BRIEF DESCRIPTION OF THE DRAWINGS
The present invention is disclosed with reference to the accompanying drawings, wherein:
FIG. 1 is a top perspective view of a microfluidic device according to the present invention;
FIG. 2 is a top perspective view of an external source of fluid container communicating water, ethanol, and air into the microfluidic device according the present invention;
FIG. 3 is a side perspective view of a microfluidic device according to the present invention.
Corresponding reference characters indicate corresponding parts throughout the several views. The example set out herein illustrates one embodiment of the invention but should not be construed as limiting the scope of the invention in any manner.
DETAILED DESCRIPTION
Referring to FIG. 1, there is shown the microfluidic device of the present invention. The microfluidic device 10 comprises a body structure 20 comprising a substrate. In this embodiment, the microfluidic device is in the form of a self-contained card-like point-of-care diagnostic device, which is well known in the art. At least one microfluidic channel 30 is disposed within said substrate. As discussed above, the term microfluidic channel generally refers to a solution flow path into which samples can be introduced and transported. In one embodiment the microfluidic channel may form a loop for continuous and cyclic solution flow through the channel. Other embodiments may comprise a plurality of intersecting channels to form an array or matrix of chambers or junctions at which reactions can occur. It is also contemplated the microfluidic device may contain various other components common to microfluidic devices, such as multiple flow channels, control channels, valves and/or pumps (not shown).
Fluid introduction ports 40, 50, and 60 are disposed on the surface of said body structure 20. The fluid introduction ports 40, 50, and 60 are in fluid communication with at least one microfluidic channel 30 at one end, and are exposed to the environment outside the microfluidic device on the other. In one embodiment, a collar may be molded on the microfluidic device at the portion of each fluid introduction port exposed to the environment, as seen in FIGS. 1, 2, and 3. The introduction ports 40, 50, and 60 are substantially hermetically sealed with elastomeric plugs 70, 80, and 90. In one embodiment, the said collar captures and holds said elastomeric plugs. The term “elastomer” and “elastomeric” has its general meaning as used in the art, e.g., as polymers existing at a temperature between their glass transition temperature and liquefaction temperature. Elastomeric materials exhibit elastic properties because the polymer chains readily undergo torsional motion to permit uncoiling of the backbone chains in response to a force, with the backbone chains recoiling to assume the prior shape in the absence of the force. Elastomers deform when force is applied, but then return to their original shape when the force is removed. Elastomeric plugs 70, 80, and 90 are penetrable by a fluid transmission means.
Referring to FIG. 2, fluid transmission means are shown as hollow needles 100, 110, and 120. Other fluid transmission means such as laboratory pipettes may be employed. The fluid transmission means 100, 110, and 120 are in fluid communication with an fluid source 130 located external to the microfluidic device 10. The external fluid source 130 may contain reservoirs for storing fluids such as ethanol 140 or water 150, or may be comprised of an air pump 160. Fluids are communicated from the external fluid source 130 to the microfluidic device 10 by penetrating at least one fluid introduction port 40, 50, or 60 of the microfluidic device 10 with at least one fluid communication means 100, 110, or 120. In this embodiment, communication is accomplished by causing the hollow needles 100, 110, and 120 to penetrate the elastomeric plugs 70, 80, and 90, and transmiting fluid from the external fluid source 130 through the fluid introduction ports 40, 50, and 60 to the microfluidic channel 30 disposed inside the microfluidic device 10. The elastomeric plugs 70, 80, and 90 maintain substantially hermetic seals before, during, and after penetration by the needles 100, 110, and 120. The needles 100, 110, and 120 are then removed from contact with the elastomeric plugs 70, 80, and 90. The elastomeric plugs 70, 80, and 90 self-reseal to form a substantially hermetic seal following penetration.
Referring now to FIG. 3, a raised side perspective view of the microfluidic device of the present invention is shown. The microfluidic device 10 is comprised of an upper surface 200 and a lower surface 210 connected by an edge. In this embodiment, fluid introduction ports 40, 50, and 60 are disposed in this edge, however, they may be disposed on any surface of the microfluidic device 10 as needed. Fluid introduction ports 40, 50, and 60 are substantially hermetically sealed by elastomeric plugs 70, 80, and 90. Elastomeric plugs 70, 80, and 90 are sized such that a substantially hermetic seal is maintained at all times in fluid introduction ports 40, 50, and 60. The elastomeric plugs prevent leakage and exposure to users and patients by containing all solutions and samples communicated to the device and concurrently prevent contamination of the device's contents by external contaminants.
While the invention has been described with reference to particular embodiments, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the scope of the invention.
Therefore, it is intended that the invention not be limited to the particular embodiments disclosed as the best mode contemplated for carrying out this invention, but that the invention will include all embodiments falling within the scope and spirit of the appended claims.