The present invention generally relates to modulating valves, and more particularly, to microfluidic modulating valves that can selectively modulate the size of a flow channel.
Many modern industrial, commercial, aerospace, military and medical systems depend on reliable valves for fluid handling. The trends in fluid handling systems are toward smaller, more distributed and more portable systems for increasing uses in instrumentation and control. For example, microfluidic devices have become popular in such applications as analytical testing. In many cases, microfluidic devices are constructed in a multi-layer, often laminated, structure where each layer has channels and structures fabricated from a laminate material to form microscale voids or channels where fluids flow. The control and pumping of fluids through these channels is often affected by either external pressurized fluid forced into the laminate, or by structures located within the microfluidic device.
Many different types of valves for use in controlling fluids in such microscale devices have been developed. Many of these valves, however, are on-off type valves, and do not allow for the fluid flow to be modulated. What would be desirable, therefore, is a microfluidic modulating valve that can selectively modulate the size of a flow channel to allow for the fluid flow to be selectively modulated.
The following summary of the invention is provided to facilitate an understanding of some of the innovative feature unique to the present invention and is not intended to be a full description. A full appreciation of the invention can be gained by taking the entire specification, claims, drawings, and abstract as a whole.
The present invention generally relates to modulating valves, and more particularly, to electrostatically actuated microfluidic modulating valves that can selectively change the size of a flow channel in order to modulate the fluid flow through the valve. In one illustrative embodiment, a valve is provided that includes a housing that defines a cavity, with an inlet and an outlet extending into the cavity. A diaphragm is positioned in the cavity, where at least part of the diaphragm defines at least part of the fluid path. One or more electrodes are fixed relative to the diaphragm, and one or more electrodes are fixed relative to the housing such that the diaphragm can be electrostatically actuated between at least three stable positions, wherein each stable position results in a different cross-sectional area of the fluid path. In some embodiments, the various stable positions provide a cross-sectional area such that fluid can flow between the inlet port and the outlet port in at least two of the stable positions.
In some illustrative embodiments, the valve includes at least two independently controllable diaphragm electrodes fixed relative to the diaphragm, and at least one housing electrode fixed relative to the housing. When a sufficient voltage is applied between a first one of the diaphragm electrodes and the one or more housing electrode, at least part of the diaphragm is actuated to provide a first cross-sectional area for the fluid path. When a sufficient voltage is applied between a second one of the diaphragm electrodes (or a different combination of diaphragm electrodes) and one or more housing electrode, at least part of the diaphragm is actuated to provide a second cross-sectional area of the fluid path, wherein the first cross-sectional area is different from the second cross-sectional area.
Alternatively, or in addition, the valve may include at least two independently controllable housing electrode fixed relative to the housing, and at least one diaphragm electrode fixed relative to the diaphragm. When a sufficient voltage is applied between a first one of the housing electrodes and one or more diaphragm electrode, at least part of the diaphragm is actuated to provide a first cross-sectional area of the fluid path. When a sufficient voltage is applied between a second one of the housing electrodes (or a different combination of housing electrodes) and one or more diaphragm electrode, at least part of the diaphragm is actuated to provide a second cross-sectional area of the fluid path. In some embodiments, at least two of the housing electrodes are fixed relative to the housing on the same side of the diaphragm.
In some embodiments, the valve may include at least two housing electrodes fixed relative to a first one of two opposing sides of the cavity that includes the diaphragm, and at least two housing electrodes fixed relative to a second one of the two opposing sides of the cavity. In addition, the diaphragm may include at least two diaphragm electrodes fixed relative to the diaphragm, wherein at least selected diaphragm electrodes are adjacent to and generally aligned with two corresponding housing electrode; one on the first side of the cavity and the other on the second side of the cavity. When a sufficient voltage is applied between one or more of the diaphragm electrodes and one or more of the corresponding housing electrodes, at least part of the diaphragm is pulled toward the housing electrode. When a sufficient voltage is applied between different ones of the diaphragm electrodes and the other corresponding housing electrode, at least part of the diaphragm is pulled toward the different housing electrode. This may allow the cross-sectional area of the fluid path to be actively controlled. When multiple diaphragm electrodes/housing electrodes are controlled in this manner, the shape of the diaphragm, and thus the cross-sectional area of the fluid path, may be modulated over a relatively wide range.
The following description should be read with reference to the drawings wherein like reference numerals indicate like elements throughout the several views. The detailed description and drawings show several embodiments which are meant to be illustrative of the claimed invention.
The present invention generally relates to modulating valves, and more particularly, to electrostatically actuated microfluidic modulating valves that can selectively change the size of a flow channel in order to help modulate the fluid flow through the valve. The term “fluid” as used herein includes liquids and/or gasses, as desired.
A first illustrative embodiment is shown in
The illustrative embodiment shown in
Specifically with reference to the illustrative embodiment of
In the illustrative embodiment, nine diaphragm electrodes 20 are shown. It is contemplated, however, that any suitable number of diaphragm electrodes 20 may be used, as desired. If none of the diaphragm electrodes 20 are electrostatically activated and pulled toward the opposing side 11, a maximum fluid flow cross-sectional area may be achieved between the inlet 10 and the outlet 12 of the valve. If one of the diaphragm electrodes 20 is electrostatically pulled toward the opposing side 11, a reduced fluid flow cross-sectional may be achieved between the inlet 10 and the outlet 12 of the valve. If two of the diaphragm electrodes 20 are electrostatically pulled toward the opposing side 11, an even further reduction in fluid flow cross-sectional area may be achieved between the inlet 10 and the outlet 12 of the valve, and so on. As can be seen, and depending on the number of diaphragm electrodes 20 that are provided and activated, a desired resolution in the modulated fluid flow through the valve may be achieved. In some illustrative embodiments, at least three stable diaphragm positions are provided, wherein fluid can flow from the inlet 10 to the outlet 12 in at least two of the stable positions.
The diaphragm electrodes 20 may be fixed to the diaphragm 30 and the housing electrode(s) 22 may be fixed to the housing 8 in any suitable manner. For example, the diaphragm electrodes 20 may be deposited on the diaphragm by evaporation or sputter deposition, doping the diaphragm 30 to be conductive in certain regions, screen printing a conductive material on the diaphragm, adhered an electrode pattern to the diaphragm 30, or in any other suitable manner. The one or more housing electrodes 22 may be provided in a different or similar manner, as desired. In some cases, part of all of the diaphragm or housing may be made from a conductive material, and may perform dual functions (e.g. as a housing and as an electrode), if desired.
In some cases, a dielectric layer may be provided over the diaphragm electrodes 20 and/or the housing electrode(s) 22. This may help prevent an electrical short between the diaphragm electrodes and the one or more housing electrodes when the diaphragm is pulled toward the housing electrodes during operation. The dielectric layer may also help protect the diaphragm electrodes and the one or more housing electrode(s) from the environment, and may further help prevent stiction.
To help reduce the voltage that may be required to begin closing the valve, and with reference to
Another illustrative embodiment is shown in
Similar to the previous illustrative embodiment, the illustrative embodiment shown in
The diaphragm electrodes 124 each have an electrode width along the spacing direction 117. In the illustrative embodiment, the diaphragm electrodes 124 have widths of 2N, where N represents the electrode position, from left to right, in the particular series of diaphragm electrodes. The advantage of having diaphragm electrodes 124 of different widths (e.g. 2N) is the increase in the resulting range of flow areas that can be achieved. As shown in the illustrative embodiment, there are five diaphragm electrodes 124. By activating different combinations of diaphragm electrodes, the five diaphragm electrodes may provide thirty-two combinations of different fluid flow areas. It is contemplated, however, that any suitable width of the diaphragm electrodes 124 may be used or any suitable number of diaphragm electrodes 124 may be used, as desired.
Similar as discussed above, one or more housing electrode(s) 122 may be fixed relative to opposing side 111 of the housing 108. When a voltage is applied between the housing electrode 122 and selected diaphragm electrodes 124, the portion of the diaphragm 130 that corresponds to the selected diaphragm electrodes 124 may be electrostatically pulled toward the housing electrode 122, thereby pinching off part of the flow path 115 through cavity 114.
To help reduce the voltage that may be required to begin closing the valve, and with reference to
A third illustrative embodiment is shown in
The illustrative embodiment shown in
Specifically with reference to
As illustrated in
The biasing elements 235 exert a force between the number of diaphragm electrodes 220 and the housing electrode 222. The biasing force helps push the diaphragm 230 towards the housing wall 211 pinching off the flow path 215 through the cavity 214. When a voltage is applied between the housing electrode 222 and one or more of the diaphragm electrodes 220, a force is generated between the housing electrode 222 and the activated diaphragm electrodes 220, which overcomes the biasing force provided by the corresponding biasing elements 235. Thus, the portion of the diaphragm that corresponds to the selected diaphragm electrodes 220 may be electrostatically pulled toward the housing electrode 222, thereby opening part of the flow path 215 through cavity 214. That is, by electrostatically pulling part of the diaphragm 230 toward the opposing side 213, the cross-sectional area of the flow path 215 may be increased, which may modulate the fluid flow from the inlet 210 to the outlet 212 of the valve.
If none of the diaphragm electrodes 220 are electrostatically pulled toward the opposing side 213, a minimum fluid flow (in some cases no fluid flow) may be achieved between the inlet 210 and the outlet 212 of the valve. If one of the diaphragm electrodes 220 is electrostatically pulled toward the opposing side 213 overcoming the corresponding biasing element, an increased fluid flow may be achieved between the inlet 210 and the outlet 212 of the valve. If two of the diaphragm electrodes 220 are electrostatically pulled toward the opposing side 213, an even further increase in fluid flow may be achieved between the inlet 210 and the outlet 212 of the valve, and so on. As can be seen, and depending on the number of diaphragm electrodes 220 that are provided and activated, a desired resolution in the modulated fluid flow through the valve may be achieved. In some illustrative embodiments, at least three stable diaphragm positions are provided, wherein fluid can flow from the inlet 210 to the outlet 212 in at least two of the stable positions. One stable diaphragm 230 position may be fully closed, one may be fully open, and yet another may be partially open.
To help reduce the voltage that may be required to begin closing the valve, and with reference to
During operation of the valve shown in
A fourth illustrative embodiment is shown in
Similar to the previous embodiment, the illustrative embodiment shown in
The diaphragm electrodes 324 each have an electrode width along the spacing direction 317. In the illustrative embodiment, the diaphragm electrodes 324 have widths of 2N, where N represents the electrode position, from left to right, in the particular series of diaphragm electrodes. The advantage of having diaphragm electrodes 324 of different widths (e.g. 2N) is the increase in the resulting range of flow areas that can be achieved. As shown in the illustrative embodiment, there are five diaphragm electrodes 324. By activating different combinations of diaphragm electrodes 324, the five diaphragm electrodes may provide thirty-two combinations of different fluid flow areas. It is contemplated, however, that any suitable width of the diaphragm electrodes 324 may be used or any suitable number of diaphragm electrodes 324 may be used, as desired.
Specifically with reference to
The biasing elements 335 exert a force between the corresponding diaphragm electrodes 320 and the housing 308. The biasing force pushes the diaphragm 330 towards the housing wall 311 pinching off the flow path 315 through the cavity 314. When a voltage is applied between the housing electrode 322 and one or more selected diaphragm electrodes 320, a force is generated between the housing electrode 322 and the selected diaphragm electrodes 320 to overcome the biasing force. The portion of the diaphragm that corresponds to the selected diaphragm electrodes 320 is electrostatically pulled toward the housing electrode 322, thereby opening part of the flow path 315 through cavity 314. That is, by electrostatically pulling part of the diaphragm 330 toward the opposing side 313, the cross-sectional area of the flow path 315 may be increased, which may modulate the fluid flow from the inlet 310 to the outlet 312 of the valve.
If none of the diaphragm electrodes 320 are electrostatically pulled toward the opposing side 313, a minimum fluid flow (in some cases no fluid flow) may be achieved between the inlet 310 and the outlet 312 of the valve. If one of the diaphragm electrodes 320 is electrostatically pulled toward the opposing side 313 overcoming the biasing means, an increased fluid flow may be achieved between the inlet 310 and the outlet 312 of the valve. If two of the diaphragm electrodes 320 are electrostatically pulled toward the opposing side 313, an even further increase in fluid flow may be achieved between the inlet 310 and the outlet 312 of the valve, and so on. As can be seen, and depending on the number and type of diaphragm electrodes 320 that are provided and activated, a desired resolution in the modulated fluid flow through the valve may be achieved. In some illustrative embodiments, at least three stable diaphragm positions are provided, wherein fluid can flow from the inlet 310 to the outlet 312 in at least two of the stable positions.
To help reduce the voltage that may be required to begin closing the valve, and with reference to
Another illustrative embodiment is shown in
When a voltage is applied between the housing electrode (not shown) and one or more selected diaphragm electrodes 420, the portion of the diaphragm 430 that corresponds to the selected diaphragm electrodes 420 may be electrostatically pulled toward the housing electrode, thereby pinching off at least part of the flow valley through cavity 414 to modulate the flow. The advantage of having individual fluid flow valleys for each diaphragm electrode 420 is that as the diaphragm 430 is pulled toward housing wall 429, the corrugated surface may provide a better seal of the cavity 414. Thus, the leakage of the valve may be decreased. This embodiment may be incorporated with any of the previous embodiments to improve the performance of the valves.
Another illustrative embodiment is shown in
The illustrative embodiment shown in
In operating the valve in the illustrative embodiment, the one or more valve seat electrode 625 may help control the opening and closing of the valve. The other diaphragm electrodes 620 may be used to modulate the flow of the fluid through the cavity 614 when the valve is open. When a voltage is applied to the one or more valve seat electrode 625, the diaphragm is pulled toward the housing electrode 422 opening the outlet 612 allowing fluid to flow. When a voltage is applied to the other diaphragm electrodes 620, the part of the diaphragm corresponding to the selected diaphragm electrodes 620 is pulled toward the housing electrode 422, thereby modulating the flow of fluid from the inlet 610 to the outlet 612. This embodiment may used in conjunction with any of the previous embodiments.
Another illustrative embodiment is shown in
The illustrative embodiment includes a housing 508 that defines a cavity 514, with an inlet 510 and outlet 512 extending into the cavity 514. A diaphragm 530 is positioned in the cavity 514, wherein at least part of the diaphragm defines at least part of the fluid path. The diaphragm 530 is positioned between the two opposing sides of the cavity 511 and 513. A number of diaphragm electrodes 520 are fixed relative to the diaphragm 530 as shown. The diaphragm electrodes 520 are spaced along 517 of the diaphragm 530. The opposing cavity walls 511 and 513 each have housing electrodes 522 and 526 fixed to them. The housing electrodes 522 and 526 are shown similarly spaced along 517 as the diaphragm electrodes. It is contemplated that the diaphragm electrodes 520 and the housing electrodes 522 and 526 may be any width or spacing, as desired. Also, it is contemplated that the housing electrodes 522 and 526 may be continuous electrodes, as shown by dotted lines 540 and 542, rather than spaced electrodes. Alternatively, the housing electrodes 522 and 526 may be spaced electrodes, and the diaphragm electrodes 520 may be a continuous electrode, if desired.
To modulate the flow, a voltage may be applied to one or more selected diaphragm electrodes 520 and one or more housing electrodes 522 and 526. When a voltage is applied to one or more selected diaphragm electrodes 520 and one or more selected housing electrodes 522, the part of the diaphragm 530 corresponding to the diaphragm electrode 520 may be electrostatically pulled toward the housing electrode 522, thereby increasing the flow path of the cavity 514. When a voltage is applied to one or more selected diaphragm electrodes 520 and one or more selected housing electrodes 526, the part of the diaphragm 530 corresponding to the selected diaphragm electrode 520 may be electrostatically pulled toward the housing electrode 526, thereby decreasing the size of the flow path.
It is contemplated that one or more housing electrodes 522 and one or more housing electrodes 526 may be actuated at the same time pulling part of the diaphragm 530 up and pulling another part of the diaphragm 530 down, as shown in
When the housing electrodes 522 and 526 are continuous electrodes, as shown by dotted lines 540 and 542, and in one illustrative embodiment, a positive voltage such as +A volts may be applied to the upper housing electrode 522, and a negative voltage such as −A volts may be applied to the lower housing electrode 526. Initially, the diaphragm electrodes 520 may be a zero volts. To modulate the flow, a positive voltage, such as +A volts, may be applied to one or more selected diaphragm electrodes 520 to move the corresponding diaphragm electrodes 520 toward the −A voltage of the lower housing electrode 526. Likewise, a negative voltage, such as −A volts, may be applied to one or more selected diaphragm electrodes 520 to move the corresponding diaphragm electrodes 520 toward the +A voltage of the upper housing electrode 522.
Having thus described the preferred embodiments of the present invention, those of skill in the art will readily appreciate that yet other embodiments may be made and used within the scope of the claims hereto attached. Numerous advantages of the invention covered by this document have been set forth in the foregoing description. It will be understood, however, that this disclosure is, in many respect, only illustrative. Changes may be made in details, particularly in matters of shape, size, and arrangement of parts without exceeding the scope of the invention. The invention's scope is, of course, defined in the language in which the appended claims are expressed.
The present application is a continuation application of co-pending U.S. patent application Ser. No. 11/030,508, filed Jan. 6, 2005.
Number | Name | Date | Kind |
---|---|---|---|
2403692 | Tibbetts | Jul 1946 | A |
2975307 | Shroeder et al. | Mar 1961 | A |
3304446 | Martinek et al. | Feb 1967 | A |
3381623 | Elliot | May 1968 | A |
3414010 | Sparrow | Dec 1968 | A |
3641373 | Elkuch | Feb 1972 | A |
3769531 | Elkuch | Oct 1973 | A |
3803424 | Smiley et al. | Apr 1974 | A |
3947644 | Uchikawa | Mar 1976 | A |
3993939 | Slavin | Nov 1976 | A |
4115036 | Paterson | Sep 1978 | A |
4140936 | Bullock | Feb 1979 | A |
4197737 | Pittman | Apr 1980 | A |
4360955 | Block | Nov 1982 | A |
4418886 | Holzer | Dec 1983 | A |
4453169 | Martner | Jun 1984 | A |
4478076 | Bohrer | Oct 1984 | A |
4478077 | Bohrer | Oct 1984 | A |
4498850 | Perlov et al. | Feb 1985 | A |
4501144 | Higashi et al. | Feb 1985 | A |
4539575 | Nilsson | Sep 1985 | A |
4576050 | Lambert | Mar 1986 | A |
4581624 | O'Connor | Apr 1986 | A |
4585209 | Aine et al. | Apr 1986 | A |
4619438 | Coffee | Oct 1986 | A |
4651564 | Johnson et al. | Mar 1987 | A |
4654546 | Kirjavainen | Mar 1987 | A |
4722360 | Odajima et al. | Feb 1988 | A |
4756508 | Giachino et al. | Jul 1988 | A |
4821999 | Ohtaka | Apr 1989 | A |
4826131 | Mikkor | May 1989 | A |
4829826 | Valentin et al. | May 1989 | A |
4846440 | Carlson et al. | Jul 1989 | A |
4898200 | Odajima et al. | Feb 1990 | A |
4911616 | Laumann, Jr. | Mar 1990 | A |
4938742 | Smits | Jul 1990 | A |
4939405 | Okuyama et al. | Jul 1990 | A |
5065978 | Albarda et al. | Nov 1991 | A |
5069419 | Jerman | Dec 1991 | A |
5078581 | Blum et al. | Jan 1992 | A |
5082242 | Bonne et al. | Jan 1992 | A |
5085562 | van Lintel | Feb 1992 | A |
5096388 | Weinberg | Mar 1992 | A |
5129794 | Beatty | Jul 1992 | A |
5148074 | Fujita et al. | Sep 1992 | A |
5171132 | Miyazaki et al. | Dec 1992 | A |
5176358 | Bonne et al. | Jan 1993 | A |
5180288 | Richter et al. | Jan 1993 | A |
5180623 | Ohnstein | Jan 1993 | A |
5186054 | Sekimura | Feb 1993 | A |
5192197 | Culp | Mar 1993 | A |
5206557 | Bobbio | Apr 1993 | A |
5219278 | van Lintel | Jun 1993 | A |
5224843 | van Lintel | Jul 1993 | A |
5244527 | Aoyagi | Sep 1993 | A |
5244537 | Ohnstein | Sep 1993 | A |
5316261 | Stoner | May 1994 | A |
5322258 | Bosch et al. | Jun 1994 | A |
5323999 | Bonne et al. | Jun 1994 | A |
5325880 | Johnson et al. | Jul 1994 | A |
5336062 | Richter | Aug 1994 | A |
5368571 | Horres, Jr. | Nov 1994 | A |
5441597 | Bonne et al. | Aug 1995 | A |
5452878 | Gravesen et al. | Sep 1995 | A |
5499909 | Yamada et al. | Mar 1996 | A |
5526172 | Kanack | Jun 1996 | A |
5529465 | Zengerle et al. | Jun 1996 | A |
5536963 | Polla | Jul 1996 | A |
5541465 | Higuchi et al. | Jul 1996 | A |
5552654 | Konno et al. | Sep 1996 | A |
5571401 | Lewis et al. | Nov 1996 | A |
5593134 | Steber et al. | Jan 1997 | A |
5642015 | Whitehead et al. | Jun 1997 | A |
5683159 | Johnson | Nov 1997 | A |
5696662 | Bauhahn | Dec 1997 | A |
5725363 | Bustgens et al. | Mar 1998 | A |
5759014 | Van Lintel | Jun 1998 | A |
5759015 | Van Lintel et al. | Jun 1998 | A |
5792957 | Luder et al. | Aug 1998 | A |
5808205 | Romo | Sep 1998 | A |
5822170 | Cabuz | Oct 1998 | A |
5836750 | Cabuz | Nov 1998 | A |
5839467 | Saaski et al. | Nov 1998 | A |
5863708 | Zanzucchi et al. | Jan 1999 | A |
5897097 | Biegelsen et al. | Apr 1999 | A |
5901939 | Cabuz et al. | May 1999 | A |
5911872 | Lewis et al. | Jun 1999 | A |
5954079 | Barth et al. | Sep 1999 | A |
5971355 | Biegelsen et al. | Oct 1999 | A |
6089534 | Biegelsen et al. | Jul 2000 | A |
6095496 | Rydin et al. | Aug 2000 | A |
6106245 | Cabuz | Aug 2000 | A |
6109889 | Zengerle et al. | Aug 2000 | A |
6116863 | Ahn et al. | Sep 2000 | A |
6120002 | Biegelsen et al. | Sep 2000 | A |
6122973 | Nomura et al. | Sep 2000 | A |
6123316 | Biegelsen et al. | Sep 2000 | A |
6126140 | Johnson et al. | Oct 2000 | A |
6151967 | McIntosh et al. | Nov 2000 | A |
6167761 | Hanzawa et al. | Jan 2001 | B1 |
6168395 | Quenzer et al. | Jan 2001 | B1 |
6179586 | Herb et al. | Jan 2001 | B1 |
6182941 | Scheurenbrand et al. | Feb 2001 | B1 |
6184607 | Cabuz et al. | Feb 2001 | B1 |
6184608 | Cabuz et al. | Feb 2001 | B1 |
6211580 | Cabuz et al. | Apr 2001 | B1 |
6215221 | Cabuz et al. | Apr 2001 | B1 |
6240944 | Ohnstein et al. | Jun 2001 | B1 |
6255758 | Cabuz et al. | Jul 2001 | B1 |
6288472 | Cabuz et al. | Sep 2001 | B1 |
6358021 | Cabuz | Mar 2002 | B1 |
6373682 | Goodwin-Johansson | Apr 2002 | B1 |
6382228 | Cabuz et al. | May 2002 | B1 |
6418793 | Pechoux et al. | Jul 2002 | B1 |
6431212 | Hayenga et al. | Aug 2002 | B1 |
6432721 | Zook et al. | Aug 2002 | B1 |
6445053 | Cho | Sep 2002 | B1 |
6457654 | Glezer et al. | Oct 2002 | B1 |
6464200 | Hines et al. | Oct 2002 | B1 |
6496348 | McIntosh | Dec 2002 | B2 |
6508528 | Fuji et al. | Jan 2003 | B2 |
6520753 | Grosjean et al. | Feb 2003 | B1 |
6549275 | Cabuz et al. | Apr 2003 | B1 |
6561224 | Cho | May 2003 | B1 |
6568286 | Cabuz | May 2003 | B1 |
6590267 | Goodwin-Johansson et al. | Jul 2003 | B1 |
6597438 | Cabuz et al. | Jul 2003 | B1 |
6626416 | Sharma et al. | Sep 2003 | B2 |
6640642 | Onose et al. | Nov 2003 | B1 |
6644117 | Kueck et al. | Nov 2003 | B1 |
6649416 | Kauer et al. | Nov 2003 | B1 |
6651506 | Lee et al. | Nov 2003 | B2 |
6655923 | Lisec et al. | Dec 2003 | B1 |
6729856 | Cabuz et al. | May 2004 | B2 |
6750589 | Cabuz | Jun 2004 | B2 |
6758107 | Cabuz | Jul 2004 | B2 |
6767190 | Cabuz et al. | Jul 2004 | B2 |
6830071 | Xu et al. | Dec 2004 | B2 |
6837476 | Cabuz et al. | Jan 2005 | B2 |
7168675 | Cabuz et al. | Jan 2007 | B2 |
20010033796 | Unger et al. | Oct 2001 | A1 |
20020078756 | Akiyama et al. | Jun 2002 | A1 |
20020100888 | Sharma et al. | Aug 2002 | A1 |
20020129857 | Xu et al. | Sep 2002 | A1 |
20020174706 | Gokhfeld | Nov 2002 | A1 |
20020182091 | Potter | Dec 2002 | A1 |
20020192113 | Uffenheimer et al. | Dec 2002 | A1 |
20030005774 | Suzuki et al. | Jan 2003 | A1 |
20030019299 | Horie et al. | Jan 2003 | A1 |
20030033884 | Beekhuizen et al. | Feb 2003 | A1 |
20030142291 | Padmanabhan et al. | Jul 2003 | A1 |
20030189809 | Ishikura | Oct 2003 | A1 |
20030205090 | Jakobsen | Nov 2003 | A1 |
20030234376 | Cabuz et al. | Dec 2003 | A1 |
20040035211 | Pinto et al. | Feb 2004 | A1 |
20040060360 | Chen | Apr 2004 | A1 |
20040144939 | Giousouf et al. | Jul 2004 | A1 |
Number | Date | Country |
---|---|---|
19617852 | Jan 1993 | DE |
0774821 | Nov 1996 | EP |
0779436 | Jun 1997 | EP |
1215426 | Jun 2002 | EP |
05-219760 | Aug 1993 | JP |
02-86258 | Oct 1995 | JP |
744877 | Jun 1980 | SU |
WO 9729538 | Aug 1997 | WO |
WO 0028215 | May 2000 | WO |
WO 0133078 | May 2001 | WO |
WO 03060331 | Jul 2003 | WO |
Number | Date | Country | |
---|---|---|---|
20080087855 A1 | Apr 2008 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11030508 | Jan 2005 | US |
Child | 11955808 | US |