and 420 respectively. A through hole, or second aperture (not shown) can be included in the substrate 402, aligned with aperture 406 when the interrupter is in the non-interrupting state, to provide a safe and arm capability for energetic components having an explosive train passing through the substrate of the MEM safe and arm device 400. Substrate 402 can additionally be provided with electrical vias through the thickness of the substrate, to accommodate back-side electrical interconnections.
As illustrated in
The above described exemplary embodiments present several variants of the invention but do not limit the scope of the invention. Those skilled in the art will appreciate that the present invention can be implemented in other equivalent ways. The actual scope of the invention is intended to be defined in the following claims.
The United States Government has certain rights in this invention pursuant to Department of Energy Contract No. DE-AC04-94AL85000 with Sandia Corporation.
Number | Name | Date | Kind |
---|---|---|---|
3765332 | Baker | Oct 1973 | A |
4240351 | San Miguel | Dec 1980 | A |
4854239 | Van Sloun | Aug 1989 | A |
5063846 | Willis et al. | Nov 1991 | A |
6167809 | Robinson et al. | Jan 2001 | B1 |
6295932 | Kane, III | Oct 2001 | B1 |
6374739 | Smith et al. | Apr 2002 | B1 |
6439119 | Smith et al. | Aug 2002 | B1 |
6964231 | Robinson et al. | Nov 2005 | B1 |
7051656 | Koehler et al. | May 2006 | B1 |
7142087 | Greywall | Nov 2006 | B2 |
20050183609 | Greywall | Aug 2005 | A1 |
Number | Date | Country |
---|---|---|
WO 2004111568 | Dec 2004 | WO |