1. Field of Invention
The present invention relates to a microfluidic inkjet control method, especially a microfluidic inkjet control method that is used to adjust the inkjet waveforms of the thermal print heads.
2. Related Art
Inkjet printing technology uses precision element printing that is applicable to many different materials. It satisfies electronic industry's precision element production demands of automation, is more compact, has lower costs, has a faster production time and reduces the impact on the environment. For example: application on the color filters on the liquid crystal display panel and the organic polymer light emitter diode, PLED, production. The color filter is composed of red, green and blue colors, spread on the substrate and also the black matrixes between the color ink. The inkjet printing process is to spread the ink droplets directly on the concavities formed by the black matrixes on the color filter substrate. Different types of color filters have different color spreading patterns. Compared to the semiconductor production method for color filters, the inkjet printing equipments and production costs are dramatically decreased. The inkjet production method for the organic PLED is similar to the described color filter production method, the only difference is: the organic PLED does not need the black matrixes structure. The organic light emitting material build photo-resistor banksto separate and guide the flow of different material colors.
However, the generic inkjet production method for color filters or organic PLED has a major problem caused by the satellite ink droplets that accompany the main ink droplets. If the satellite droplets are formed as ink drops break off during the drop ejection, it will follows the main drop to land on substrate, and typically, has position deviation with main drop, then makes a defect on substrate. This characteristic occurs randomly. The path of the satellite droplets usually has a slightly different angle shifted from the main ink droplets and has scattering distribution. This behavior causes serious problems, such as color mixing and low performance efficiency. At the worse case scenario, the satellite droplets can be as far away from the main droplet as 100 μm. For the stripe color filter or organic PLED, the satellite droplets have less influence in the horizontal direction, but would cause color mixing in the vertical direction. If the distance between the nozzle and the printing substrate is large, the satellite droplets can fall further away from the main droplets. The simplest solution is to move the nozzle closer to the printing substrate, so the satellite droplets are hidden within the main droplet. However, if the nozzle is too close to the printing substrate, it is easy to scratch the substrate. On the other hand, if the distance is too short, the ink drops may not be able to break-off completely, so they are dragged on the substrate; this can cause the main droplets to be shifted from the predetermined position and color mixing.
The method for solving the satellite droplet problem completely is to reduce the probability of their occurrences. Since the density of ink increases as it is heated, the size of the ink droplet becomes inconsistent, and it may even influence the deviation straightness of the ink and make the satellite droplets problem worse. Therefore, the internal flow structure of the print head needs consist with the characteristics of the ink (viscosity coefficient and surface tension) and the surface characteristics of the nozzle material, or by changing the driving waveform of the nozzle to reduce the occurrence of the satellite drops by controlling the ink ejection condition. Such as the inkjet driving method proposed by U.S. Pat. No. 6331039, which divides the driving signal into two stages. The first driving signal preheats the ink and does not eject the ink. After a rest period, the second driving signal then ejects the ink. By using the first driving signal and the rest period, the ink ejection amount variation, which is changed with differential outside temperature, has been controlled.
As described in U.S. Pat. No. 6357846, when the nozzle is idle for a period of time, the viscosity of the ink in the nozzle near nozzle opening increases and causes the ejection of the ink drop to be unstable. The patent revealed a method to adjust the ink ejecting waveforms by adding a fine vibration to the main driving waveform. Using the fine vibration to provide the ink viscosity energy can keep the ink in a more consistent uniform condition. Input signals control the two kinds of waveforms to reduce the problem caused by the increasing viscosity of the ink droplet. The method must use two signals to control the main driving waveform and the fine vibrating waveform separately, so it is more complicated.
Since the ink droplet's ejection amount during the inkjet process is easily affected by the change in ink cartridge pressure and the environmental temperature, which affect the element's homogeneity, a more appropriate ink ejecting signal can be provided by adjusting the ink ejecting waveform or changing the driving method of the print head. As described in U.S. Pat. No. 5798772, modulating the pulse width can provide different heating energy. The heating energy and the voltage ratio are kept constant to improve the image quality. U.S. Pat. No. 6439687 provided a printing head driving method that changes the regular block driving. By using an irregular block driving sequence method it reduces the pressure variation affecting the ink cartridge, increasing the quality of the image.
Also, using the inkjet method to produce components requires very precise positioning to eject the ink droplet onto a predetermined position. Since the inkjet procedure of every type of color filter or organic PLED requires different resolutions and different types of components, they require complicated control systems and adjustment mechanics. These cause device pixel with different types or resolutions, requiring specific production equipments or printing head designs. Therefore, an efficient and simple control method to complete different types of components during the inkjet production process is a major development goal of the inkjet production technique. Like the inkjet alignment correction apparatus for color filter production described in U.S. Pat. No. 5984470, the to be printed color filter and the nozzle of the print head has displacements. Further, the apparatus adjusts the nozzle angle to the to be printed color filter substrate to execute inkjet printing to the color filter with the correct resolution.
However, the described print head driving method or the waveform adjustments are focused on the different specific problems and it is easy to create problems while fixing another, so an inkjet production control method needs to provide overall improvement.
To improve the known technology, the invention provides a microfluidic inkjet control method that is applicable to thermal print heads. By using the appropriate method to adjust the desired ink driving waveform, the probability of satellite droplets production is reduced.
As thermal print head's fluid drop forms, for the time period between the print head begins heating until the ink droplet is ejected, microbubbles are produced. If the time period is extended, the ink can produces more microbubbles. If enough microbubbles are formed, a stronger, more complete bubble is formed and the force that ejects the ink droplet out of the print head is also increased. The ejection character of the droplet is improved due to the increased driving energy. The invention divides the main driving waveform to more than one waveform and provides intermittent energy to increase the time period between the print head begins heating and the ink droplet is ejected. It also provides appropriate intercooling stage during the heating period to produce more complete bubble and increases the force that pushes out the ink droplet.
The microfluidic inkjet control method revealed in this invention is by adjusting the driving waveform to reduce the satellite droplets formed with the main droplet during ink ejection. The adjustment of the driving waveform is accomplished by the following steps: first, set a driving energy range that is between a lower critical driving energy and an upper critical driving energy. When the driving energy is greater than the lower critical driving energy, the print head nozzle starts ejecting ink droplets. When the driving energy is greater than the upper critical driving energy, the ink droplets ejected from the print head nozzle start to break and form incomplete scattering drops. It then provides a main driving waveform, which has driving energy between the lower critical driving energy and upper critical driving energy. Multiple time intervals with driving energy greater than 0 are added into the main driving waveform to divide the main driving waveform into more than one waveform to execute intercooling. The intercooling phase will significantly prolong the time period of forming micro-bubble and increase the stronger driving energy to push ink drop.
Also a preheating stage waveform can be added in front of the main driving waveform to increase the stability of the ink droplets injection. Preheating can help keeping each ink droplet's original shape consistent before it is injected, and also keeps the ink in the nozzle in a perturbed condition to compensate the evaporation of the ink at the nozzle surface, so ink does not solidify on the nozzle surface. To cooperate with the described microfluidic inkjet control method, more than one preheating stage waveform is added in front of the main driving waveform. The preheating stage waveform driving energy is lower than the lower critical driving energy, so the ink droplets are not ejected. This achieves the goal of preheating the ink and reduces the chance of ink kogation.
The invention also includes another goal; by controlling the nozzle printing sequence and the nozzle printing time delay, it can control the needed element type of the picture. As described in the previous case, to print device pixels of different resolution, the angle of the nozzle to the ink ejecting substrate can be adjusted to execute appropriate inkjet printing according to the device pixel resolution. The inkjet system adjusts the nozzle rotating angle to fit the pitch of pixel. The microfluidic inkjet control method of the invention also provides a simple inkjet printing module that corresponds with the print head module with the adjustable nozzle rotating angle. By directly input the parameters into the control module, the needed sequence and time delay can be calculated and used to control the print head module to determine the operation of each nozzle. By simple parameter manipulation, printing different types of component pictures can be achieved.
The invention cooperates with the print head module with nozzles, with adjustable rotating angle, and calculates the input printing parameter by the control- processing unit. So the printing sequence of each nozzle head and the printing time differences between the nozzles is computed. The values are then transferred to the control module to control the print head module to determine the operation of each nozzle. The procedure includes the following: first, input the printing component parameters to the central processing unit; the central processing unit calculates the printing sequence of each nozzle head and the printing time differences between each nozzle and defines the sequence table and the time delay table; finally, the control module controls the print head module and prints according to the sequence table, the time delay table, and a driving waveform. When printing different types of device pixels, it is done according to the different printing component parameters. The printing component parameters include: matrix width, front non-printing spacing width (the distance between the reference point to the first printing color block), distance between ink droplets in the same print block, distance between the ink droplets in two neighboring blocks, and the width of the printing block.
matrix width, front non-printing spacing width, distance between ink droplets in the same print block, distance between the ink droplets in two neighboring blocks, and the width of the printing block.
The sequence table definition needs to use a reference nozzle position first, to relate the order of the nozzles. The order between each nozzle is determined by the reference nozzle position and the inkjet printing position. The time delay table determines the time difference between the printing time of the nozzles, and the print head module can be delayed by the rotations of the print heads.
Further scope of applicability of the present invention will become apparent from the detailed description given hereinafter. However, it should be understood that the detailed description and specific examples, while indicating preferred embodiments of the invention, are given by way of illustration only, since various changes and modifications within the spirit and scope of the invention will become apparent to those skilled in the art from this detailed description.
The present invention will become more fully understood from the detailed description given hereinbelow illustration only, and is thus not limitative of the present invention, wherein:
The invention adjusts the driving waveform, to reduce the satellite droplets, accompanying the main droplet during the ink ejecting process. When ink is heated at the nozzle, microbubbles appear; at this time, extending the time period between the heating and the ejecting of the ink, and intercooling stages are inserted. The intercooling stages can extend the time period between heating and ejecting of the ink, so that more microbubbles are produced constructing more complete and stronger bubbles and increasing the force that ejects the ink droplets out of the nozzle. The ejecting property of the ink droplet is improved as the ejection velocity is increased and the flying deviation of the ink droplet is decreased, so the satellite droplets are reduced. A preheating stage waveform, which increases the stability of the ink ejection, is also inserted before the main driving waveform. Preheating can keep the shape of the original shapes of the ink droplets consistent before they are ejected and also keep the ink in the nozzle in liquid state to compensate for the ink evaporation on the nozzle surface. Since the ink evaporation can increase the solidification of the ink on the nozzle surface, the preheating stage waveform, which is ½ to {fraction (1/20)} the size of the main waveform, is added in front of the main driving waveform to reduce the evaporation. The size of the preheating waveform and the intervals can be obtained from experiments.
The microfluidic inkjet control method decreases the occurrence of the satellite droplets by adjusting the driving waveform. Please refer to
The main driving waveform, time intervals with driving energy equals to 0 and the preheating waveform together form the ink driving waveform, and they can obtain the best criteria with the following steps. Please refer to
Set the driving voltage as a constant (step 210), the example in the invention uses 18 volts. Set the smallest driving waveform width (step 220), which is determined by observing the smallest energy that is required to eject a complete ink drop, which is 3 μs and 18 volts (time, voltage). Determine the largest driving waveform width (step 230) that is based on the energy that causes ink drops to diverging or scattering distribution, in this case which is 7 μs and 18 volts (time, voltage). Take the average of the smallest driving waveform width and largest driving waveform width, and use that as the main driving waveform (step 240), which is 5 μs and 18 volts (time, voltage). Insert a time interval with energy 0 into the main driving waveform (step 250) to divide the main driving waveform into more than one waveform to execute intercooling. The driving waveform energy is spread in (2 μs18V), (0.2 μs0V), (2.8 μs18V), which is a total of 5 μs; or insert the intercooling time interval into the main driving waveform (step 260), so the driving waveform energy spread is (2 μs18V), (0.2 μs0V), (3 μs18V), which is a total of 5.2 μs. The intercooling phase will significantly prolong the time period of forming micro-bubble and increase the stronger driving energy to push ink drop. Determine the best criteria for the main driving waveform (step 270), and the spread of the driving waveform of the example for the invention is (2 μs18V), (0.4 μs0V), (2.8 μs18V), which is a total of 5.4 μs. Insert a preheating waveform (step 280), so the driving waveform energy spread is (2 μs18V), (0.4 μs0V), (3 μs18V), which is a total of 5.4 μs. Finally, determine the best driving waveform (step 290) , and the energy spread is (0.1 μs18V), (0.1 μs0V), (0.1 μs18V), (0.1 μs0V), (2 μs18V), (2 μs18V), (0.4 μs0V), (3 μs18V), which is a total of 5.8 μs. Driving pulses of step 210 to step 290 are shown in Table 1.
Please refer to
The invention cooperates with the print head module with nozzles with adjustable rotating angles, and uses different input printing parameters to produce different types of components. The printing element parameters include: matrix width, front non-printing spacing width (the distance between the reference point to the first printing color block), distance between ink droplets in the same print block, distance between the ink droplets in two neighboring blocks, and the width of the printing block. The described printing parameters can be set using the sequence table and the time delay table. The two usual types of device pixels are stripes and mosaic; the invention provides a method applicable to both types by entering different parameters for stripe and mosaic, so no hardware design change is required. Please refer to
Since the nozzles in the print head module are not lined up in a straight line, the invention defines a sequence table, which selects the nozzles used for printing and adds in the order of sequence for the nozzles. The time delay table is a table for the time delays between adjacent nozzle's printing sequences. By controlling the sequence of the nozzles and the time delay, the appropriate printing format can be set for each printing parameter.
When the space between the component picture's resolution and the space between the print head nozzles are different, the print head can rotate to a different angle and change the ink ejection angle to print component pictures of different resolution. The relationship formulas are the following:
Please refer to
Therefore, the invention can be applied to the different production method device pixels. As shown in
The optical detecting module includes an area CCD 13 and a linear CCD 10, used to detect the relative position of the substrate 12 and nozzle-hole of print head module 11. Area CCD 13 is used to detect the position of substrate 12. The linear CCD 10 detects the relative shifted position between print head module's 11 nozzle-hole and the ink-printing track. The area CCD 13 provides the initial position correction and the linear CCD 10 provides instant positioning and precision positioning. The described inkjet equipment is also connected to a central processing unit (not shown in the picture) to control each module unit's operation. The central processing unit connects with a user interface (not shown in the picture) to allow user input print element parameters and transmit them to the control module.
The invention reveals a microfluidic inkjet control method that works with the described equipment, as shown in
Also, before executing a single color ink printing (step 360), a pre-printing operation can be used to test if the printing position is correct. Pre-printing is executed at a blank spot on the glass (step 410) and verifies if the printing position and resolution are correct (step 420). It not, repeat step 350 and further, to arrive at a correct position.
Knowing the invention being thus described, it will be obvious that the same may be varied in many ways. Such variations are not to be regarded as a departure from the spirit and scope of the invention, and all such modifications as would be obvious to one skilled in the art are intended to be included within the scope of the following claims.
Number | Date | Country | Kind |
---|---|---|---|
092125234 | Sep 2003 | TW | national |