Microfabricated teeter-totter resonator

Information

  • Patent Grant
  • 6820469
  • Patent Number
    6,820,469
  • Date Filed
    Monday, May 12, 2003
    21 years ago
  • Date Issued
    Tuesday, November 23, 2004
    20 years ago
Abstract
A microfabricated teeter-totter resonator comprises a frame, a paddle pivotably anchored to the frame by pivot arms that define an axis of rotation, a current conductor line on a surface of the paddle, means for applying a static magnetic field substantially perpendicular to the rotational axis and in the plane of the paddle, and means for energizing the current conductor line with an alternating current. A Lorentz force is generated by the interaction of the magnetic field with the current flowing in the conductor line, causing the paddle to oscillate about the axis of rotation. The teeter-totter resonator can be fabricated with micromachining techniques with materials used in the integrated circuits manufacturing industry. The microfabricated teeter-totter resonator has many varied applications, both as an actuation device and as a sensor. When used as a chemical sensor, a chemically sensitive coating can be disposed on one or both surfaces of the paddle to enhance the absorption of chemical analytes from a fluid stream. The resulting mass change can be detected as a change in the resonant frequency or phase of the oscillatory motion of the paddle.
Description




FIELD OF THE INVENTION




The present invention relates to flexural wave excitation and detection devices and, more particularly, to a microfabricated teeter-totter resonator.




BACKGROUND OF THE INVENTION




Surface acoustic wave and resonating devices have a number of applications, including frequency filtering, oscillator control, signal processing, and mass and load sensors. For example, microresonating devices can be used as filters to pass selective frequencies and provide frequency analysis of audible or ultrasonic signals. Acoustic devices can be used as a fluid monitor. Acoustic devices can also be used as gas and vapor chemical sensors.




Chemical sensors combine a chemically sensitive interface, which sorbs chemical species (i.e., analytes) from the environment, with a physical transducer that provides an electrical output proportional to the amount of sorbed species. Two commonly used acoustic devices for chemical sensing include surface acoustic wave (SAW) and resonant microsensors, such as the flexural plate wave (FPW) resonator. See S. J. Martin et al., “Gas Sensing with Acoustic Devices,”


Proc. IEEE Ultrasonics Symposium


, 423 (1996), which is incorporated herein by reference.




SAW sensors rely on the electrical excitation of a surface acoustic wave in a piezoelectric substrate. Typically, a wave is established on a quartz surface and the collection of analyte mass on the surface is reflected in the propagation of the surface wave. The high quality factor, Q, and low insertion loss of SAW chemical sensors makes them extremely stable in an oscillator circuit, resulting in low detection limits. SAW sensors can detect sub nanogram-levels of chemical analytes. However, SAW sensors typically operate at hundreds of megahertz frequencies, complicating the design and integration of oscillator circuitry.




A resonator comprises a vibrating element of a certain shape. Depending on the shape, the resonator can support several types of vibrations, e.g., longitudinal, transverse, torsional, and lateral, that can have a number of vibrational modes or resonances. The stress, mass, or shape of the resonator is typically designed such that one of these modes dominates and the resonant frequency of the dominant mode is matched to a driving excitation signal. When used as a chemical sensor, the collection of analyte mass on the surface of the resonator is reflected as a change in the resonant frequency or the amplitude of the vibration. The resonance change due to mass loading can also be used to detect changes in gas density and flows.




Resonators that operate on magnetic actuation principles are particularly attractive for many applications, due to their large dynamic range and high sensitivity. Electromagnetic sensors rely on a Lorentz force, generated by an alternating electrical current flowing in the resonator interacting with an external magnetic field, to excite a mechanical vibration in the structure.




A magnetically excited FPW (mag-FPW) resonator is described in S. J. Martin et al., “Flexural plate wave resonator excited with Lorentz forces,”


J. Appl. Phys


. 83(9), 4589 (1998) and U.S. Pat. No. 5,836,203, which are incorporated herein by reference. The mag-FPW resonator comprises current lines patterned on a silicon nitride membrane that is suspended on a silicon frame. A Lorentz force is created by the interaction of an alternating surface current flowing in the current lines and an in-plane static magnetic field perpendicular to the current flow direction. Preferential coupling to a particular membrane mode is achieved by positioning the current lines along antinodes of the longitudinal mode. When the alternating current has the natural frequency of the mag-FPW resonator, a large amplitude standing wave is set up in the membrane wave plate. The motion of the current conductor lines in the magnetic field in turn induces a back electromotive force (back-emf) opposing the motion. This back-emf can be detected as an increase in impedance of the current lines.




Because the confinement of kinetic energy is in a thin, low-mass membrane, the FPW sensor can have a very high mass sensitivity. Also, because the wave velocity in the FPW membrane is much less than in a solid substrate, the operating frequency of a FPW device is much lower than in a SAW device, resulting in simpler oscillator electronics. In addition, FPW resonators can be made with micromachining processes in a silicon wafer and can be integrated with microelectronic circuits. However, the temperature-dependent tension variation in the membrane, due to the differential thermal expansion of the silicon nitride membrane relative to the silicon frame, make the FPW operation very sensitive to temperature drift.




Therefore, a need remains for a microfabricated electromagnetic resonator having a high Q-factor, low operating frequency, high mass sensitivity, and low temperature drift. The microfabricated teeter-totter resonator of the present invention provides a Q-factor, operating frequency, and mass sensitivity comparable to the FPW resonators, but with much better temperature stability. In particular, the teeter-totter resonator is about three orders of magnitude less sensitive to temperature drift than the FPW resonator.




SUMMARY OF THE INVENTION




The present invention is directed to a microfabricated teeter-totter resonator, comprising a frame; a paddle having a first end and a second end and wherein the paddle is pivotably anchored to the frame by pivot arms at each end of the paddle, the pivot arms thereby defining an axis of rotation of the paddle; a current conductor line on a surface of the paddle that is displaced from the axis of rotation of the paddle; means for applying a static magnetic field aligned substantially in-plane with the paddle and substantially perpendicular to the current conductor line and the axis of rotation; and means for energizing the current conductor line with an alternating electrical current to excite an oscillatory motion of the paddle about the axis of rotation. The resonator can further comprise a means for detecting the oscillatory motion of the paddle. The resonator can further comprise a second current conductor line on a surface of the paddle for separate excitation and detection of the oscillatory motion of the paddle in a two-port device. For chemical sensing, the resonator can further comprise a chemically sensitive coating disposed on at least one surface of the paddle to sorb chemical analytes. Twin teeter-totters can be fabricated on the same frame to provide improved detection sensitivity and linearity when configured in a bridge circuit. The teeter-totter resonator can be fabricated with micromachining techniques with materials used in the integrated circuits manufacturing industry.











BRIEF DESCRIPTION OF THE DRAWINGS




The accompanying drawings, which are incorporated in and form part of the specification, illustrate the present invention and, together with the description, describe the invention. In the drawings, like elements are referred to by like numbers.





FIG. 1

shows a schematic illustration of a microfabricated teeter-totter resonator.





FIG. 2

shows a schematic illustration of a rectangular paddle of the microfabricated teeter-totter resonator.





FIG. 3

shows a simple excitation and detection circuit with the microfabricated teeter-totter resonator forming the active leg of a Wheatstone bridge.





FIG. 4

shows two counter-rotating teeter-totter resonators that provide a Wheatstone bridge with four active legs.





FIGS. 5



a


-


5




i


illustrate a method to fabricate the teeter-totter resonator using micromachining techniques, starting with a silicon-on-insulator substrate.





FIGS. 6



a


and


6




b


show the theoretical and measured impedance response and phase as a function of frequency of a microfabricated teeter-totter resonator.

FIG. 3



a


shows the impedance change at resonance.

FIG. 3



b


shows the phase change at resonance.





FIGS. 7



a


and


7




b


show the predicted paddle rotational displacement and the measured impedance change as a function of frequency for microfabricated teeter-totter resonators having different paddle masses.





FIGS. 8



a


and


8




b


show the phase response as a function of frequency of an uncoated and a coated teeter-totter resonator before and after analyte is added to the environment surrounding the resonator.





FIG. 9

shows the loading effects of various gas densities on the impedance of the teeter-totter resonator.











DETAILED DESCRIPTION OF THE INVENTION




The present invention comprises a microfabricated teeter-totter resonator that relies on the Lorentz force to excite a torsional oscillation in a paddle. In

FIG. 1

is shown a schematic illustration of the microfabricated teeter-totter resonator


10


, comprising a frame


12


, a paddle


13


, pivot arms


14


, a current conductor line


15


, means for applying a static magnetic field B in the plane of the paddle


13


, and means for energizing the current conductor line


15


with an alternating current I. The frame


12


is preferably a non-magnetic structural material, which typically can be silicon. Alternatively, other structural materials can be used. The paddle


13


is preferably a non-magnetic, semiconducting or insulating thin plate, which typically can be silicon, polysilicon, silicon nitride, silicon dioxide, or a polymer. Alternatively, other thin-film materials can be used. Alternatively, the paddle


13


can be a conducting material with a thin insulating film (not shown) on the surface to provide electrical isolation of the current conductor line


15


. The paddle


13


is preferably rectangular in shape, although other shapes can also be used. When used as a chemical sensor, the paddle


13


can further comprise a chemically sensitive coating


16


disposed on one or both surfaces of the paddle


13


. The pivot arms


14


pivotably anchor the oscillating paddle


13


to the stationary frame


12


. The pivot arms


14


therefore define an axis of rotation X in the plane of the paddle


13


. The rotational axis X is preferably the longitudinal axis of a rectangular paddle. A clearance gap


17


is provided to allow free oscillation of the paddle


13


within a cavity of the stationary frame


12


about the rotational axis X. The current conductor line


15


is displaced from the rotational axis X of the paddle


13


. Preferably, the conductor line


15


runs around the periphery of the paddle


13


to provide a large Lorentz force F.




The source of the magnetic field B can be a conventional permanent magnet, direct-current (DC) coils, or the like. The magnetic field B is aligned substantially parallel to the plane of the paddle


13


and substantially perpendicular to the current direction in the conductor line


15


and the axis of rotation X. As shown in

FIG. 1

, application of an electrical current I to the conductor line


15


generates a surface-normal Lorentz force F directed according to the right-hand rule. The torque resulting from the Lorentz force F is resisted by the torsional spring restoring force resulting from the twisting of the pivot arms


14


. Furthermore, because of the static B field, an alternating electrical current I through the conductor line


15


generates a reversing direction of the Lorentz force F on the paddle


13


, causing the paddle


13


to oscillate from its rest position about the axis of rotation X.




At a certain frequency, a resonant mode is established and the paddle


13


undergoes maximum oscillations. The resonant frequency can be determined from the differential equation-of-motion for a teeter-totter resonator:








J{umlaut over (θ)}+C




t




{dot over (θ)}+kθ=T


  (1)






where θ is the torsional angle of the paddle oscillation about the axis of rotation X, J is the polar moment of inertia of the paddle cross-section about the rotational axis X, C


t


is the damping coefficient due to structural damping and viscous dissipation due to fluid loading, and T is the time-dependent applied torque.




Shown in

FIG. 2

is a schematic illustration of a rectangular paddle


13


. The rectangular paddle


13


has a width w, length L, thickness c, and effective density ρ. The pivot arms


14


have a length a and width b. Therefore, the polar moment of inertia of the rectangular cross-section is J=ρwcL(c


2


+w


2


)/12. For a current conductor line


15


running around the perimeter of the rectangular paddle


13


, the applied torque is T=Fw=BILw, where B is the static magnetic flux, and I is the time-varying current through the conductor fine


15


. The torsional spring constant of the pivot arms


14


is








k


=2


βbc




3




G/a


  (2)






where G is the shear modulus of elasticity of the pivot arm material. β is a parameter that depends on the ratio b/c of the long side to the short side of the rectangular cross-section of the pivot arm


14


that is twisted. For a thin section (b>>c), β is approximately ⅓.




The steady-state solution to the equation-of-motion, eq. (1), has the form






θ={overscore (Θ)}exp(


jωt


)=|{overscore (Θ)}exp


j





t−φ




d


)  (3)






where the amplitude is










&LeftBracketingBar;

Θ
_

&RightBracketingBar;

=


BwLI
/
k





(

1
-

r
2


)

2

+


(

2

ζ





r

)

2








(
4
)













and where r=ω/ω


n


, and ζ=C


t


/2{square root over (kJ)}=½Q. Q is the mechanical quality factor of the resonator. The phase of the rotational displacement relative to the drive current is










φ
d

=


tan

-
1










2





ζ





r



1
-

r
2








(
5
)













The natural resonant frequency of oscillation is






ω


n


={square root over (k/J)}  (6)






Therefore, changing the cross section or length of the pivot arms


14


or the dimensions or mass of the paddle


13


will alter the resonant frequency ω


n


and the phase shift of the oscillations at resonance. In particular, for chemical sensor applications, both the resonant frequency ω


n


and phase φ


d


are changed, through the dependence of the moment of inertia J on the absorbed mass, when a chemical analyte is absorbed or desorbed from the chemically sensitive coating


16


or the paddle


13


. The phase and amplitude of oscillation will also be altered by changes in the damping characteristics exhibited by various fluids. Importantly, the teeter-totter resonator


10


is relatively insensitive to temperature drift, since the shear modulus of elasticity G, which determines the torsional spring constant k, has only a small variation with temperature.




The motion of the current conductor line


15


in the magnetic field B induces a back-emf in the conductor line


15


opposing the motion. The back-emf is









E
=

BwL




θ



t







(
7
)













and it is electrically manifested as a change in the impedance (i.e., “motional resistance”) of the current conductor line


15


. The amplitude of the resonator impedance is









Z
=


V
I

=



Z
0

+

Z
D


=



Z
0

-


BwLj





ω


Θ
_


I


=


&LeftBracketingBar;
Z
&RightBracketingBar;



exp


(

j






φ
z


)










(
8
)













where Z


0


is the DC resistance of the resonator, Z


D


is the impedance change due to the back-emf, and











&LeftBracketingBar;
Z
&RightBracketingBar;

=





(
BwL
)

2


r


J






ω
n








(




Z
0


J






ω
n





(
BwL
)

2


r


+


2

r










(

1
-

r
2


)

2

+


(

2

r







)

2




)

2

+


(


(

1
-

r
2


)




(

1
-

r
2


)

2

+


(

2

r







)

2



)

2










and




(
9
)







φ
z

=

arctan
(


(

1
-

r
2


)






Z
0


J






ω
n





(
BwL
)

2


r




[



(

1
-

r
2


)

2

+


(

2

r







)

2


]


+

2

r









)





(
10
)













The impedance change Z


D


can be used to detect the teeter-totter resonances. In a one-port device, the excitation and detection of the oscillation of the teeter-totter resonator


10


and its resonant frequency ω


n


can be obtained directly through the ratio of the drive voltage to the drive current (i.e., an impedance response). Alternatively, in a two-port device, a second conductor line (not shown) can be run in a different region of the paddle


13


(e.g., on the back side of the paddle


13


) and the oscillation excited by the first conductor line


15


can be detected as an output voltage induced in the second conductor line.




The impedance response of the teeter-totter resonator


10


can be measured with an electronic oscillator circuit and a bridge circuit. In

FIG. 3

is shown a simple excitation and detection circuit


30


that can be used to excite the resonator


10


and detect the impedance change Z


D


due to the back-emf. The simple circuit


30


comprises a Wheatstone bridge circuit


31


, a waveform generator


32


to drive the bridge


31


with a sinusoidal supply voltage V


IN


, an operational amplifier


33


to amplify the bridge voltage V


OUT


, and an RMS-to-DC converter


34


to convert the amplifier output to a DC output voltage V


DC


. A single teeter-totter resonator


10


forms the active leg of the bridge circuit


31


. Therefore, the bridge output voltage is proportional to the relative change of the resonator's impedance according to










V
OUT

=


(


1
2

-


Z
0



2


Z
0


+

Z
D




)



V
IN






(
11
)













where Z


0


is the ohmic resistance of the current conductor line


15


and Z


D


is the impedance change resulting from the back-emf. When the resonator


10


is not operating at resonance, the bridge


31


is balanced and the differential output V


OUT


from the bridge


31


is zero. At resonance, the resonator's impedance increases, due to the back-emf, and the bridge


31


is unbalanced, resulting in an AC bridge voltage V


OUT


at the input of the amplifier


33


. This AC bridge voltage V


OUT


can be amplified and converted to a DC output voltage V


DC


by the RMS-to-DC converter


34


.




The sensitivity and the linearity of detection can be improved by using two counter-rotating teeter-totter resonators opposed to each other in a bridge configuration with four active legs. In

FIG. 4

is shown two counter-rotating teeter-totters


41


and


42


on a common substrate


12


with a common current conductor line


15


that runs around the periphery of the two paddles


13


. For chemical sensing, one or both of the surfaces of each of the paddles


13


can be coated with a chemically sensitive material.




Identical resonators


41


and


42


can be configured as opposing legs in a Wheatstone bridge circuit. The bridge voltage V


OUT


is given then by










V
OUT

=



Z
D


I

=



Z
D


Z
0




V
IN







(
12
)













By measuring V


OUT


, the resonant frequency the counter-rotating resonators can be determined. If V


IN


is not at the resonant frequency ω


n


of the counter-rotating resonators


41


and


42


, the oscillations and therefore the impedance change Z


D


due to the back-emf are small and the bridge is balanced, so that V


OUT


will be zero. V


OUT


reaches a maximum when the oscillations and back-emf are largest at the resonant frequency ω


n


. By tracking the amplitude of the output voltage V


OUT


it is therefore possible to determine if a component of V


IN


is at frequency ω


n


. Alternatively, this counter-rotating resonator bridge configuration can be used to more sensitively detect changes in the resonant frequency ω


n


due to mass accumulation or fluid loading on the paddles


13


.




The teeter-totter resonator


10


can be fabricated by micromachining techniques generally known to the integrated circuits manufacturing industry. Such methods enable batch fabrication and monolithic integration of the resonator


10


with on-chip electronic circuitry.




In

FIGS. 5



a


-


5




i


are shown cross-sectional views of a method to fabricate the teeter-totter resonator


10


, starting with a silicon-on-insulator (SOI) substrate having a top silicon layer separated from a silicon substrate by an intermediate buried SiO


2


layer. The SOI method comprises the steps of depositing the current conductor line


15


on the top silicon layer; patterning the top silicon layer to define the paddle


13


, the pivot arms


14


, and the inner wall of the frame


12


; forming a cavity in the backside of the silicon substrate, underneath the paddle, pivot arms, and clearance gap regions, to provide the frame


12


; and releasing the paddle


13


from the frame


12


by removing the clearance gap portion of the buried oxide layer. When the teeter-totter resonator


10


is used as a chemical sensor, a chemically sensitive coating


16


can be formed on at least one surface of the paddle


13


.




In

FIG. 5



a


is shown a cross section of a commercially available SOI substrate


50


comprising a top silicon layer


51


(e.g., 1- to 10-μm thickness) separated from a silicon substrate


53


(e.g., 400- to 500-μm thickness) by a buried oxide layer


52


(e.g., about 1 μm thickness). The SOI substrate


50


can be formed, for example, by a wafer bonding and etch-back method wherein a silicon wafer is thermally bonded to another silicon wafer by a thermally grown silicon dioxide intermediate layer. One of the silicon wafers is subsequently polished or etched down to the desired thickness to provide the top silicon layer


51


. The top silicon layer


51


can therefore be single crystal silicon having good, consistent mechanical properties. The top silicon layer


51


can be undoped or lightly doped to provide low electrical conductivity. Alternatively, the top silicon layer


51


can be coated with a thin insulating layer (e.g., less than 50 nm of silicon nitride or silicon dioxide, not shown) to provide electrical isolation of the current conductor line


15


. The buried oxide


52


provides a highly selective etch stop layer for subsequent etching of the top silicon layer


51


and the silicon substrate


53


.




In

FIG. 5



b


, a frontside metallization layer can be deposited and patterned on the top silicon layer


51


to provide the current conductor line


15


. The frontside metallization layer can be patterned by a liftoff or an etch process, depending on the metal used. The metallization can comprise a high-conductivity metal, such as gold, aluminum, or platinum, having sufficient cross section to provide a current conductor line


15


having high electrical conductivity. The metal should also be compatible with subsequent processing. For example, the current conductor line


15


can be a gold line having a width of 40 μm and a thickness of 0.75 μm that can run around the periphery of the paddle


13


.




In

FIG. 5



c


, a frontside photoresist layer


55


can be spun-on the front surface of the top silicon layer


51


. The frontside photoresist layer


55


can be lithographically exposed and developed to provide openings


56


to define the paddle


13


and pivot arms


14


and the inner wall of the frame


12


.




In

FIG. 5



d


, the top silicon layer


51


can be patterned by etching through the openings


56


in the developed frontside photoresist layer


55


to provide the silicon portion of the paddle


13


and pivot arms


14


. The exposed silicon can be removed by deep reactive ion etching (DRIE) using fluorine-based etchants (e.g., SF


6


, C


4


F


8


). The DRIE etch will stop at the highly selective buried oxide layer


52


and provide well-defined, steep sidewalls in the patterned top silicon layer


51


.




In

FIG. 5



e


, the SOI substrate


50


can be flipped over and a backside photoresist layer


57


can be applied to the back surface of the silicon substrate


53


. The photoresist layer


57


can be lithographically exposed and developed to provide an opening


58


to subsequently form a cavity in the silicon substrate


53


underneath the portion of the top silicon layer


51


that forms the paddle


13


, pivot arms


14


, and clearance gap


17


.




In

FIG. 5



f


, the silicon substrate


53


can be etched through the opening


58


in the developed backside photoresist layer


57


by DRIE to form the cavity in the silicon substrate


53


. The DRIE etch will effectively stop when it reaches the backside of the buried oxide


52


.




In

FIG. 5



g


, the SOI substrate


50


can be flipped over and the frontside of the buried oxide layer


52


can be etched through the openings


56


in the developed frontside photoresist layer


55


. The exposed silicon dioxide can be removed using a plasma-based etching process with fluorine-based etchants (e.g., CHF, C


2


F


6


) to complete the clearance gap


17


and release the structure. The clearance gap


17


allows the paddle


13


to freely oscillate within the cavity of the frame


12


.




In

FIG. 5



h


, the frontside and backside photoresist layers


55


and


57


can be stripped by standard solvents to provide the teeter-totter resonator


10


, comprising the frame


12


, paddle


13


, pivot arms


14


(not shown in this cross-sectional view), and current conductor line


15


.




In

FIG. 5



i


, when used as a chemical sensor, a chemically sensitive coating


16


can be formed on one (as shown) or both surfaces of the paddle


13


to enhance sorption of a gas or vapor of interest thereon. The chemically sensitive coating


16


can be a chromatographic stationary phase, polymer, getter, or other sorbent material. Depending on the sorbent material, the coating


16


can be applied by solvent casting, spraying, vapor deposition, electrochemical deposition, photo-polymerization, plasma polymerization, self-assembling deposition, photopatterning, or the like.




Teeter-totter resonators can also be fabricated from other materials, such as polymers. For example, a teeter-totter resonator having a polyimide paddle can be fabricated from a stack comprising polyimide laminated between a copper layer and a stainless steel layer. The copper layer can be photopatterned and etched to form the current conductor line


15


, and the stainless steel can be etched to form the paddle


13


. The polyimide can then be laser trimmed to release the structure.




In

FIGS. 6



a


and


6




b


are shown the theoretical and measured impedance response and phase as a function of frequency of a microfabricated teeter-totter resonator operated in air. This resonator had a rectangular paddle having a width w=600 μm, length L=1500 μm, and thickness c=8 μm. The pivot arms each had a length a=202 μm and width b=158 μm. The paddle and pivot arms material was silicon having an effective density ρ=2.91 g/cm


3


(i.e., including the gold electrode) and a shear modulus of G=64.5 GPa. The applied magnetic field flux was B=0.18 Tesla. In

FIG. 6



a


is shown the impedance response of this resonator, measured with a network analyzer. The measured response agrees well with theory. Away from resonance, the ohmic resistance of the current conductor line was about Z


0


˜6.48 ohms. As the resonator passed through an isolated resonance at a frequency of about ω


n


=26.3 kHz, the measured input impedance increased due to the impedance change resulting from the back-emf. At resonance, the impedance change was about Z


D


˜0.23 ohms. The quality factor was about Q˜900. In

FIG. 6



b


is shown the phase shift at resonance. At resonance, the impedance phase passes through zero and the peak amplitude of the phase change is a function of the damping and the dc resistance. The damping due to fluid loading would be reduced if the resonator were operated in vacuum, providing a higher Q-factor.




The teeter-totter resonator


10


has many varied applications, both as an actuation device and as a sensor. For example, the teeter-totter resonator


10


can be used as a fan or pump to move fluids. Conversely, the resonator


10


can be used as a fluid monitor to sense variations in gas pressure, density, or fluid flows by measuring the response of the oscillations to ambient fluid loadings. The teeter-totter resonator


10


has a high Q at resonance and can be used as a precise, narrow bandpass filter for signal processing. The resonator


10


is sensitive to mass loading on the paddle surface and can be used as a gravimetric detector for chemical sensing.




The teeter-totter resonator


10


can be used for signal processing applications, such as frequency filter, oscillator stabilization, etc. For example, an array of teeter-totter resonators


10


can be used for frequency analysis. Multiple resonators with different natural frequencies in an array can be used in signal processing to determine the harmonic composition of input signals. This same function can be accomplished by digital signal processing (DSP), but DSP is computationally intensive, and a processor system is larger than the described resonator system. It is also possible to use multiple analog filters to perform spectrum analysis. A teeter-totter resonator system can provide a narrower bandpass and consume less power than the analog filter system. This frequency filter capability can be used to provide an acoustic spectrum analyzer comprising an array of teeter-totter resonators.




The teeter-totter resonator


10


can also be used as a chemical sensor to sense the presence of analytes in a fluid stream. A chemically sensitive coating


16


is preferably formed on at least one surface of the paddle


13


to sorb a gas or vapor of interest thereon. Alternatively, the paddle material itself may sorb the analyte without the need for a coating


16


. The mass change due to the sorbed analyte can be detected gravimetrically as a proportional change in the resonator's response. The resonant frequency is inversely related to the moment of inertia of the paddle and the combined mass of the paddle


13


, coating


16


, and absorbed analyte. Therefore, the concentration of the chemical analyte in the fluid stream can be determined by measuring the change in resonant frequency ω


n


or phase φ


d


of the teeter-totter resonator


10


as a chemical analyte is absorbed and desorbed from the paddle


13


.




The coating


16


can be chosen to be sensitive to or have a high affinity for the analyte that one desires to detect. In addition, the coating


16


should preferably provide a rapid, reversible, and reproducible response to the sorbed analyte, stable chemical and physical properties, good adhesion to the paddle


13


, and consistent coating behavior. Several of these polymer coatings, such as polyisobutylene, substituted polysiloxanes, and ethyl cellulose, have been developed for quartz crystal microbalances, SAW sensors, and FPW sensors. See J. W. Grate, “Acoustic Wave Microsensor Arrays for Vapor Sensing,”


Chem. Rev


. 2000, 100, 2627-2648, which is incorporated herein by reference.




To improve detectability in a stream containing multiple analytes, an array of resonators


10


, each having a different partially selective coating


16


, can be used. The response of each resonator


10


is thereby related to the different interactions between the analytes and the selective coatings


16


. Therefore, such a sensor array (“electronic nose”) can provide sensitivity over a wider range of analytes, improved selectivity, and simultaneous multicomponent analysis. In particular, the sensor array may be able to recognize individual analytes in a mixture, if a sufficiently diverse set of selective coatings


16


is used. Alternatively, an analytical instrument can comprise a gas chromatographic column or other separation means to separate the chemical analytes upstream of the resonator and enable identification based on the time-of-arrival of the separated analytes at the resonator


10


. In addition, for portable applications, the area occupied by the microfabricated resonators can be relatively small and they can be integrated with on-board electronics to reduce the size and cost of the analytical instrument.




A finite-element model was used simulate the frequency response of a teeter-totter resonator when used as a chemical sensor. In

FIG. 7



a


are shown the results of calculations of the paddle rotational displacement as a function of frequency for a teeter-totter resonator operated in air. The model assumed a silicon paddle that had a length of L=1.5-mm, width of w=0.6-mm, and thickness of c=10-μm. The paddle mass was about 17.52 μg. The silicon pivot arms had a length of a=0.20-mm and a width of b=0.158-mm. The calculations indicated a low operating frequency with a resonance for the bare paddle at about 26,317 Hz. The mass of the paddle was varied in the calculations to determine the sensitivity of the resonator to mass change. The resonant frequency is inversely related to the paddle mass, in agreement with eq. (6). The Q-factor was about Q˜1136.




In

FIG. 7



b


is shown the measured impedance response for a cleaned (i.e., bare paddle) teeter-totter resonator, a coated resonator having a hydrogen-bond acidic polymer applied to the paddle, and the coated resonator with dimethyl-methylphosphonate (DMMP) analyte present in the environment surrounding the resonator. The coating added about 27 ng and the analyte collected by the coating added about 11 ng to the mass of the paddle. The mass sensitivity of the frequency for this resonator was about 208 Hz/pg. Greater mass sensitivity, and lower levels of analyte detection, can be achieved by reducing the thickness, and therefore the mass, of the paddle.




An alternative approach to determining the resonant frequency ω


n


is to track the phase difference between the drive voltage and drive current. If the resonator


10


is operated at a constant frequency near resonance by a frequency-controlled circuit, then minor changes in mass on the paddle


13


will cause a shift in the phase difference between the drive voltage and the drive current, as indicated by eq. (10).




A steep change in phase at resonance aids in the detection of nanogram levels of analytes.

FIGS. 8



a


and


8




b


show phase change measurements that were made with a teeter-totter resonator, first tested without any coating (

FIG. 8



a


) and then tested with a polymer coating (

FIG. 8



b


). As shown in

FIG. 8



a


, when there was no sorptive coating on the paddle, the zero phase crossing did not shift when DMMP was introduced into the environment surrounding the resonator. The lack of a phase shift indicates negligible absorption of analyte onto the native paddle surface. The mass sensitivity can be enhanced by using a chemically sensitive coating to increase surface mass accumulation of the chemical analyte. As shown in

FIG. 8



b


, the zero-phase crossing shifted by about 0.45° when analyte was introduced into the environment of the coated resonator. The mass sensitivity of the phase shift was about 0.04 degreesing for this resonator. Again, reducing the paddle thickness (i.e., mass) would increase the phase shift at resonance.




The microfabricated teeter-totter resonator can also be used as a fluid density monitor. In

FIG. 9

is shown the variation of resonant frequency as a function of fluid loading and pressure. Density variations in the surrounding gas alter the resonant frequency and quality factor of the resonator. The resonant frequency decreases as the ambient pressure increases (i.e., the gas loading increases). Additionally, the Q-factor increases (i.e., the width of the resonant peak increases) due to the increase in viscous dissipation at higher gas pressures. Furthermore, the resonant frequency is higher for lower molecular weight gases (i.e., helium) compared to higher molecular weight gases (i.e., air) at the same gas pressure. Therefore, the teeter-totter resonator can be used to identify gases by density.




The present invention has been described as a microfabricated teeter-totter resonator. It will be understood that the above description is merely illustrative of the applications of the principles of the present invention, the scope of which is to be determined by the claims viewed in light of the specification. Other variants and modifications of the invention will be apparent to those of skill in the art.



Claims
  • 1. A microfabricated teeter-totter resonator, comprising:a frame; a paddle having a first end and a second end and wherein the paddle is pivotably anchored to the frame by pivot arms at each end of the paddle, the pivot arms thereby defining an axis of rotation of the paddle; a current conductor line on a surface of the paddle that is displaced from the axis of rotation of the paddle; means for applying a static magnetic field aligned substantially in-plane with the paddle and substantially perpendicular to the current conductor line and the axis of rotation; means for energizing the current conductor line with an alternating electrical current to excite an oscillatory motion of the paddle about the axis of rotation; and means for detecting the electrical impedance response of the current conductor line to the oscillatory motion of the paddle.
  • 2. The microfabricated teeter-totter resonator of claim 1, wherein the detecting means comprises measuring the impedance of the current conductor line.
  • 3. The microfabricated teeter-totter resonator of claim 1, wherein the detecting means comprises measuring the phase of the current relative to the voltage of the current conductor line.
  • 4. The microfabricated teeter-totter resonator of claim 1, wherein the detecting means comprises measuring the phase of the current relative to the rotational displacement of the oscillatory motion.
  • 5. The microfabricated teeter-totter resonator of claim 1, further comprising a second current conductor line on a surface of the paddle that is displaced from the axis of rotation of the paddle for detection of the oscillatory motion excited by the energizing of the current conductor line with the alternating electrical current.
  • 6. The microfabricated teeter-totter resonator of claim 5, further comprising a means for measuring the output voltage induced in the second current conductor line.
  • 7. The microfabricated teeter-totter resonator of claim 1, wherein the current conductor line substantially follows the periphery of the paddle.
  • 8. The microfabricated teeter-totter resonator of claim 1, wherein the paddle comprises a rectangular shape.
  • 9. The microfabricated teeter-totter resonator of claim 1, wherein the frame comprises silicon.
  • 10. The microfabricated teeter-totter resonator of claim 1, wherein the paddle comprises silicon, polysilicon, silicon nitride, silicon dioxide or polymer.
  • 11. The microfabricated teeter-totter resonator of claim 1, further comprising an insulating thin film on a surface of the paddle to provide electrical isolation of the current conductor line.
  • 12. The microfabricated teeter-totter resonator of claim 1, wherein the means for energizing the current conductor line with the alternating electrical current excites the oscillatory motion of the paddle in a resonant mode.
  • 13. The microfabricated teeter-totter resonator of claim 1, further comprising a chemically sensitive coating disposed on at least one surface of the paddle.
  • 14. The microfabricated teeter-totter resonator of claim 13, wherein the chemically sensitive coating comprises a polymer.
  • 15. The microfabricated teeter-totter resonator of claim 1, further comprising a second paddle having a first end and a second end and wherein the second paddle is pivotably anchored to the frame by pivot arms at each end of the second paddle, and wherein that the pivot arms of the second paddle are on the axis of rotation of the paddle and the current conductor line is further on a surface of the second paddle and displaced from the axis of rotation to excite an oscillatory motion of the second paddle about the axis of rotation when the current conductor line is energized with the alternating electrical current.
  • 16. The microfabricated teeter-totter resonator of claim 15, wherein the current conductor line is disposed on the surface of the second paddle such that the oscillatory motion of the second paddle is counter-rotating to the oscillatory motion of the paddle.
  • 17. The microfabricated teeter-totter resonator of claim 15, wherein the current conductor line of the paddle and the second paddle is configured in a bridge circuit.
  • 18. The microfabricated teeter-totter resonator of claim 15, further comprising a chemically sensitive coating disposed on at least one surface of the second paddle.
  • 19. The microfabricated teeter-totter resonator of claim 18, wherein the chemically sensitive coating comprises a polymer.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is related to SD-7384, “Method for Chemical Sensing Using a Microfabricated Teeter-Totter Resonator,” filed of even date with this application.

STATEMENT OF GOVERNMENT INTEREST

This invention was made with Government support under contract no. DE-AC04-94AL85000 awarded by the U.S. Department of Energy to Sandia Corporation. The Government has certain rights in the invention.

US Referenced Citations (6)
Number Name Date Kind
4248092 Vasile et al. Feb 1981 A
4567451 Greenwood Jan 1986 A
5836203 Martin et al. Nov 1998 A
6272907 Neukermans et al. Aug 2001 B1
6387329 Lewis et al. May 2002 B1
6397661 Grimes et al. Jun 2002 B1
Non-Patent Literature Citations (4)
Entry
Grate, J.W., “Acoustic Wave Microsensor Arrays for Vapor Sensing,” Chem. Rev. 2000, 100, 2627-2648.
Martin, et al., “Gas Sensing with Acoustic Devices,” Proc. IEEE Ultrasonics Symposium, 423 (1996).
Martin et al., “Flexural plate wave resonator-excited with Lorentz forces,” J. Appl. Phys. 83(9), 4589 (1998).
Givens et al.., “A high Sensitivity, wide dynamic range magnetometer designed on a xylophone resonator,” Appl. Phys. Lett 69(18), 2755 (1996).