Ramsey, J.M. et al, “Microfabricated chemical measurement systems,” Nature Medicine 1(10): 1093-1096, Oct. 1995. |
Dasgupta et al., “Electroosmosis: A reliable fluid propulsion system for flow injection analysis,” Anal. Chem 1994. 66, 1792-1798 Jun. 1994. |
Svendson, P.J. et al., “Separation of Proteins Using Ampholine Carrier Ampholytes As Buffer And Spacer Ions In An Isotachophoresis System,” Science Tools, The LKB Instrument Journal, 17(1): 13-17 (1970). |
Kjellin, K.G. et al., “Isotachophoresis of CSF Proteins in Gel Tubes Especially Gammaglobulins,” J. Neurol. 221:225-233 (1979). |
Manz, A. et al., “Miniaturized Total Chemical Analysis Systems: a Novel Concept for Chemical Sensing,” Sensors and Actuators, B1:244-248 (1990). |
Manz, A. et al., “Micromachining of monocrystalline silicon and glass for chemical analysis systems,” Trends in Anal. Chem. 10(5): 144-149 (1991). |
Linhares, M.C. et al., “Use of an On-Column Fracture in Capillary Zone Electrophoresis for Sample Introduction,” Anal. Chem. 63:2076-2078 (1991). |
Manz, A. et al., “Planar chips technology for miniaturization and integration of separation techniques into monitoring systems,” J. Chrom. 593:253-258 (1992). |
Harrison, D.J. et al., “Capillary Electrophoresis and Sample Injection Systems Integrated on a Planar Glass Chip,” Anal. Chem. 64:192601932 (1992). |
Harrison, D.J. et al., “Micromachining a Miniaturized Capillary Electrophoresis-Based Chemical Analysis System on a Chip,” Science 261:895-897 (1993). |
Seiler, K. et al., “Planar Glass Chips for Capillary Electrophoresis: Repetitive Sample Injection, Quantitation, and Separation Efficiency,” Anal. Chem. 65:1481-1488 (1993). |
Effenhauser, C.S. et al., “Glass Chips for High-Speed Capillary Electrophoresis Separations with Submicrometer Plate Heights,” Anal. Chem. 65:2637-2642 (1993). |
Woolley, A.T. et al., “Ultra-high-speed DNA fragment separations using microfabricated capillary array electrophoresis chips,” Proc. Natl. Acad. Sci. U.S.A. 91:11348-11352 (1994). |
Manz, A. et al., “Electroosmotic pumping and electrophoretic separations for miniaturized chemical analysis systems,” J. Micromech. Microeng. 4:257-265 (1994). |
Fan, Z.H. et al., “Micromachining of Capillary Electrophoresis Injectors and Separators on Glass Chips and Evaluation of Flow at Capillary Intersections,” Anal. Chem. 66:177-184 (1994). |
Jacobson, S.C. et al., “Effects of Injection Schemes and Column Geometry on the Performance of Microchip Electrophoresis Devices,” Anal. Chem. 66:1107-1113 (1994). |
Jacobson, S.C. et al., “High-Speed Separations on a Microchip,” Anal. Chem. 66:1114-1118 (1994). |
Jacobson, S.C. et al., “Open Channel Electrochromatography on a Microchip,” Anal. Chem. 66:2369-2373 (1994). |
Effenhauser, C.S et al., “High-Speed Separation of Antisense Oligonucleotides on a Micromachined Capillary Electrophoresis Device,” Anal. Chem. 66:2949-2953 (1994). |
Seiler, K. et al., “Electroosmotic Pumping and Valveless Control of Fluid Flow within a Manifold of Capillaries on a Glass Chip,” Anal. Chem. 66:3485-3491 (1994). |
Jacobson S.C. et al., “Precolumn Reactions with Electrophoretic Analysis Integrated on a Microchip,” Anal. Chem. 66:4127-4132 (1994). |
Jacobson, S.C. et al., “Fused Quartz Substrates for Microchip Electrophoresis,” Anal. Chem. 67:2059-2063 (1995). |
Sandoval, J.E. et al., “Method for the Accelerated Measurement of Electrosmosis in Chemically Modified Tubes for Capillary Electrophoresis,” Anal. Chem. 68:2771-2775 (1996). |
Khrapko, K. et al., “Mutational spectrometry without phenotypic selection: human mitochondrial DNA,” Nuc. Acids Res. 25(4): 685-693 (1997). |
Ghandi, “Lithographic Processes,” VLSI Fabrication Principles, Chapter 10 (1983). |