The invention relates in general to the field of microfluidic devices, and in particular, to ligand-receptor assay or immunoassay devices.
Microfluidic devices are generally known, including immunoassay devices. Easy-to-use immunoassay devices are generally desired for point-of-care applications. For instance, “one-step” (immuno)assays akin the well known pregnancy test have been developed, wherein all reagents needed to detect an analyte of interest in a sample are integrated into the device during manufacturing. A non-expert user only needs to add a sample in a sample-receiving structure of the device. From there, the sample flows and redissolves the reagents, which then react with the analyte so as to make it detectable by means of, for example, optical or electrochemical methods. Typically, detection of analytes that have been reacted with the reagents occurs in a region of the device that is located after the area containing the reagents.
Point-of-care diagnostics should benefit from miniaturization based on microfluidics because microfluidics integrate functions that can together preserve valuable samples and reagents, increase sensitivity of a test, and accelerate mass transport limited reactions. Detection of several analytes in parallel is also facilitated by miniaturization. Finally, miniaturization increases the portability of diagnostics by reducing their size and weight. However, a challenge is to incorporate reagents into microfluidics and to make the devices simple to use. Yet another challenge is to make devices for one-step assays disposable and cheap to manufacture. For this reason, devices for one-step assays rarely have actuation mechanisms that interact with flow of liquids and reagents.
L. Gervais and E. Delamarche have recently demonstrated a concept for one-step immunoassays using microfluidic chips (Lab Chip, 2009, 9, 3330-3337). More in detail, the authors have integrated reagents such as detection antibodies (dAbs) and capture antibodies (cAbs) with microfluidic functional elements for detecting analyte molecules inside a sample using a one-step immunoassay: the integrated device only requires the addition of sample to trigger a cascade of events powered by capillary forces for effecting a sandwich immunoassay that is read using a fluorescence microscope. The microfluidic elements comprise a sample collector, delay valves, flow resistors, a deposition zone for dAbs, a reaction chamber sealed with a polydimethylsiloxane (PDMS) substrate, and a capillary pump and vents. Parameters for depositing 3.6 nL of a solution of dAb on the chip using an inkjet are optimized. This deposition by means of an inkjet is sometimes termed “spotting”. The PDMS substrate is patterned with receptors for analytes, which provide signal areas as well as positive control areas. Various storage conditions of the patterned PDMS were investigated for up to 6 months, revealing that storage with a desiccant preserved at least 51% of the activity of the cAbs. C-reactive protein (CRP), a general inflammation and cardiac marker, was detected with this one-step chip using only 5 μL of human serum, by measuring fluorescent signals from 30×100 μm2 areas of the PDMS substrate in the wet reaction chamber. In this example, the one-step chip can detect CRP at a concentration of 10 ng mL−1 in less than 3 min and below 1 ng mL−1 within 14 min.
In the above paper, three types of structures for spotting and dissolving the dAbs are disclosed, which are reproduced here on
The geometries of said structures were developed with the sake of miniaturization (for better assay performances) while bringing spotted dAbs directly on the sample flow path or near to it so that dAbs can dissolve in the sample flowing through the device. Spotting small volumes of liquids in such devices (i.e., a few nL or tens of nL) is challenging but can be achieved thanks to inkjet technology.
More in detail, in
Next,
In fact, the sensitivity of an assay is strongly affected by the time during which dAbs bind to analytes and surface-immobilized receptors and the volume of sample in which dAbs dissolve. There is a time/volume equivalence due to the flow rate equation: t=V/Q, where t is the time needed to displace a given volume V at a flow rate Q.
In a one-step assay, it might be realized that the dissolution profile of dAbs is hard to optimize because, ideally, no actuation on Q, the flow rate, is performed by an operator or instrument. Actuation of Q on a chip is possible but requires expensive and complex devices and a source of power for actuation.
To summarize, a structure with a main straight channel section as in
Some examples of how to slow the release of reagents in microfluidic devices are provided below together with explanations on their limitations. In a structure such as depicted in
Therefore, the prior art structures of
According to a first aspect, the present invention is embodied as a microfluidic device comprising: a flow inlet and a flow outlet; one or more bypass channels defining a first flow path toward the flow outlet; and an auxiliary channel defining a second flow path toward the flow outlet, comprising a reagent area adapted to receive a reagent, and joining at least one of the one or more bypass channels at a junction downstream the reagent area with respect to the second flow path.
In other embodiments, the said device may comprise one or more of the following features:
The invention is further embodied, in another aspect, as a method for operating a microfluidic device, comprising the steps of: providing the microfluidic device according to the invention; depositing a reagent in the reagent area of the microfluidic device, preferably by inkjet deposition; and letting a fluid flow from the flow inlet to the flow outlet, such as to carry the reagent downstream the reagent area with respect to the second flow path.
This method preferably comprises a further step of monitoring a chemical reaction downstream the junction, the chemical reaction occurring notably due to the carried reagent.
Devices and methods embodying the present invention will now be described, by way of non-limiting example, and in reference to the accompanying drawings.
For the sake of pedagogy and clarity, details or features represented in the appended drawings may deliberately be exaggerated, simplified, omitted or truncated, and are not necessarily to scale.
As an introduction to the following description, it is first pointed at general aspects of the invention. The microfluidic device has a flow inlet and outlet, generally defining a flow direction. A bypass channel (or more) and an auxiliary channel are provided which respectively defines a first and a second flow path toward the same outlet. The auxiliary channel connects to a reagent area, i.e., designed to receive a reagent (e.g., chemical or biological, such as dAb). It further joins the bypass channel at the level of a junction downstream the reagent area (with respect to the second flow path), e.g., like a T-junction. Such a solution provides a simple way of adapting the dissolution rate of the reagent.
For the sake of exemplification, embodiments of the present invention described below mostly refer to immunoassay devices. However, it shall be apparent to those skilled in the art that other microfluidic devices can be contemplated with similar features as described above.
The channel structure further exhibits an auxiliary channel 21, which defines another flow path toward the outlet. The latter can be referred to as the “second” flow path, as opposed to the “first” flow path defined by a bypass channel. The flow paths defined by all bypass channels can be regarded as one and a same, i.e., global flow path. As said, the auxiliary channel 21 is the channel that comprises the reagent area 215, which is itself designed to receive a reagent 200, e.g., dAbs. The reagent area can be designed similarly to that of
Furthermore, as to be seen in
Remarkably, having several types of channels, with the reagent (auxiliary) channel branching onto the bypass channel(s), provides a simple way of adapting the dissolution rate of the reagent. In other words, a larger volume of sample containing the reagent is effectively obtained after the junction, compared with methods such as discussed earlier. For example, the number of bypass channels might be adapted such as to obtain the desired dissolution rate, with transverse channel dimensions which possibly differ (like in
On the contrary, in variants, all channels may be provided with similar channel sections (including the auxiliary channel). In such a case, adding n bypass channels to one auxiliary channel amounts to multiply the volume of sample containing the reagent by n+1. Therefore, adding n bypass channels amounts to consider a flow rate divided by n+1 in each channel, implying smaller dissolution rates in fine.
The operation of the depicted device is quite simple. Reagent 200 is deposited in the area 215 of the microfluidic device, e.g., by inkjet deposition. Then, a fluid can be drawn from the inlet to the flow outlet, such as to carry the reagent downstream the reagent area, as depicted by arrows. At the level of the junction J1, the flows from the auxiliary and bypass channels merge, such that the effective dissolution rate measured downstream the junction is decreased. A given chemical reaction can subsequently be monitored downstream the junction, e.g., using suitable detection means (not shown).
In embodiments, the device is configured such that the auxiliary channel provides a smaller flow rate than the bypass fluid channel at the junction. This can for instance be achieved by increasing the number of bypass channels, as evoked earlier. Also, the device may be designed to constrict a flow in the auxiliary channel, e.g., upstream the reagent area.
In practice, and as depicted in
Furthermore, in embodiments, the auxiliary channel typically splits from a bypass channels at the level of a split S1, located upstream the reagent area 215. In this regard, the flow constriction area 30 is conveniently located at the level of or downstream the split S1 (and upstream the reagent area).
Providing constriction areas is however not mandatory. As said, the dissolution rate can be adapted by varying only the numbers or size of the bypass channels. In addition, in embodiments, the relative transverse dimensions of the bypass and auxiliary channels may differ, which also impacts the dissolution rate, without requiring any constriction area.
In other embodiments, one may not only provide constriction areas but, in addition, vary the relative transverse dimensions of the channels, as depicted in
As further seen in
To summarize
σ=Rreagent/(Rreagent+Rbypass)=RreagentRtotal
and
Θ=(1−σ)
The dilution factors Θ obtained typically vary from 0.04 (or 4%) to 0.85 (or 85%). A higher dilution factor corresponds to a higher dilution of the reagents, i.e. the reagents are present in a larger volume fraction of a sample.
Now, although such channel designs have generally been found satisfactory, constrictions might yet pose a challenge on the mass manufacture of chips (e.g., using plastic materials and mold injection/hot embossing).
For example, in
In
In
As a note, one may question whether the auxiliary channel joins a bypass channel at the primary and/or at a secondary junction (J1 or J2). This however is a mere rhetorical question, and depends on the flow path considered. Considering a first flow path (defined by channel 11), one is tempted to conclude that channels 11 and 21 rejoin at J1 rather than J2. Considering the second flow path (defined by auxiliary channel 21), one would conclude the opposite. It remains that in all cases, the auxiliary channel joins at least one of the bypass channels at a junction downstream the reagent area with respect to the second flow path. Furthermore, a secondary junction is located downstream the primary junction, with respect to the second flow path (i.e., defined by the auxiliary channel).
In this regard, as represented in
In the above cases, no small constriction needs to be fabricated (easier to manufacture). In addition, such designs lessen issues with clogging and particulates (if cells are in the sample, they will not be potentially broken by shear forces).
In addition, delay valves could be provided at all locations where air bubbles could form (e.g., at secondary junctions J2, i.e., on the outlet side where liquid streams merge). In this respect, a valve preferably consists of two quarter-circle channels merging with an exit path having a width that is roughly double than that of the quarter-circle structures. Broadly, if a liquid comes from only one side in a single quarter-circle, it cannot proceed to the exit path but waits for liquid from the other quarter-circle. When liquids merge from both sides, filling proceeds toward the exit path. Such valves can further be added on top of each other.
Here, the volume (time) in which (during which) the reagent is dissolved is controlled by the contribution of each flow path to the stream of liquid leaving the overall deposition zone 215. The volumes and flow resistances of each of the paths do therefore matter.
The designs shown in
Such a design allows for a satisfactory filling with sample, as judged from tests performed using human serum. No bubble appeared to clog the exit path. In particular, spotting using inkjet 20 dAb solution drops of 180 picoliter (pL) each was easily achieved. A typical dilution factor obtained with such a design is Θ=0.93 (or 93%), the dilution parameter σ=0.07, and the volume Vreagent of the reagent area being about 4 nanoliter (nL). In that case, the reagent will be dissolved in at least 4/0.07=57 nL of sample.
In addition and as noted earlier, one may want to monitor 300 a chemical reaction 200 downstream the junction, the reaction being triggered notably by the carried reagent. For example, the carried reagent can be a fluorescently-labeled dAb that binds specifically to an analyte present in the sample. The analyte-dAb pairs are captured by antibodies immobilized on the surface of channels downstream the junction. Once captured, the analytes are detected by means of e.g., fluorescence because they are bound to a dAb. In this example, the chemical reaction 200 is a “sandwich” fluorescence surface immunoassay. Many other types of chemical or biochemical tests can be done as well. For example, DNA or RNA molecules, proteins, antigens, peptides, pathogens, pollutants, chemicals, toxins can be detected using reagents that are deposited in the deposition area 215 and dissolved using a chosen dilution parameter. Moreover, other types of signals than fluorescence can be used. For example, the reagent 200 can be fluorescently-labeled oligonucleotides, or a functionalized nanoparticles or colored latex particle. It can also be a dAb that is functionalized with an enzyme or gold nanoparticles, for example. More than one type of reagent 200 can be deposited alone or together with some salts, surfactants or chemicals in the deposition area 215. The role of the chemicals deposited can vary greatly as it can for example be a mixture of fluorescently-labeled dAbs with some enzymes for lysing pathogens, and chemicals such as sugars, which are used to improve the stability of dAb in the dry state in a manufactured device. A chemical can also be spotted over the spotted dAbs to further retard their dissolution and augment the dilution factor, if needed. Convenient detection means are therefore preferably involved (not shown), downstream the outlet 102.
The channels are in this example further characterized by the following parameters. The flow resistances are:
The dilution factor obtained is Θ=99.84%, for a reagent area volume Vreagent of 3.2 nL. In that case, the reagent (e.g., dAb) will be dissolved in at least 3.2/0.0016=2 μL of sample. While the present invention has been described with reference to certain embodiments, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted without departing from the scope of the present invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the present invention without departing from its scope. Therefore, it is intended that the present invention not be limited to the particular embodiment disclosed, but that the present invention will include all embodiments falling within the scope of the appended claims. For example, other materials than PDMS, silicon or plastic could be involved. Microfluidic devices such as described above may find numerous applications to immunoassays, DNA tests and tests that are based in general on the principal of ligand-receptor interactions wherein a ligand or a receptor is an analyte of interest. Many other variants can be contemplated. For instance, dissolution retarding species could be added in the reagent zone, in order to further tune the dissolution rates.
Number | Date | Country | Kind |
---|---|---|---|
10189178.6 | Oct 2010 | EP | regional |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/IB2011/053456 | 8/3/2011 | WO | 00 | 9/3/2013 |