1. Field of Invention
This invention provides a Deoxyribonucleotide acids (DNA) computer with a microfluidic chip technology which carries out enzymatic reactions to cleave, ligate, and amplify DNA molecule on a microfuidic chip. Using the DNA molecule as an operation media, the genetic code before one reaction is taken as the input data, while the genetic code after the reaction is denoted as the operation results. A novel high speed DNA computer which possesses tremendous capacity is developed by performing various controllable DNA biochemical reactions followed by combining and integrating various chips in the DNA computer.
2. Description of the Related Art
DNA computer is an emerging field that basically combines molecular biological studies of DNA molecules and computational studies on how to employ these specific molecules to calculate. The main features of DNA computer are characterized by its high parallel computing ability, fast operational speed and enormous data storage capacity. However, the research on DNA computer until now has encountered the following two limitations. The first limitation is the lack of fully integrated hardware device that can support the biological operation-based computing, confirm the corresponding result and control the correlative parameters. The second limitation is that these molecular computing processes are carried out without registering or storing each computation processes. However, the storage function is one of the main features of modern computers which are also the essential character that differ a DNA computer from a DNA computing machine.
The microfluidic chip technology fully or basically integrates the fundamental operation units onto a chip with a size of about several square centimeters where the biological and chemical reactions such as sample preparation, enzymatic or chemical reactions, product separation and detection, etc. carry out. The availability of various operation units and the flexibility to combine them warrant the advantage of generating chips that can be integrated in large scale. Chip technologies, in principle, perform the reactions and the separation and detection of various types of molecules from nucleic acids and proteins to organic and small inorganic compounds.
In general, the chip technology includes two major categories. One is the array micro-porous board chip without circulating network and separation. This is usually called “biochip”, since it is relatively specific to DNA and protein. The other is based on microfluidic technology, with a network of microchannels on the chip and controllable liquid that runs through the whole system. This is usually called “Lab on a chip”, and is the mainstream of chip technology.
The development of microfluidic chip technology with high throughputs, integration and strong controllability provides a possible platform for substituting test tube or surface operation.
The objective of the present invention is to provide a DNA computer which uses the microfluidic chip as the operation platform. The invented DNA computer uses DNA molecules as operation or/and storage media while employing microfluidic chip as the operation platform of the DNA molecular computation or/and storage unit. An electronic computer and a detector are also supplied as the core of a controller.
The said microfluidic chip includes a DNA molecule computation area and a DNA molecule storage area. The microfluidic chip comprises the operation units for restriction enzyme-mediated DNA cleavage, ligase-mediated DNA ligation, polymerase chain reaction (PCR) and chip electrophoresis. These operations units are connected by microchannels in sequence with liquid control running through the micropumps and microvalves. The controller is connected to the electrodes of the microfluidic chips of the DNA molecule computation unit and the DNA molecule storage unit.
A unique aspect of this invention is the design of specific DNA sequences to be used in the computation or/and the transfer molecules as the operation media in a DNA molecule computation area. With such design, the output DNA molecule can represent computation results after the biochemical reactions were carried out by various enzymes. The biochemical reactions used in this invention include restriction enzyme-mediated DNA cleavage, ligase-mediated DNA ligation and PCR. Guided by the instruction of the said controller, various kinds of said biochemical enzymes were chosen and operated to complete the reactions on the microfuidic chip. The input part of said DNA molecule computation unit corresponds to the DNA computation molecule and/or DNA transfer molecule with specific sequence, while the output part corresponds to a DNA output molecule that represents computation results obtained through biochemical processes such as DNA cleavage and DNA ligation. A PCR amplification region is placed in front of the result output region in order to amplify the signal.
The DNA molecule storage area in this invention comprises of storage media, reaction media and the microfluidic chip. The said storage media includes a short-chain DNA molecule with a known sequence as a DNA blank molecule in an initial operation, and the DNA storage molecule that represents superposition results through biochemical reactions. The reaction media includes various kinds of biochemical enzymes used in DNA cleavage, DNA ligation and PCR. The microfluidic chip comprises of operation units of DNA cleavage, DNA ligation, PCR and chip electrophoresis, which are connected by microchannels in sequence with the liquid control running through the micropump and microvalve. Guided by instructions from the said controller, various said biochemical enzymatic reactions were carried out. The operation processes and the results were stored in said DNA molecule. The input part of said DNA storage molecule corresponds to the DNA blank and/or DNA storage molecule that contains a known sequence, while the output part corresponds to a DNA storage molecule after performing “superposition operations” obtained through biochemical processes of DNA cleavage, DNA ligation and so on.
The said detector in this invention performs detection of the DNA output molecule on the DNA molecule computation unit. Based on detected results, the said electronic computer sends commands to the DNA molecule computation unit and DNA molecule storage unit. These commands further enable the DNA molecule operation unit and DNA molecule storage unit to complete the whole reaction processes. Said detector can be a laser induced fluorescence detector, an electrochemical detector or an ultraviolet detector.
Sections for storing all kinds of operation media and reaction media are designed on said microfluidic chip. These sections are connected to each corresponding enzymatic reaction region through microchannels. Regions for storing buffer solution and waste solution, respectively, in a unified manner on said microfluidic chip are also provided
The inventors of this invention use the existing facility to design and set up a DNA computer with a microfluidic chip, which comprises of a microfluidic chip, a microfluidic chip workstation and a kit for completing all kinds of enzymatic reactions. The microfluidic chip is obtained by the superposition of a flat A with groups of microchannels and various operation units integrated on one side and a sealed flat B. Flat A possesses groups of various microchannels and operation units. The width of the microchannel in the chip is 75 μm. The cross section of the microchannels is an inverse trapezoid or a rectangle. Channels are sealed between the two flats, with the inlet and outlet of the channels set up on flat A. Flat B is a cover plate.
The said microfluidic chip can be made of glass, quartz or plastic, wherein plastic chip includes PDMS chip, PMMA chip and PC chip.
The microfluidic workstation is a set of existing and common work systems for the microfluidic chip, which consists of the integrated chip electrophoresis platform, laser induced fluorescence detector, CCD detector, power supply and computer operating system. It serves the functions of power supply for the chip, signal collection, and hardware control of the DNA computer.
A series of biochemical reagents are needed, in order to make said DNA computer carrying out functions of input, output, computation and storage. A kit including a piece of microfluidic chip for DNA computer; a set of each of restriction endonuclease reagents, ligase reagents, and PCR reagents; a bottle of electrophoresis buffer solution; and a set of standard DNA fragments are also included in this invention.
The restriction endonuclease reagents in this invention include restriction endonuclease and the reaction buffer solution. The restriction endonuclease belongs to the class of Fok I, Bgl I, BstX I, Sfi I and so on. The ligase reagents contain T4 DNA ligase and the reaction buffer solution. PCR reagents comprise Taq DNA polymerase, the reaction buffer solution and deoxyribonucleotide triphosphate (dNTP). A DNA marker with known length is used as the internal standard to determine the length of the DNA products.
Over all, this invention unprecedented adopts microfluidic chip technology to substitute currently used test tube or surface operation in the DNA computation process. The microfluidic chip technology described in this invention performs exact and controllable operations, and can be scaled up to integrate high flux. The invention provides a realistic and possible platform for constructing a DNA computer within the rigorous sense.
This invention presents a microfluidic chip-based DNA computer which comprises a microfluidic chip workstation, a microfluidic chip and a set of kits to hold all kinds of reagents for the enzymatic reactions (
An existing device that shows the microfluidic chip workstation of integrated DNA computer was depicted in
The computationarithmetic logical unit (a) is on left hand side of the chip, as shown in
On the storage side of the chip, as shown in
As shown in
This invention is unique as functions of each composition unit of the microfluidic chip-based DNA computer (shown in
The functions of the microfluidic chip-based DNA computer are described below:
For convenience, the finite state automaton with two input symbols of a, b and three states of S0, S1, S2 is adopted to illustrate functions of the microfluidic chip-based DNA computer in
In general, a triangle can be regarded as being composed of several line fragments of the same length, as shown in
The formula for corresponding state transfer of the finite state automaton in
The transfer molecules are designed as:
The twenty (20) base pairs on the left of the transfer molecules are assembled into different sequences.
The blue print of the finite state automaton of the microfluidic chip for a DNA computer is depicted in
For example, when DNA molecules and the corresponding reaction reagents are added into the enzymatic cleavage reaction reservoir (1) in
A detailed description of how to perform the five major functions of DNA computer in the finite state automaton on the microfluidic chip is shown below:
Symbols of the input molecules in the finite state automaton in
Terminator Molecule:
For example, if the finite state automaton with the initial state of “S0” and input symbol of “aabbb”, the corresponding DNA input molecule is obtained as the following:
The solution containing the above-mentioned DNA sequence is guided into the reservoir (1) of the chip on the computing computation unit (Group (a) side a in
The restriction endonuclease of FokI is chosen. Its recognition site is 5′ . . . GGATG(N)9▾ . . . 3′ and the enzymatic cleavage site is located at the end of 9th nucleotide. After enzymatic cleavage, a 4 bp sticky end (the 9th to 13th nucleotide on the 5′ end of the opposite strand) is formed with its sequences vary according to the combination of different states and symbols. Table 2 depicts such a combination.
Each sticky end formed by enzymatic cleavage is ligated to a transition molecule with a complementary sticky end of the enzymatic reaction carried out by T4 DNA ligase.
The output-detecting molecule is designed to detect the corresponding states resulted from detecting program. Thus, the finite state automaton of each terminator state is designated to a corresponding output-detecting molecule as follows:
The output-detecting molecules and output-molecules joined together to form a report molecule which is detected and recorded in reservoirs (4)˜(6) on the chip, as shown in
The calculating computational procedure and corresponding electropherograms of finite state automaton with an “aabbb” input symbol was shown in
The storage is completed by the data structure of “stack” in the microfluidic chip-based DNA computer. According to the computational results shown by the transfer molecule and the corresponding symbol, the microfluidic chip workstation controls the storage chip to record the corresponding data into memory molecules, and executes the storage function.
The results of computation are fed back to the workstation. A pre-designed computer program controls the storage unit on the right hand side of the chip which stores the corresponding data in memory molecules. The sequences of the events are depicted as follows:
One of the biggest challenges in the field of DNA computing up to now is to build storing storage units that are capable of storing all the intermediate states and results of the calculation. This obstacle is unlikely to be resolved by conventional in-test-tube protocols. On other hand, our microfluidic chip technology is capable of solving this problem.
In detail, data structures like table, stack and queue are of vital importance to DNA computers as well as to conventional computers. Inputting symbol of “aab” is used as an example to illustrate how to generate the stack storing on microfluidic chip. We assume that the initial state of the storage unit is “empty (E)” (see
Molecule E was designed by amplifying the plasmid PUC 19 (TaKaRa Biotechnology Co., Ltd) with primer L1 and R1 which results in a DNA fragment of 304 bp. This DNA fragment, at the location of 417-422 (based on PUC 19 sequences), contains the recognition site of restriction endonuclease BamHI: GGATCC. A sticky end on its left hand side of the E molecule is obtained by BamHI cleavage of the DNA molecule.
To design the storage unit molecule in the stack, the sticky end on the right hand side of Memory-a and Memory-b molecules will be annealed with the sticky end of the blank molecule “E” after BamHI cleavage first. The intermediate products will then be cleaved by FokI again because they comprise the recognition site of FokI. Storage is based on the state and the symbol of the transition molecule encoded. As mentioned before, Memory-a or Memory-b adds a 13 by or 21 bp, respectively, to the blank molecule “E” until the output of the terminator molecule. The results of the storage could be obtained via the length or sequence detected at the end.
A detailed operation process of storage is described as follows:
Firstly, the E molecule with a sticky end on its left hand side is obtained by the restriction endonuclease BamHI cleavage of DNA molecule at 30° C. in chamber (10) (
Using “aab” input symbol as an example, the dynamic storage process of the finite state automaton is described as follows. The schematic view of the stack storage process and the corresponding electropherograms of the product of each storage step are depicted in
Number | Date | Country | Kind |
---|---|---|---|
200410082858.3 | Dec 2004 | CN | national |
200410082860.0 | Dec 2004 | CN | national |
200410100842.0 | Dec 2004 | CN | national |