The present invention relates to a biochip, and more particularly to a microfluidic chip.
A biochip is a miniaturized device that allows specific biochemical reactions between specified biological materials (e.g. nucleic acid or protein) and other under-test biological samples by employing a microelectromechanical systems (MEMS) technology. After the reaction signals are quantified by various sensors, the possible biochemical reactions can be realized. In other words, the miniaturized device fabricated by a microelectromechanical technology and a biological technology is referred as the biochip. For example, the biochip is a microfluidic chip or a lab-on-a-chip. The applications of the biochip cover the disease diagnosis, the gene probe, the pharmaceutical technology, the microelectronic technology, the semiconductor technology, the computer technology, and the like.
Recently, due to the rapid development of the biomedical and the rising awareness of personal health, the demands on fast symptom detection and correct diagnosis are gradually increased. The medical organizations or research organizations pay much attention on seeking the platform for automatically and quickly acquire large numbers of detection data. With the development and maturity of the microelectromechanical systems technology, the microfluidic chip becomes a rapidly developing research field. By means of the microelectromechanical systems technology, a series of steps of carrying out the complicated biological reaction (e.g. sampling, sample handling, sample separation, reagent reaction and detection) can be integrated into a small microfluidic chip. In other words, the microfluidic chip has many benefits such as low cost, rapid detection and low reagent and sample consumption.
However, the conventional microfluidic chip still has some drawbacks. For example, after a photoresist pattern layer is formed on a substrate, the surface of the photoresist pattern layer is directly connected with a biological material in order to detect the under-test molecule. Since the adhesion between the biological material and the photoresist material is insufficient, the detecting precision and stability of the conventional microfluidic chip are usually unsatisfied.
Therefore, there is a need of providing an improved microfluidic chip so as to obviate the above drawbacks.
The present invention provides a microfluidic chip with enhanced precision and stability, so that applications of the microfluidic chip are more expansive.
In accordance with an aspect of the present invention, there is provided a microfluidic chip. The microfluidic chip includes a base layer, a fluid layer, and a gas regulating layer. The base layer includes a microarray detecting zone. The microarray detecting zone includes a substrate, a photoresist pattern layer, a blocking layer, a bonding layer, at least one linker molecule, and a probe molecule. The photoresist pattern layer is formed on a surface of the substrate. The blocking layer is formed on the surface of the substrate at a region uncovered by the photoresist pattern layer. The bonding layer is covalently attached to the photoresist pattern layer. The at least one linker molecule is covalently bonded to the binding layer. The probe molecule is covalently bonded to the at least one linker molecule for specifically reacting with an under-test molecule. The fluid layer is disposed over the base layer, and includes plural flow channels for introducing or collecting detecting reagents. The gas regulating layer is disposed over the fluid layer for controlling open/close statuses of the flow channels, thereby controlling a flowing condition of a fluid in the fluid layer.
The above contents of the present invention will become more readily apparent to those ordinarily skilled in the art after reviewing the following detailed description and accompanying drawings, in which:
The present invention will now be described more specifically with reference to the following embodiments. It is to be noted that the following descriptions of preferred embodiments of this invention are presented herein for purpose of illustration and description only. It is not intended to be exhaustive or to be limited to the precise form disclosed.
The substrate 21 is for example a glass substrate, a silicon chip substrate, or a plastic substrate or a polymeric substrate.
The photoresist pattern layer 22 is made of a SU-8 photoresist material. The photoresist pattern layer 22 is employed to define a microarray structure. Each spot of the microarray structure has a diameter of about 10˜300 μm. Preferably, the photoresist pattern layer 22 is produced by a maskless lithography process.
Preferably, the blocking layer 23 is made of dimethyldichlorosilane. The surface of the blocking layer 23 has no functional groups. The blocking layer 23 may block the under-test molecule from being attached thereon through a non-specific reaction. Consequently, the subsequent biological detecting reactions may precisely occur at the microarray structure, which is defined by the photoresist pattern layer 22.
Preferably, the bonding layer 24 is made of 3-[Bis(2-hydroxyethyl)amino] propyl-triethoxysilane. Moreover, the bonding layer 24 has hydroxyl groups as active functional groups. Consequently, the bonding layer 24 may be connected with the linker molecule 25 via the bonding layer 24.
Preferably, the linker molecule 25 is made of 1,4-phenylene diisothiocyanate. An isocyanate group of the linker molecule 25 may be connected with the active functional group of the binding layer 24, and another isocyanate group of the linker molecule 25 may be connected with the active functional group of the probe molecule 26 (e.g. the N-terminal amino group of a protein molecule).
Depending on the biological detection target, the probe molecule 26 may be a nucleic acid or a protein. Consequently, the probe molecule 26 may be used in genetic testing, antibody-antigen reaction detection, enzyme-substrate reaction detection, receptor-ligand reaction detection, aptamer-target reaction detection, cellular reaction detection or protein-protein reaction detection. In other words, the biologic molecule capable of specifically reacting with the under-test molecule may be served as the probe molecule 26.
Please refer to
Moreover, each of the plural micro valves 45 is aligned with a corresponding micro channel 34. Each of the plural micro valves 45 comprises a valve pore 451 and a valve chamber 452. The valve pore 451 is formed in the second surface 42 of the gas regulating layer 4. The valve chamber 452 is concavely formed in the first surface 41 of the gas regulating layer 4 and disposed over the corresponding circular membranes 34a of the micro channel 34. The valve pore 451 is connected with a silicone tube and a solenoid valve (not shown). Consequently, a gas may be introduced into the valve chamber 452 through the silicone tube and the valve pore 451. The gas may force the fluid layer 3 underlying the valve chamber 452 to be moved downwardly, so that the circular membranes 34a of the micro channel 34 is compressed to block the fluid within the micro channel 34. On the other hand, once the gas is discharged, the compressed fluid layer 3 is moved upwardly and returned to the original position. Consequently, a negative pressure is generated to facilitate the fluid to flow within the micro channel 34. In other words, the micro valve 45 is opened or closed by selectively charging the gas into the valve chamber 452 or discharging the gas from the valve chamber 452.
Please refer to
Moreover, the fluid layer 3 further comprises a liquid collecting channel 38. The liquid collecting channel 38 is concavely formed in the first surface 31 of the fluid layer 3. Moreover, the liquid collecting channel 38 is in communication with and arranged between the reactive region 36 and the solution outlet 37. Moreover, the gas regulating layer 4 further comprises a liquid collecting valve 47. The liquid collecting valve 47 is aligned with the collecting channel 38. The liquid collecting valve 47 comprises a valve pore 471 and a valve chamber 472. The valve pore 471 is formed in the second surface 42 of the gas regulating layer 4. The valve chamber 472 is concavely formed in the first surface 41 of the gas regulating layer 4, and disposed over the liquid collecting channel 38. The valve pore 471 is connected with a silicone tube and a solenoid valve (not shown). Consequently, a gas may be introduced into the valve chamber 472 through the silicone tube and the valve pore 471. The gas may force the fluid layer 3 underlying the valve chamber 472 to be moved downwardly, so that the liquid collecting channel 38 is blocked. On the other hand, once the gas is discharged, the compressed fluid layer 3 is moved upwardly and returned to the original position. Meanwhile, a negative pressure is generated to facilitate the fluid to flow to the solution outlet 37 through the liquid collecting channel 38, and thus waste solution produced by the specific reaction is exhausted out from the solution outlet 37. In other words, the liquid collecting valve 47 is opened or closed by selectively charging the gas into the valve chamber 472 or discharging the gas from the valve chamber 472.
In an embodiment, the thickness of the fluid layer 3 is about 42 pm, the depth of the micro channel 34 is about 10 μm˜18 μm, the thickness of the gas regulating layer 4 is about 4 mm, and the depths of the valve chambers 452, 472 and the pump chambers 462 are about 100 μm. The above dimensions are not restricted. It is noted that the numbers and arrangements of the solution inlets 33, the micro channels 34, the second slot 44 and the micropump group 46 may be varied according to the practical requirements.
From the above descriptions, the microfluidic chip of the present invention comprises a base layer, a fluid layer, and a gas regulating layer. The gas regulating layer can control the fluid (e.g. samples, reagents and clearing solutions) to be flowed within the fluid layer. Under this circumstance, a specific reaction between the under-test molecule of the sample and the probe molecule occurs at the microarray detecting zone, so that the under-test molecule can be detected. Moreover, the microarray detecting zone of the base layer comprises a substrate, a photoresist pattern layer, a blocking layer, a bonding layer, a linker molecule, and a probe molecule. Through the bonding layer and the linker molecule, the probe molecule is covalently bonded to the photoresist pattern layer. Consequently, the adhesion between the probe molecule and the photoresist pattern layer is increased, and the stability of the microfluidic chip of the present invention is enhanced. Moreover, the blocking layer of the microfluidic chip of the present invention is formed on the surface of the substrate at the region uncovered by the photoresist pattern layer. Since the blocking layer may block the under-test molecule from being attached thereon through a non-specific reaction, the precision of the microfluidic chip is enhanced. Moreover, the photoresist pattern layer may be produced by a maskless lithography process in order to reduce the fabricating cost and effective minimize the microarray structure of the microfluidic chip. In a case that the photoresist pattern layer is produced by the maskless lithography process, each spot of the microarray structure has a diameter smaller than 300 μm and the fabricating process is simplified. In other words, the microfluidic chip of the present invention has enhanced precision and stability. Moreover, since the fabricating cost is reduced and the fabricating process is simplified, the applications of the microfluidic chip of the present invention are more expansive.
While the invention has been described in terms of what is presently considered to be the most practical and preferred embodiments, it is to be understood that the invention needs not be limited to the disclosed embodiment. On the contrary, it is intended to cover various modifications and similar arrangements included within the spirit and scope of the appended claims which are to be accorded with the broadest interpretation so as to encompass all such modifications and similar structures.
Number | Date | Country | Kind |
---|---|---|---|
100219167 | Oct 2011 | TW | national |