Microfluidic Processing of Leukocytes for Molecular Diagnostic Testing

Information

  • Patent Application
  • 20170333900
  • Publication Number
    20170333900
  • Date Filed
    April 04, 2017
    7 years ago
  • Date Published
    November 23, 2017
    6 years ago
Abstract
Described herein are microfluidic devices and methods that can greatly improve cell quality, streamline workflows, and lower costs. Applications include research and clinical diagnostics in cancer, infectious disease, and inflammatory disease, among other disease areas.
Description
BACKGROUND OF THE INVENTION

Current methods for sample preparation of leukocytes prior to multi-parameter analysis via flow cytometry involve centrifugation and are tedious, manual processes that require expert operators and result in lost and damaged cells.


SUMMARY OF THE INVENTION

Described herein are microfluidic devices and methods that can greatly improve cell quality, streamline workflows, and lower costs. Applications include research and clinical diagnostics in cancer, infectious disease, and inflammatory disease, among other disease areas. The devices and methods can fulfill a significant unmet need in both research and clinical settings for high leukocyte recovery and quick sample processing, leading to higher quality results and cost/efficiency gains.


An aspect of the present disclosure provides a device comprising: (a) a channel extending from a plurality of inlets to a plurality of outlets, wherein the channel is bounded by a first wall and a second wall opposite from the first wall; and (b) an array of obstacles disposed within the channel configured to deflect particles toward the first wall when the particles are flowed in one or more fluids from the inlets to the outlets, wherein the device is configured such that at least 4 of the plurality of inlets directs multiple fluids to flow in parallel from the inlets to the outlets, and particles introduced into the channel near the second wall pass through the plurality of fluids while being deflected toward the first wall.


In some embodiments, the device is microfluidic.


In some embodiments, the surface of the device is hydrophilic.


In some embodiments, the obstacles are made from a polymer.


In some embodiments, the channel is at least 0.1 inch wide. In some embodiments, the channel is at least 1 inch wide. In some embodiments, the channel is at least 3 inch wide. In some embodiments, the channel is at least 6 inch wide.


In some embodiments, the channel is at least 0.1 inch long. In some embodiments, the channel is at least 1 inch long. In some embodiments, the channel is at least 3 inch long. In some embodiments, the channel is at least 6 inch long.


In some embodiments, the device comprises at least 6 inlets.


In some embodiments, the obstacles are arranged in a staggered array.


In some embodiments, the obstacles are spaced 10 to 100 microns apart.


In some embodiments, the obstacles are triangularly shaped.


In some embodiments, the device further comprises a plurality of reservoirs in fluid communication with the inlets.


In some embodiments, the reservoirs comprise a sample, a buffer, a cell surface label, a fix and permeabilize reagent, an intracellular label, or any combination thereof


An aspect of the present disclosure provides a method for processing leukocytes for molecular diagnostic testing, the method comprising: (a) providing a sample comprising leukocytes; (b) labeling the surface of the leukocytes; and (c) harvesting, washing and concentrating the labeled leukocytes from the sample in a single chamber of a microfluidic chip having a plurality of microscopic obstacles.


In some embodiments, the chip has no moving parts.


In some embodiments, the surface of the chip is hydrophilic.


In some embodiments, the obstacles are made from a polymer.


In some embodiments, the obstacles are triangularly shaped.


In some embodiments, (c) is repeated at least 3 times.


In some embodiments, the method further comprises subsequent to (b), fixing and permeabilizing the leukocytes and intracellularly labeling the leukocytes.


In some embodiments, comprising performing multi-parameter flow cytometry or atomic mass spectrometry.


In some embodiments, the leukocytes are used to diagnose cancer, infectious disease, inflammatory disease, or any combination thereof


In some embodiments, centrifugation is not used.


In some embodiments, erythrocytes are not lysed.


In some embodiments, the yield of labeled cells is at least 90%.


In some embodiments, the viability of the labeled cells is at least 90%.


In some embodiments, the method is performed in less than one hour.


In some embodiments, the sample has a volume of less than 300 mL.


In some embodiments, the sample comprises sub-populations of different types of leukocytes (e.g., granulocytes, lymphocytes, monocytes) and the method does not substantially skew the relative ratios of the sub-populations.


In some embodiments, at least 99% of unbound dyes, permeabilization reagents, or other reagents are removed from the leukocytes.


An aspect of the present disclosure provides a method for processing leukocytes for molecular diagnostic testing, the method comprising labeling and harvesting the leukocytes from a sample using a microfluidic device, wherein the yield of labeled cells is at least 85% and the viability of the labeled cells is at least 90%.


In some embodiments, centrifugation is not used.


In some embodiments, erythrocytes are not lysed.


In some embodiments, the method is performed in less than one hour.


In some embodiments, the sample has a volume of less than 300 mL.


In some embodiments, the sample comprises sub-populations of different types of leukocytes (e.g., granulocytes, lymphocytes, monocytes) and the method does not substantially skew the relative ratios of the sub-populations.


INCORPORATION BY REFERENCE

All publications, patents, and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication, patent, or patent application was specifically and individually indicated to be incorporated by reference.





BRIEF DESCRIPTION OF THE DRAWINGS

The novel features of the invention are set forth with particularity in the appended claims. A better understanding of the features and advantages of the present invention will be obtained by reference to the following detailed description that sets forth illustrative embodiments, in which the principles of the invention are utilized, and the accompanying drawings of which:



FIG. 1 is a schematic diagram of cross-section of a “bump array” device having right triangularly-shaped obstacles disposed in a microfluidic channel. In the figure, fluid flow alternates between the right-to-left and left-to-right directions, as indicated by the double-headed arrow marked, “Fluid Flow.” In this array, right triangular posts are disposed in a square lattice arrangement that is tilted with respect directions of fluid flow. The tilt angle E (epsilon) is chosen so the device is periodic. In this embodiment, a tilt angle of 18.4 degrees (⅓ radian) makes the device periodic after three rows. The gap between posts is denoted G with triangle side length S and array pitch P. Streamlines are shown extending between the posts, dividing the fluid flow between the posts into three regions (“stream tubes”) of equal volumetric flow.



FIG. 2, consisting of FIGS. 2A, 2B, and 2C, shows the trajectories of spherical polystyrene beads of three different sizes in an array of the type shown in FIG. 1 as the direction of fluid flow is cycled back and forth twice. The orientation of the right triangular posts is denoted in the lower right of each figure. Right isosceles triangles are 6 microns on a side with post to post separation of 10 microns and a tilt angle of 5.71 degrees (0.1 radian). Particle sizes are 1.1 microns in FIG. 2A, 3.1 microns in FIG. 2B, and 1.9 microns in FIG. 2C. Particles shown in FIGS. 2A and 2B retrace their paths when the direction of the fluid is switched, with the particles in FIG. 2A generally following the fluid direction in each fluid flow direction and the particles in FIG. 2B generally following the array direction in each fluid flow direction. By contrast, the trajectory of the particles shown in FIG. 2C varies with the direction of the fluid flow. In FIG. 2C, small arrows indicate the direction of the fluid along the particle path; the particles generally follow the fluid direction when the fluid flow direction is left-to-right and generally follow the array direction when the fluid flow direction is right-to-left.



FIG. 3A, FIG. 3B and FIG. 3C are three diagrams of the simulated trajectories of particles moving through an array of right triangular posts disposed in a microfluidic flow channel in which fluid flow alternates between the right-to-left and left-to-right directions. FIG. 3A shows simulated trajectories of 1.0-micrometer diameter particles. FIG. 3B shows simulated trajectories of 3.6-micrometer diameter particles. FIG. 3C shows simulated trajectories of 3.2-micrometer diameter particles. In these diagrams, the 1.0-micrometer diameter particles are smaller than the critical size of the array in both fluid flow directions, the 3.6-micrometer diameter particles are larger than the critical size of the array in both fluid flow directions, and the 3.2-micrometer diameter particles are smaller than the critical size of the array in one (right-to-left) flow direction, but larger than the critical size of the array in the other (left-to-right) flow direction.



FIG. 4A is a graph showing simulated normalized velocity flow between two right triangular posts. FIG. 4B is a graph showing normalized velocity profiles through gaps between round obstacles (curve that is symmetrical about Y/Gap=0.5) and right triangularly-shaped obstacles in an array of the type shown in FIG. 1 (∈=⅓ radian). In these profiles, vertical lines delineate the areas under each curve into thirds, representing three stream tubes of equal volumetric flow. The curve for the round obstacles demonstrates that one third of the volumetric flow between round obstacles occurs in a stream tube that is adjacent to either obstacle and has a width that is 38% of the gap width. The curve for the triangular obstacles demonstrates that one third of the volumetric flow between triangular occurs in a stream tube that is adjacent to the flat side of one of the two triangular obstacles and has a width that is 42% of the gap width and that an additional one third occurs in a stream tube that is adjacent the sharp side of the pair of triangular obstacles and has a width that is 34% of the gap width.



FIG. 5 is a graph of predicted critical diameter versus the array tilt angle (∈) for arrays of triangular (lower line) and circular (upper line) obstacles.



FIG. 6A is a schematic diagram of cross-section of a “bump array” device having equilateral triangularly-shaped obstacles disposed in a microfluidic channel In the figure, fluid flows in the left-to right direction, as indicated by the arrow marked, “Fluid.” In this array, equilateral triangular posts are disposed in a parallelogram lattice arrangement that is tilted with respect directions of fluid flow. Other lattice arrangements (e.g., square, rectangular, trapezoidal, hexagonal, etc. lattices) can also be used. The tilt angle E (epsilon) is chosen so the device is periodic. In this embodiment, a tilt angle of 18.4 degrees (⅓ radian) makes the device periodic after three rows. The tilt angle E also represents the angle by which the array direction is offset from the fluid flow direction. The gap between posts is denoted G with equilateral triangle side length S. Streamlines are shown extending between the posts, dividing the fluid flow between the posts into three regions (“stream tubes”) of equal volumetric flow. A relatively large particle (having a size greater than the critical size for the array) follows the array tilt angle when fluid flow is in the direction shown. A relatively small particle (having a size smaller than the critical size for the array) follows the direction of fluid flow. FIG. 6B is a comparison of normalized velocity flow between two equilateral triangular posts (left panel) and normalized velocity flow between two circular posts (right panel). The shaded portions represent an equal proportion of area-under-the-curve, demonstrating that the critical radius for particles flowing past the point of the triangle is significantly smaller (<15% gap width) than the critical radius for particles flowing past the round post (>20% gap width).



FIG. 7 is a graph illustrating hypothetical and experimental effects of the tilt angle (“Array Tilt” in FIG. 7) on particle displacement.



FIG. 8 is a graph illustrating the effect of the tilt angle (“Array Tilt” in FIG. 8) on gap length G. GT refers to the gap length between triangular posts, and Gc refers to the gap length between round posts.



FIG. 9 is a graph illustrating the effect of applied pressure on particle velocity in bump arrays having triangular posts (data shown as triangles) and bump arrays having circular posts (data shown as circles).



FIG. 10 is a graph illustrating the effect of obstacle edge roundness (expressed as r/S) on the critical size exhibited on the side of a gap bounded by the edge.



FIG. 11 is an image of an array constructed as described herein.



FIG. 12 illustrates particle motion in a ratchet bump array of the type described herein.



FIG. 13 illustrates particle motion in a ratchet bump array of the type described herein.



FIG. 14 illustrates particle motion in a ratchet bump array of the type described herein.



FIG. 15 is a graph comparing the critical size characteristics of round and triangular posts.



FIG. 16 shows conventional methods (left) and two embodiments of the methods described herein (vertically down the center and vertically down the right);



FIG. 17A shows a DLD array designed to “bump” E. coli (>1 um size);



FIG. 17B shows a DLD array having two streams;



FIG. 17C shows a time lapse image of leukocytes being harvested;



FIG. 18A shows a “car wash” chip for multiple sequential chemical processing;



FIG. 18B shows false color fluorescent time lapse image of platelets moving downward in a DLD array;





DETAILED DESCRIPTION OF THE INVENTION

The disclosure relates generally to the field of separation of particles such as spheres, cells, viruses, and molecules. In particular, the disclosure relates to separation of particles based on their flow behavior in a fluid-filled field of obstacles in which advective transport of particles by a moving fluid overwhelms the effects of diffusive particle transport.


Separation of particles by size or mass is a fundamental analytical and preparative technique in biology, medicine, chemistry, and industry. Conventional methods include gel electrophoresis, field-flow fractionation, sedimentation and size exclusion chromatography. More recently, separation of particles and charged biopolymers has been described using arrays of obstacles through particles pass under the influence of fluid flow or an applied electrical field. Separation of particles by these obstacle-array devices is mediated by interactions among the biopolymers and the obstacles and by the flow behavior of fluid passing between the obstacles.


A variety of microfabricated sieving matrices have been disclosed for separating particles (Chou et. al., 1999, Proc. Natl. Acad. Sci. 96:13762; Han, et al., 2000, Science 288:1026; Huang et al., 2002, Nat. Biotechnol. 20:1048; Turner et al., 2002, Phys. Rev. Lett. 88(12):128103; Huang et al., 2002, Phys. Rev. Lett. 89:178301; U.S. Pat. No. 5,427, 663; U.S. Pat. No. 7,150,812; U.S. Pat. No. 6,881,317). These matrices depend on accurate fabrication of small features (e.g., posts in a microfluidic channel) The accuracy with which small features can be fabricated is limited in all micro-fabrication methods, especially as feature size decreases. The strength and rigidity of materials in which small features of fabricated can also limit the practical usefulness of the fabricated device. Furthermore, the small size of the gaps between obstacles in such matrices can render the matrices susceptible to clogging by particles too large to fit between the obstacles. Micrometer- and nanometer-scale manufacturing also require state-of-the-art fabrication techniques, and devices fabricated using such methods can have high cost.


Previous bump array (also known as “obstacle array”) devices have been described, and their basic operation is explained, for example in U.S. Pat. No. 7,150,812, which is incorporated herein by reference in its entirety. Referring to FIGS. 3 and 4 of U.S. Pat. No. 7,150,812, a bump array operates essentially by segregating particles passing through an array (generally, a periodically-ordered array) of obstacles, with segregation occurring between particles that follow an “array direction” that is offset from the direction of bulk fluid flow or from the direction of an applied field.


At the level of flow between two adjacent obstacles under conditions of relatively low Reynold's number, fluid flow generally occurs in a laminar fashion. Considering the volumetric flow between two obstacles in hypothetical layers (e.g., modeling the flow by considering multiple adjacent stream tubes of equal volumetric flow between the obstacles, as shown in FIG. 8 of U.S. Pat. No. 7,150,812), the likelihood that fluid in a layer will pass on one side or the other of the next (i.e., downstream) obstacle is calculable by standard methods (see, e.g., Inglis et al., 2006, Lab Chip 6:655-658). For an ordered array of obstacles offset from the direction of bulk fluid flow, the arrangement of the obstacles will define an array direction corresponding to the direction in which the majority of fluid layers between two obstacles travels. A minority of fluid layers will travel around the downstream obstacle in a direction other than the array direction.


The path that a particle passing between the two obstacles will take depends the flow of the fluid in the layers occupied by the particle. Conceptually, for a particle having a size equal to one of the hypothetical fluid layers described in the preceding paragraph, the particle will follow the path of the fluid layer in which it occurs, unless it diffuses to a different layer. For particles larger than a single fluid layer, the particle will take the path corresponding to the majority of the fluid layers acting upon it. Particles having a size greater than twice the sum of the thicknesses of the minority of layers that travel around a downstream obstacle in the direction other than the array direction will necessarily be acted upon by more fluid layers moving in the array direction, meaning that such particles will travel in the array direction. This concept is also illustrated in FIGS. 5-11 of U.S. Pat. No. 7,150,812. Thus, there is a “critical size” for particles passing between two obstacles in such an array, such that particles having a size greater to that critical size will travel in the array direction, rather than in the direction of bulk fluid flow and particles having a size less than the critical size will travel in the direction of bulk fluid flow. Particles having a size precisely equal to the critical size have an equal chance of flowing in either of the two directions. By operating such a device at a high Peclet number (i.e., such that advective particle transport by fluid layers greatly outweighs diffusive particle between layers), the effects of diffusion of particles between fluid layers can be ignored.


A method of improving the separating ability of obstacle arrays without requiring a decrease in the size of the array features or the accuracy of microfabrication techniques used to make them would be highly beneficial. The present invention relates to such methods and obstacles arrays made using such methods.


Bump Arrays

The invention relates to ways of structuring and operating obstacle arrays for separating particles. In previous obstacle arrays described by others, obstacles had shapes and were arranged such that the profile of fluid flow through gaps between adjacent obstacles was symmetrical about the center line of the gap. Viewed another way, the geometry of the adjacent obstacles in such older obstacle arrays is such that the portions of the obstacles defining the gap are symmetrical about the axis of the gap that extends in the direction of bulk fluid flow. The velocity or volumetric profile of fluid flow through such gaps is approximately parabolic across the gap, with fluid velocity and flux being zero at the surface of each obstacle defining the gap (assuming no-slip flow conditions) and reaches a maximum value at the center point of the gap. The profile being parabolic, a fluid layer of a given width adjacent to one of the obstacles defining the gap will contain an equal proportion of fluid flux as a fluid layer of the same width adjacent the other obstacle that defines the gap meaning that the critical size of particles that are ‘bumped’ during passage through the gap is equal regardless of which obstacle the particle travels near.


The present invention relates, in part, to the discovery that the particle size-segregating performance of an obstacle array can be improved by shaping and disposing the obstacles such that the portions of adjacent obstacles that deflect fluid flow into a gap between obstacles are not symmetrical about the axis of the gap that extends in the direction of bulk fluid flow. Such lack of flow symmetry into the gap leads to a non-symmetrical fluid flow profile within the gap. Concentration of fluid flow toward one side of a gap (i.e., a consequence of the non-symmetrical fluid flow profile through the gap) reduces the critical size of particles that are induced to travel in the array direction, rather than in the direction of bulk fluid flow. This is so because the non-symmetry of the flow profile causes differences between the width of the flow layer adjacent to one obstacle that contains a selected proportion of fluid flux through the gap and the width of the flow layer that contains the same proportion of fluid flux and that is adjacent the other obstacle that defines the gap. The different widths of the fluid layers adjacent the obstacles defining a gap that exhibits two different critical particle sizes. A particle traversing the gap will be bumped (i.e., travel in the array direction, rather than the bulk fluid flow direction) if it exceeds the critical size of the fluid layer in which it is carried. Thus, it is possible for a particle traversing a gap having a non-symmetrical flow profile to be bumped if the particle travels in the fluid layer adjacent one obstacle, but to be not-bumped if it travels in the fluid layer adjacent the other obstacle defining the gap.


Particles traversing an obstacle array pass through multiple gaps between obstacles, and have multiple opportunities to be bumped. When a particle traverses a gap having a non-symmetrical flow profile, the particle will always be bumped if the size of the particle exceeds the (different) critical sizes defined by the flow layers adjacent the two obstacles defining the gap. However, the particle will only sometimes be bumped if the size of the particle exceeds the critical size defined by the flow layer adjacent one of the two obstacles, but does not exceed the critical size defined by the flow layer adjacent the other obstacle. Particles that do not exceed the critical size defined by the flow layer adjacent either of the obstacles will not be bumped. There are at least two implications that follow from this observation.


First, in an obstacle array in which the obstacles define gaps having a non-symmetrical flow profile, particles having a size that exceeds the smaller of the two critical sizes defined by the flow layers adjacent the obstacles will be separated from particles having a size smaller than that smaller critical size Significantly, this means that the critical size defined by a gap can be decreased by altering the symmetry of flow through the gap without necessarily decreasing the size of the gap (“G” in FIG. 1). This is important in that decreasing gap size can significantly increase the cost and difficulty of producing the array. Conversely, for a given critical size, the size of the gap defining that critical size can be increased by altering the symmetry of flow through the gap. Because smaller gaps are more likely to clog than larger ones, this is significant for improving the operability of the arrays, allowing greater throughput and lower likelihood of clogging.


Second, in an obstacle array in which the obstacles define gaps having a non-symmetrical flow profile, particles can be separated into three populations: i) particles having a size smaller than either of the critical sizes defined by the flow layers adjacent the obstacles; ii) particles having a size intermediate between the two critical sizes defined by the flow layers adjacent the obstacles; and iii) particles having a size larger than either of the critical sizes defined by the flow layers adjacent the obstacles.


In another aspect of the invention, it has been discovered that decreasing the roundness of edges of obstacles that define gaps can improve the particle size-segregating performance of an obstacle array. By way of example, arrays of obstacles having a triangular cross-section with sharp vertices exhibit a lower critical particle size than do arrays of identically-sized and -spaced triangular obstacles having rounded vertices.


Thus, by sharpening the edges of obstacles defining gaps in an obstacle array, the critical size of particles deflected in the array direction under the influence of bulk fluid flow can be decreased without necessarily reducing the size of the obstacles. Conversely, obstacles having sharper edges can be spaced farther apart than, but still yield particle segregation properties equivalent to, identically-sized obstacles having less sharp edges.


In yet another aspect of the invention, it has been discovered that shaping the obstacles in an obstacle array in such a way that the geometry of the obstacles encountered by fluid flowing through the array in one direction differs (and defines a different critical particle size) from the geometry of the obstacles encountered by fluid flowing through the array in a second direction. For example, fluid flowing through the array illustrated in FIG. 1 in a left-to-right direction encounters and flows around the rounded vertices of the right triangular posts of the array (in this flow direction, the profile of fluid flow through the gaps is asymmetric about the axis of the gaps). However, fluid flowing through the same array in a right-to-left direction encounters and flows around the flat edges of the right triangular posts of the array (in this flow direction, the profile of fluid flow through the gaps is symmetric about the axis of the gaps, being essentially parabolic). Bump Arrays Having Gaps with Asymmetrical Flow Profiles


This disclosure relates to bump array devices that are useful for segregating particles by size. In one embodiment, the device includes a body defining a microfluidic flow channel for containing fluid flow. An array of obstacles is disposed within the flow channel, such that fluid flowing through the channel flows around the obstacles. The obstacles extend across the flow channel, generally being either fixed to, integral with, or abutting the surface of the flow channel at each end of the obstacle.


The obstacles are arranged in rows and columns, in such a configuration that the rows define an array direction that differs from the direction of fluid flow in the flow channel by a tilt angle (E) that has a magnitude greater than zero. The maximum operable value of ∈ is ⅓ radian. The value of ∈ is preferably ⅕ radian or less, and a value of 1/10 radian has been found to be suitable in various embodiments of the arrays described herein. The obstacles that are in columns define gaps between themselves, and fluid flowing through the flow channel is able to pass between these gaps, in a direction that is generally transverse with respect to the columns (i.e., generally perpendicular to the long axis of the obstacles in the column and generally perpendicular to a plane extending through the obstacles in the column).


The obstacles have shapes so that the surfaces (upstream of, downstream of, or bridging the gap, relative to the direction of bulk fluid flow) of two obstacles defining a gap are asymmetrically oriented about the plane that extends through the center of the gap and that is parallel to the direction of bulk fluid flow through the channel That is, the portions of the two obstacles cause asymmetric fluid flow through the gap. The result is that the velocity profile of fluid flow through the gap is asymmetrically oriented about the plane. As a result of this, the critical particle size for particles passing through the gap adjacent to one of the obstacles is different than the critical particle size for particles passing through the gap adjacent to the other of the obstacles.


The materials and number of pieces from which the body is constructed is immaterial. The body can be made from any of the materials from which micro- and nano-scale fluid handling devices are typically fabricated, including silicon, glasses, plastics, and hybrid materials. For ease of fabrication, the flow channel can be constructed using two or more pieces which, when assembled, form a closed cavity (preferably one having orifices for adding or withdrawing fluids) having the obstacles disposed within it. The obstacles can be fabricated on one or more pieces that are assembled to form the flow channel, or they can be fabricated in the form of an insert that is sandwiched between two or more pieces that define the boundaries of the flow channel. Materials and methods for fabricating such devices are known in the art.


In order to facilitate modeling and predictable operation of the bump array devices described herein, the flow channel is preferably formed between two parallel, substantially planar surfaces, with the obstacles formed in one of the two surfaces (e.g., by etching the surface to remove material that originally surrounded the non-etched portions that remain as obstacles). The obstacles preferably have a substantially constant cross-section along their length, it being recognized that techniques used to fabricate the obstacles can limit the uniformity of the cross section.


The obstacles are solid bodies that extend across the flow channel, preferably from one face of the flow channel to an opposite face of the flow channel Where an obstacle is integral with (or an extension of) one of the faces of the flow channel at one end of the obstacle, the other end of the obstacle is preferably sealed to or pressed against the opposite face of the flow channel A small space (preferably too small to accommodate any of particles of interest for an intended use) is tolerable between one end of an obstacle and a face of the flow channel, provided the space does not adversely affect the structural stability of the obstacle or the relevant flow properties of the device. In some embodiments described herein, obstacles are defined by a cross-sectional shape (e.g., round or triangular). Methods of imparting a shape to an obstacle formed from a monolithic material are well known (e.g., photolithography and various micromachining techniques) and substantially any such techniques may be used to fabricate the obstacles described herein. The sizes of the gaps, obstacles, and other features of the arrays described herein depend on the identity and size of the particles to be handled and separated in the device, as described elsewhere herein. Typical dimensions are on the order of micrometers or hundreds of nanometers, but larger and smaller dimensions are possible, subject to the limitations of fabrication techniques.


As described herein, certain advantages can be realized by forming obstacles having sharp (i.e., non-rounded) edges, especially at the narrowest part of a gap between two obstacles. In order to take advantage of the benefits of sharp edges, a skilled artisan will recognize that certain microfabrication techniques are preferable to others for forming such edges. Sharpness of edges can be described in any of a number of ways. By way of example, the radius of curvature of an edge (e.g., the vertex of a triangular post) can be measured or estimated and that radius can be compared with a characteristic dimension of the obstacle (e.g., the shorter side adjacent the vertex of a triangular, square, or rectangular post, or the radius of a round post having a pointed section). Sharpness can be described, for example, as a ratio of the radius of curvature to the characteristic dimension. Using equilateral triangular posts as an example, suitable ratios include those not greater than 0.25, and preferably not greater than 0.2.


The number of obstacles that occur in an array is not critical, but the obstacles should be sufficiently numerous that the particle-separating properties of the arrays that are described herein can be realized. Similarly, other than as described herein, the precise layout and shape of the array is not critical. In view of the disclosures described herein, a skilled artisan in this field is able to design the layout and number of obstacles necessary to make bump arrays capable of separating particles, taking into account the sizes and identities of particles to be separated, the volume of fluid in which the particles to be separated are contained, the strength and rigidity of the materials used to fabricate the array, the pressure capacity of fluid handling devices to be used with the array, and other ordinary design features.


As discussed herein, the shape and spacing of obstacles are important design parameters for the arrays. The obstacles are generally organized into rows and columns (use of the terms rows and columns does not mean or imply that the rows and columns are perpendicular to one another). Obstacles that are generally aligned in a direction transverse to fluid flow in the flow channel are referred to as obstacles in a column. Obstacles adjacent to one another in a column define a gap through which fluid flows. Typically, obstacles in adjacent columns are offset from one another by a degree characterized by a tilt angle, designated E (epsilon). Thus, for several columns adjacent one another (i.e., several columns of obstacles that are passed consecutively by fluid flow in a single direction generally transverse to the columns), corresponding obstacles in the columns are offset from one another such that the corresponding obstacles form a row of obstacles that extends at the angle E relative to the direction of fluid flow past the columns. The tilt angle can be selected and the columns can be spaced apart from each other such that 1/∈ (when ∈ is expressed in radians) is an integer, and the columns of obstacles repeat periodically. The obstacles in a single column can also be offset from one another by the same or a different tilt angle. By way of example, the rows and columns can be arranged at an angle of 90 degrees with respect to one another, with both the rows and the columns tilted, relative to the direction of bulk fluid flow through the flow channel, at the same angle of ∈.


The shape of the individual obstacles is important, and it has been discovered that improved bump array function can be achieved by shaping one or more portions of two obstacles that define a gap in such a way that the portions of the obstacles that are upstream from, downstream from, or bridging (or some combination of these, with reference to the direction of bulk fluid flow through the flow channel) the narrowest portion of the gap between the obstacles are asymmetrical about the plane that bisects the gap and is parallel to the direction of bulk fluid flow. Both for simplicity of fabrication and to aid modeling of array behavior, all obstacles in an array are preferably identical in size and shape, although this need not be the case. Furthermore, arrays having portions in which obstacles are identical to one another within a single portion, but different than obstacles in other portions can be made.


Without being bound by any particular theory of operation, it is believed that asymmetry in one or more portions of one or both of the obstacles defining a gap leads to increased fluid flow on one side or the other of the gap. A particle is bumped upon passage through a gap only if the particle exceeds the critical particle size corresponding to the gap. The critical particle size is determined by the density of fluid flux near the boundaries of the gap (i.e., the edges of the obstacles that define the gap). Increased fluid flow on one side of a gap (i.e., against one of the two obstacles defining the narrowest portion of the gap) intensifies flux density near that side, reducing the size of the particle that will be bumped upon passage through that side of the gap.


In one embodiment of the device, the shape of each of multiple obstacles in a column is substantially identical and symmetrical about the plane that bisects each of the multiple obstacles. That is, for any one column of obstacles, the geometry encountered by particles traveling in fluid flowing through the gaps between the obstacles in the column is identical when the fluid is traveling in a first direction and when the fluid is travelling in a second direction that is separated from the first direction by 180 degrees (i.e., flow in the opposite direction).


In another important embodiment, the geometry encountered by particles traveling in fluid flowing through the gaps between the obstacles in the column is different when the fluid is traveling in a first direction than the geometry encountered when the fluid is travelling in a second direction that is different from the first direction by 90-180 degrees. In this embodiment, fluid flow can, for example, be oscillated between the two flow directions, and the particles in the fluid will encounter the different obstacle geometry. If these geometrical differences result in different fluid profiles through the gaps (compare the panels in FIG. 6B, for example), then the gap can exhibit different critical particle sizes in the two directions. If a gap exhibits different critical sizes for flow in the two directions, then the populations of particles that will be bumped upon passing through the gap will differ depending on the direction of flow. This difference in the populations bumped in the two directions can be used to effect segregation of the differently-acting particles.


For example, consider a gap that exhibits a first critical size for bulk fluid flow in one direction, but exhibits a different critical size for bulk fluid flow in a second direction. For fluid flow in the first direction, particles having a size greater than the first critical size will be bumped, and particles having a size less than the first critical size will not be bumped. Similarly, for fluid flow in the second direction, particles having a size greater than the second critical size will be bumped, and particles having a size less than the second critical size will not be bumped. If flow is oscillated between the first and second directions, then particles having a size larger than both the first and the second critical sizes will be bumped in both directions. Similarly, particles having a size smaller than both the first and the second critical sizes will not be bumped in either direction. For these two populations of particles, flow oscillations of approximately equal quantities in both directions will leave these particles substantially at their initial position. However, particles having a size intermediate between the two critical sizes will be bumped when bulk fluid flow is in one direction, but will not be bumped when bulk fluid flow is in the other direction. Thus, when flow oscillations of approximately equal quantities in both directions are performed, these particles will not be left in their initial position, but will instead have been displaced from that original position by an amount equal to (the size of an obstacle+the gap distance G)xthe number of oscillations. In this way, these particles (the ones having a size intermediate between the two critical sizes) can be segregated from the other particles with which they were initially intermixed.


In the special case of when the first and second directions differ by 180 degrees (i.e., the flows are in opposite directions, the particles having a size intermediate between the two critical sizes will be displace at an angle of 90 degrees relative to the direction of oscillating flow.


The behavior of particles in a bump array is not a function of the absolute direction in which the particles (or the fluid in which they are suspended) move, but rather is a function of the array geometry that the particles encounter. As an alternative to operating a bump array with alternating flow between first and second directions, the same particle-displacing effects can be obtained using flow only in the first direction by increasing the size of the array by two times the number of oscillations, maintaining one portion of the array in its original arrangement, but altering the second portion of the array such that the geometry of the array is identical to the geometry encountered by particles in fluid moving in the second direction in the original array (even though the fluid moves in the first direction only. Using the array illustrated in FIG. 1 by way of example, the same displacement effects on particles can be obtained by two oscillations of flow in this array (i.e., two units of flow left-to-right and two units of flow right-to-left) as can be obtained by four units of left-to-right flow through an array having four times the (left-to-right) length of the array in FIG. 1, so long as two lengths of the array are arranged as shown in FIG. 1 and two lengths of the array are arranged as the mirror image (left-to-right) of the array shown in FIG. 1.


The invention relates to a microfluidic device designed to separate objects on the basis of physical size. The objects can be cells, biomolecules, inorganic beads, or other objects of round or other shape. Typical sizes fractionated to date range from 100 nanometers to 50 micrometers, although smaller or larger sizes are possible. Prior work with these arrays involved continuous flows in one direction, and particles are separated from the flow direction by an angle which is a monotonic function of their size.


This invention is a modification on bump array design that adds functionality. By changing the shape of the posts from circles to a shape that is asymmetric about an axis parallel to the fluid flow, two new functionalities may be added:


1. The critical particle size for bumping may be different depending on which direction a particle moves through the array. This has been experimentally verified with right triangular posts, and extends to arbitrary shapes that are asymmetric about the flow axis.


2. With such designs, the angle of displacement from the fluid flow of particles may be designed not to be monotonic—e.g. peaked at a certain particle size.


Such bump arrays have multiple uses, including all of the uses for which bump arrays were previously known.


The device can be used to separate particles in a selected size band out of a mixture by deterministic lateral displacement. The mechanism for separation is the same as the bump array, but it works under oscillatory flow (AC conditions; i.e., bulk fluid flow alternating between two directions) rather than continuous flow (DC conditions; i.e., bulk fluid flow in only a single direction). Under oscillatory flow, particles of a given size range can be separated perpendicularly from an input stream (perpendicular to the alternating flow axis when the alternating flows differ in direction by 180 degrees) without any net displacement of the bulk fluid or net displacement of particles outside the desired range. Thus, by injecting a sample including particles of the given range into an obstacle array and thereafter alternating fluid flow through the obstacle array in opposite directions (i.e., in directions separated from one another by 180 degrees), particles that are exceed the critical size in one flow direction but do not exceed the critical size in the other flow direction can be separated from other particles in the sample by the bumping induced by the array. Such particles are bumped (and follow the array direction) when fluid flows in one direction, but are not bumped (and follow the bulk fluid flow direction) when fluid flows in the opposite direction. Particles that do not exceed the critical size in either flow direction will not be bumped by the array (will follow the bulk fluid in both directions), and will remain with the sample bolus. Particles that exceed the critical size in both flow directions will be bumped by the array (will follow the array direction) when fluid flows in one direction, and are also bumped (will follow the array direction in the opposite direction) when fluid flows in the opposite direction, and will therefore remain with the sample bolus.


That is, in devices of this sort, critical particle size depends on direction of fluid flow. Intermediate sized particles can be made to ratchet up a device under oscillatory flow.


Second, in a continuous flow mode, particles of a desired size can be induced to move to one side of a fluid stream, and particles above or below that size to the other side or not displaced at all. Thus collection of desired particles may be easier. In conventional devices, particles above a desired range are also displaced from the fluid flow to the same side of the flow, so separating the desired from undesired larger ones may be harder. In this embodiment, obstacles defining different critical sizes for fluid flow in opposite directions are employed in two configurations that are mirror images of one another. For example, with reference to FIG. 1, such an array would include right triangular posts arranged as shown in FIG. 1 (i.e., hypotenuse sloping from lower right to upper left and the tilt angle E extending from the horizontal toward the bottom of the figure) and would also include right triangular posts arranged as they would appear in a mirror held perpendicularly at the right or left side of the array shown in FIG. 1 (i.e., right triangular posts having their hypotenuse sloping from upper right to lower left and the tilt angle E extending from the horizontal toward the top of the figure). Particle separation achieved by bulk fluid flow in a single direction (i.e., either from left-to-right or right-to-left) through such an array would be equivalent to back-and-forth flow through the array illustrated in FIG. 1. Particles in the selected size range would be bumped toward the top of the array (as shown in FIG. 1), while particles having larger or smaller sizes would remain at the vertical level at which they enter the array (assuming approximately equal numbers of obstacles in each of the two configurations are encountered).


We have also discovered that reduction in critical particle size as a ratio of gap, compared to circular posts, occurs when particles bump off sharp edges. This allows larger separation angle without fear of clogging the device faster separations.


These developments potentially reduces the necessary chip area compared to a continuous flow bump array.


Device is a microfabricated post array constructed using standard photolithography. A single mask layer is etched into silicon or used to make a template for PDMS molding. Post arrays are usually sealed with a PDMS coated cover slip to provide closed channels


The new methods may require more careful control of the post shape than a conventional device. Oscillatory flow operation may require more complicated fluid control drivers and interfaces than continuous flow operation.


Both aspects of the invention have been experimentally verified in bump array with right triangular posts.



FIG. 11 is a scanning electron microscope image of posts in an obstacle array of the type described herein. Right isosceles triangular posts, 6 microns on a side, were placed on a square lattice with spacing of 10 microns, giving a gap of approximately 4 microns. The square lattice was tilted 5.71 degrees (0.1 radians) with respect to the device sidewalls to provide necessary asymmetry. Fluid flows along the horizontal axis.


In FIG. 1, the total fluid flux through each gap can be divided into n=1/∈′ flow streams (stream tubes), where n is a whole number. Each flow stream carries equal fluid flux, shown schematically in FIG. 1 for n=3. The stream tubes are separated by stall lines, each stall line beginning and ending on a post. The stream tubes shift their positions cyclically so that after n rows each streamline returns to its initial position within the gap.


The width of the stream closest a post determines the critical particle size. If the particle's radius is smaller than the width of the stream, then the particle's trajectory is undisturbed by the posts and travels in the same direction of the flow. If the particle's radius is larger than the width of the closest stream, then it is displaced across the stall line and its trajectory follows the tilted axis of the array (i.e., the array direction).


The width of the stream closest to the post can be determined by assuming that the velocity profile through a gap is parabolic—the case for fully-developed flow in a rectangular channel. Since each stream carries equal flux and there are n streams, we can integrate over the flow profile such that the flux through a stream of width Dc/2 (Dc is the critical diameter of a particle) closest to the post is equal to the total flux through the gap divided by n. That is, the integral from 0 to Dc/2 of u(x) dx (u being a function of flux at any position x within the gap) being equal to 1/n times the integral of u(x) dx over the entire gap.


Thus, the critical particle size can be determined from the flow profile. For the case of circular posts, a parabolic flow profile closely approximates the flow profile through the gap and the critical particle size can be determined analytically.



FIG. 4A shows a numerical simulation of flow profile for an array of triangular posts. We cannot assume that flow profile through triangular posts is parabolic because of the broken symmetry. Therefore, flow profile through gap of triangular posts was extracted from numerical simulation (program—COMSOL) of flow through an array with same size and spacing as devices actually made.



FIG. 4B illustrates a comparison of velocity flow profiles between circular and triangular posts. Normalized velocity profiles through gap for triangular and circular posts are shown. As shown, the flow profile for the triangle posts is asymmetric about the center of the gap; more fluid flows along the vertex of the triangle than along the flat edge.



FIGS. 12-14 illustrate particle motion in a ratchet bump array of the type described herein. When particles move through the array, the side of the post they interact with depends on which direction they are moving in the array. In this case, when the particles are moving from right-to-left, they bump off the flat edge of the triangular posts. When the particles are moving from left-to-right, they bump off the sharp vertex of the triangular posts. Thus, since the flow profile is asymmetric, we cannot expect particles to follow the same trajectory when travelling in both directions through the array.


Critical Particle Size for Triangular Posts—Employing the same kind of analysis described in the Inglis et al., 2006, Lab Chip 6:655-658, we can integrate over the flow profile to find the width of characteristic streams. However, since the flow profile is asymmetric about the center of the gap, the stream width, and hence the critical particle size will be different depending on which side we examine. As shown in FIG. 4B, the result of the asymmetry introduced by the triangular posts is that the critical particle size is different depending on which side of the triangular obstacle particles interact with. If they are moving along the sharp vertex, then the critical particle size is smaller than if they are moving along the flat edge. Critical particle size vs. array angle (∈) are plotted in FIG. 15 compared to circular posts. The critical particle size for bumping along the sharp vertex of the triangle is substantially smaller than for that of circular posts or the flat edge. This allows higher angles of separation to be used without fear of clogging the devices. When the particle diameter is larger than the gap size (G in FIG. 1), there is substantial risk that the array will become clogged if particle density is high.



FIGS. 3A-3C illustrate representative particle behavior in a ratchet bump array. For a device constructed as shown in FIG. 11, three representative particles were chosen for this illustration. One particle (illustrated in FIG. 3B) was chosen larger than both critical particle sizes (i.e., larger than the critical particle sizes defined by right-to-left and left-to-right fluid flows). One particle (illustrated in FIG. 3A) was chosen smaller than both critical particle sizes. Finally, one particle (illustrated in FIG. 3C) was chosen in the intermediate range smaller than the critical particle size (DF in FIG. 12) along the flat edge, but larger than the critical particle size (Dv in FIG. 12) along the sharp edge. These figures illustrate the behavior of particles that were put into the device and their trajectory under oscillatory flow was observed.


Large Particle (FIG. 3B): Since the particle is larger than the critical particle size along both edges, it follows the array tilt axis (E) in both directions and shows no net displacement under oscillatory flow.


Small Particle (FIG. 3A): Since the particle is smaller than the critical particle size along both edges, it follows the fluid trajectory in both directions and shows no net displacement.


Intermediate Particle (FIG. 3C): When the particle moves to the right, it bumps off the flat edge of the triangular posts. Since it is smaller than the critical particle size (DF), it follows the fluid trajectory. When the particle moves to the left, it bumps off the sharp vertex of the triangular posts. Since it is larger than the critical particle size on this side (Dv) it follows the array tilt axis and is displaced upward. As shown, under oscillatory flow, particles in the intermediate range are displaced perpendicular to the direction of the flow. After three cycles of moving back and forth, the bulk fluid has not been displaced, but the particle has moved over 200 microns.


If all three particle types were mixed and placed in a single array under oscillatory flow (i.e., fluid flow oscillating between the right-to-left and left-to-right directions), the intermediate particles would be displaced toward the top of these figures while the small and large particles would have no net motion.


In FIGS. 12-14, representations of intermediate, small, and large particles (respectively) were overlaid on top of numerical simulation of stream tubes to show motion of particles more clearly. n=1/∈ Was chosen to be 3 to allow periodicity to be more easily seen.


When intermediate particles (FIG. 12) travel along the sharp edge, they bump like expected. However, when the particles travel along the flat edge, their motion is different than that of the small particles. When they perform their characteristic zig to keep going with the direction of the fluid, they are too large to stay in that stream that is close to the sharp vertex and are displaced across the first stall line. The result is that their motion is periodic in two rows instead of three. With any other tilt angle, the motion is similar and the periodicity is n-1. The result of this n-1 periodicity is that the intermediate sized particles are actually displaced against the axis tilt angle. Thus a mixture of large, small and intermediate particles will be separated into three streams. Small particles will go straight through (see FIG. 13). Large particles will follow the array tilt axis (see FIG. 14). Intermediate particles will follow a separate path that is dependent on the post geometry.


The applications for which devices described herein are useful include the same ones described in the Huang patent (U.S. Pat. No. 7,150,812): biotechnology and other microfluidic operations involving particle separation.


Continuous-flow fractionation of small particles in a liquid based on their size in a micropost “bump array” by deterministic lateral displacement was demonstrated previously (e.g., Huang et al., 2004, Science 304:987-990). The ratchet bump array described herein possesses all the same advantages of the previous work, but adds two new functionalities:


First, the devices can be used to separate particles in a selected size band out of a mixture by deterministic lateral displacement under oscillatory flow (AC conditions) rather than continuous flow (DC conditions). Under oscillatory flow, particles of a given size range can be separated perpendicularly from an input stream (perpendicular to the AC flow axis) without any net displacement of the bulk fluid or particles outside the desired range.


Second, in continuous flow mode, the device exhibits trimodal behavior. Particles of a desired size range can be induced to move to one side of a fluid stream, and particles above or below that size to the other side or not displaced at all. Thus collection of these desired particles may be easier. In conventional devices, the devices were bimodal and all particles above a desired size range are displaced from the fluid flow to the same side of the flow, so separating the desired from undesired larger ones requires multiple stages whereas the ratchet bump array requires only one.


As used herein, each of the following terms has the meaning associated with it in this section.


The terms “bump array” and “obstacle array” are used synonymously herein to describe an ordered array of obstacles that are disposed in a flow channel through which a particle-bearing fluid can be passed.


A “substantially planar” surface is a surface that has been made about as flat as a surface can be made in view of the fabrication techniques used to obtain a flat surface. It is understood that no fabrication technique will yield a perfectly flat surface. So long as non-flat portions of a surface do not significantly alter the behavior of fluids and particles moving at or near the surface, the surface should be considered substantially planar.


In a bump array device, “fluid flow” and “bulk fluid flow” are used synonymously to refer to the macroscopic movement of fluid in a general direction across an obstacle array. These terms do not take into account the temporary displacements of fluid streams that are necessitated in order for fluid to move around an obstacle in order for the fluid to continue to move in the general direction.


In a bump array device, the tilt angle ∈ is the angle between the direction of bulk fluid flow and the direction defined by alignment of rows of sequential (in the direction of bulk fluid flow) obstacles in the array. This angle is illustrated in FIGS. 1, 6A, and 11, for example.


In a bump array device, the “array direction” is a direction defined by the defined by alignment of rows of sequential (in the direction of bulk fluid flow) obstacles in the array.


A “critical size” of particles passing through an obstacle array is a parameter that describes the size limit of particles that are able to follow the laminar flow of fluid nearest one side of a gap through which the particles are travelling when flow of that fluid diverges from the majority of fluid flow through the gap. Particles larger than the critical size will be ‘bumped’ from the flow path of the fluid nearest that side of the gap into the flow path of the majority of the fluid flowing through the gap. In a bump array device, such a particle will be displace by the distance of (the size of one obstacle+the size of the gap between obstacles) upon passing through the gap and encountering the downstream column of obstacles, while particles having sizes lower than the critical size will not necessarily be so displaced Significantly, when the profile of fluid flow through a gap is symmetrical about the plane that bisects the gap in the direction of bulk fluid flow, the critical size will be identical for both sides of the gap; however when the profile is asymmetrical, the critical sizes of the two sides of the gap can differ. When assessing a non-spherical particle, its size can be considered to be the spherical exclusion volume swept out by rotation of the particle about a center of gravity in a fluid, at least for particles moving rapidly in solution. Of course, the size characteristics of non-spherical particles can be determined empirically using a variety of known methods, and such determinations can be used in selecting or designing appropriate obstacle arrays for use as described herein. Calculation, measurement, and estimation of exclusion volumes for particles of all sorts are well known.


A particle is “bumped” in a bump array if, upon passing through a gap and encountering a downstream obstacle, the particle's overall trajectory follows the array direction of the bump array (i.e., travels at the tilt angle E relative to bulk fluid flow). A particle is not bumped if its overall trajectory follows the direction of bulk fluid flow under those circumstances. Conceptually, if flow through a gap is visualized as being composed of multiple individual layers of fluid (i.e., stream tubes, if thought of in a cross-section of fluid flowing through the gap), a particle is “bumped” if the particle is displaced by a post out of its incident flow tube into an adjacent flow tube as it traverses a gap bounded by the post.


“The direction of bulk fluid flow” in an obstacle array device refers to the average (e.g., macroscopic) direction of fluid flow through the device (i.e., ignoring local flow deviations necessitated by flow around obstacles in the fluid channel)


A Deterministic Microfluidic Ratchet

This example describes a microfluidic device in which the trajectory of particles within a certain size range varies with the direction the particles move through the device. This ratcheting effect is produced by employing triangular rather than the conventional circular posts in a deterministic lateral displacement device where an array of posts selectively displaces particles as they move through the array. This effect is then used to demonstrate a fractionation technique where particles can be separated from a fluid plug without any net motion of the original fluid plug. The underlying mechanism of this method is based on an asymmetric fluid velocity distribution through the gap between posts.


Microfluidic devices, such as those used in “lab on a chip” applications, typically operate at low Reynolds number (“low” Reynolds number refers to Reynolds number not greater than 1, and preferably smaller, such as 0.1, 10−3, or smaller). In this regime, the fluid flow through an arbitrary geometry can be considered to be time-invariant reversing the applied pressure gradient that drives the fluid will reverse the flow field because inertial effects are negligible. At high Peclet number (“high” Peclet number refers to Peclet number greater than 1, and preferably much greater, such as 10, 100, or more), this can be extended to say that diffusive effects can be ignored and objects in the fluid will deterministically flow along a stream tube unless some other interaction, such as displacement by steric repulsion from a channel wall, disrupts their path and moves them to an adjacent stream tube. The degree to which the particle trajectory is shifted from its original path depends directly on its size; larger particles will be displaced farther than smaller particles and will consequently follow different stream tubes as they progress through the device. This phenomenon, which we call deterministic lateral displacement, has been used in several schemes to perform microscale particle separations.


The “bump array” is a microfluidic device that relies on deterministic lateral displacement to separate particles with high resolution. This device relies on asymmetric bifurcation of fluid streams in a post array that is tilted at an angle ∈ (epsilon; typically on the order of 0.1 radians) with respect to the direction of the overall fluid flow. The fluid flowing through a gap splits around a post in the next row, with 1/∈ of the fluid going through the gap on one side of the next post, while the other E of fluid goes around the other side of the next post. As a result, the fluid motion can be characterized by 1/∈ streams that cycle through positions in the gap, but travel straight on average. If a particle suspended in the fluid is small compared to the width of a stream in a gap, the posts will not affect it as it moves through the array and it will travel straight with the fluid flow. However, if the particle is large relative to the width of a stream, it will be displaced into an adjacent stream when the stream it occupies is nearest a post as it moves through a gap. Because of the cyclical way the streams move through gaps, this displacement or “bump” will occur at every row and the particle will travel at an angle with respect to the fluid and other small particles. With a sufficiently long device, significant separation can be obtained between large and small particles.



FIG. 2A shows a time fluorescent time-lapse image of a small particle (1.1 micron diameter polystyrene bead) flowing through such an array at a typical speed of 100 microns/sec. As the particle moves forward, it takes many small steps parallel to the array axis as it moves through, followed by one larger step perpendicular to the motion of the fluid (in what we refer to as “zig-zag mode”), so that the overall motion is to follow the plug of fluid which originally contained the particle. In taking the image of FIG. 2A, the fluid flow was cycled back and forth (by reversing the pressure) twice. The particle retraced its path, as expected from flows at low Reynolds and high Peclet number in a deterministic device not relying on diffusion.



FIG. 2B shows a similar image but for a larger particle (3.1 microns). In this case the particle clearly follows the array axis (i.e., travels in the array direction) and not the fluid flow. Because the particle is displaced from its flow path by the posts in each row, we refer to this as “bumping mode.” This difference in flow direction as a function particle size has been exploited to make fractionation devices for both polystyrene beads as well as biological particles. As in FIG. 2A, the time lapse image shows the path of the particle over two cycles of flowing forward and back, and again the path of the particles is reversible (i.e., the particles end up where they began).



FIG. 2C shows the same experiment in the same array for a particle of intermediate size (1.9 microns). The results are very different than those shown if FIGS. 2A and 2B. This particle “zig-zags” when going to the right (i.e., moving from left-to-right) to follow the fluid flow but “bumps” when going to the left to follow the post array axis. Its path is not reversed when the fluid flow direction is reversed, with the net result that such particles are separated from a plug of fluid in a perpendicular direction when the fluid is subjected to an oscillatory flow.


The displacement of a particle off of a post is an inherently irreversible interaction, but particle trajectories in a circular post bump array are ostensibly reversible because of symmetry. There is no controversy in this statement for small particles which follow the fluid because the fluid flow must be reversible in the low Reynolds number regime (typical Re 10e-3 for fluid velocity 100 microns/sec and length scale 10 microns). However, large particles do not follow the fluid; instead, they are displaced off posts by steric repulsion so even though the fluid may reverse direction, the trajectory of particles which interact with the posts will not necessarily be reversible unless their interaction with the posts is symmetric with the direction of the fluid. In the schematic in FIG. 3A, particles moving to the left are displaced downward by the top row of posts while particles moving to the right are displaced the same amount by the bottom row of posts. However, if we rotate the image 180 degrees, which is analogous to switching the direction of the fluid, the situation is exactly switched, so the result must be the same in either direction. This rotation works because both the lattice points and post shape are invariant under 180 degree rotation. As a result, both large and small particles in bump array with a circular posts will retrace their steps if the flow is switched back and forth.


Numerical simulations showed that the velocity profile through a gap between triangular posts was shifted towards the side of the gap with the vertex. The fluid velocity profile through a gap between posts depends strongly on the local geometry at the gap. For the case of the triangular posts presented here, where there is a sharp vertex on the bottom and a flat edge on the top, a significant deviation from the parabolic flow profile used to describe pressure-driven flow through circular posts should be expected. FIG. 4A shows a numerical simulation of the fluid velocity in an array like that used to produce the particle trajectories in FIG. 2, along with a cross section of the velocity profile across the gap. The line was placed across the smallest spacing between posts to corresponds with the narrowest stream widths where crossing stall lines is most likely to occur. The vertices of the triangle were rounded off with a curvature of 500 nm to approximate the rounding off of a sharp point that results from optical lithography. It was found that the flow profile was invariant under changes in the array tilt so this flow profile can be assumed to be the general flow profile for triangular posts arranged in this way.



FIG. 4B shows a comparison between the flow profiles of triangular and circular posts. For round posts, the profile is nearly parabolic as expected for Poiseuille flow through an infinitely long one-dimensional channel. For triangular posts, however, the flow profile is biased towards the sharp triangular corner pointing up into the flow stream. In other words, the streams bunch closer together near this vertex and the critical particle size for a particle to be bumped across a stall line is smaller than it would be for an array with the same gap size but with round obstacles. Along the flat edge, the opposite is true. Because the fluid travels preferentially along the vertex, the width of the stream along the flat edge is wider than for circular posts. The effect of the triangular posts is to create two separate critical particle sizes, one for moving along the vertex of the triangle and another for moving along the flat edge. Therefore, particles in between these two critical particle sizes should exhibit different behavior depending on which direction they are moving through the array. To show this, we employed the technique used by Inglis et al., 2006, Lab Chip 6:655-658 to estimate the critical particle size for circular posts by using the extracted velocity profile instead of the parabola assumed for circular posts.



FIG. 5 shows this calculation of the critical particle size as a ratio of the gap for the vertex and flat of the triangle as well as for circular posts versus array tilt angle. The particles shown in figure two are shown as circles on the plot. They show good agreement with the predicted behavior. The 1.1 micron bead is smaller than both critical particle sizes so it travels with the fluid in both directions and shows no net displacement when the fluid direction is cycled. The 3.1 micron particle is bigger than both critical particle sizes so it is displaced along the array axis in both directions and shows no net displacement when the fluid direction is cycled. The 1.9 micron particle is in between the two critical particle sizes so it travels with the fluid when it moves along the flat edge of the triangle and with the array axis when it moves along the vertex of the triangle. As a result, it shows a net displacement when the fluid flow is cycled. This is characteristic of a ratcheting behavior. With no net displacement of the fluid, particles in the intermediate range of an array show a net displacement after several fluid flow oscillations. This ratchet differs from other ratchets in that the ratcheting motion does not occur along the axis of the applied force corresponding to fluid flow in either direction. Rather, it is perpendicular to the motion of the fluid.


Bump Array Employing Triangular Posts

This example describes microfluidic arrays which sort particles based on size according to the deterministic lateral displacement method, by using triangular posts instead of the usual round posts. When triangular posts are used rather than round posts, and the triangular posts are properly oriented (i.e., such that the surfaces defining the gap are asymmetric), the critical size is decreased for a given gap size between the posts. This is because the different post geometry on either side of the gap causes an asymmetric flow profile through the gap, with flux shifting towards the vertex of the triangle. This shift in fluid flux reduces the width of the stream that determines the critical particle size. In this example, both experiment and modeling are used to show that changing the post shape from circular to triangular results in several practical advantages over similar arrays with circular posts including increased dynamic range and throughput.


Deterministic lateral displacement is a size-based particle separation technique that relies on selective displacement of particles by an array of obstacles disposed in a flowing fluid. FIG. 6A illustrates a schematic of the relevant array parameters and important features of the devices described in this example. The obstacle array is composed of columns of posts in which each adjacent column is offset a small distance with respect to larger channel walls that dictate the direction of bulk fluid flow (“FLUID” in FIG. 6A). In this case, the posts are equilateral triangles with side length S (contrary to FIG. 6A, S is the side length, not the distance from a vertex of the triangle to the base opposite that vertex). This offset produces an array where an axis along which the obstacles are situated is situated at a tilt angle E with respect to the direction of fluid flow. The tilt angle is selected such that the array is periodic after 1/∈ rows. In this case, the fluid flowing through gaps between posts (length of gap is designated Gin FIG. 6A) can be partitioned into an integer number of stream tubes delineated by stagnation streamlines. Constrained by the periodicity and the direction of average fluid flow, each of these stream tubes carries an equal volumetric flux.


Particles suspended in the fluid exhibit one of two behaviors depending on their size relative to the width of stream tube nearest to the post as they move through a gap. Unperturbed by other effects, particles will roughly follow the stream tubes in the fluid flow. This behavior is observed for particles having radii narrower than the stream tube width. These particles, shown as the lower particle and dotted trajectory in FIG. 6A, are not affected by the posts and weave through the array while remain within the bounds of a single stream. As a result, they travel on average in the same direction as the bulk fluid flow. Particles having radii larger than the stream tube width, denoted as the upper particle and dotted trajectory in FIG. 6A, do not fit within a single stream tube as they travel through the gap. Those larger particles are deterministically displaced by the post across the stagnation streamline into the adjacent stream tube. Because of the way the stream tubes cycle through their position in the gap, this displacement will occur at every column of posts and the larger particle will travel along the array axis (i.e., in the array direction, which differs from the bulk fluid direction by the tilt angle E). This binary behavior leads us to describe a critical size which separates these two behaviors. As the particles to be separated are most frequently described by their diameter, we denote the critical size as twice the width of the stream tube nearest to the post in the gap between posts.


Changing the post shape can have a strong effect on the critical particle size by changing the shape of the flow profile through the gap. Alterations to the flow profile alter the width of the stream tubes nearest the posts that define a gap. Because critical particle size is directly related to these widths, alteration to the flow profile within a gap also alters the critical size(s) defined by the gap. By changing the crossectional shape of the posts from the typical circular shape to equilateral triangles, an asymmetry is created in the flow profile through the gap that shifts more fluid flux towards the triangle vertex, as shown in FIG. 6B. This results in different stream tube widths at the top (adjacent the flat edge of a triangular post) and bottom (adjacent the vertex of a triangular post) of the gap and gives the array two distinct critical particle sizes.


The shift in flux towards the vertex of the triangle leads to a reduced stream tube width along this edge and hence reduces the critical particle size corresponding to that stream tube and edge, relative to a similar array with circular posts. This is demonstrated in the two panels of FIG. 6B, which shows numerically simulated flow profiles across the gaps. The two flow profiles, normalized to the width of the gap between posts and the maximum velocity, are plotted side by side for comparison. The fluid constituting the first stream tube for tilt angle ∈= 1/10 has been shaded to emphasize the difference in stream width, decreasing from about 20% of the gap bounded by circular posts to about 15% of the gap bounded by triangular posts. This shift is central to the reduction in critical particle size behavior exhibited by devices with triangular posts. The shifted flow profile created by triangular posts can be used to create a deterministic microfluidic ratchet, as discussed in Example 1. In the information discussed in this example, the focus is on improvement to continuous flow particle separation devices and the deterministic lateral displacement of particles within them that are enabled by changing the post shape.


The reduction in critical particle size enabled by triangular posts was characterized by examining the behavior of fluorescent beads of in arrays with various amounts of array tilt and comparing the results to theoretically predictions. FIG. 7 shows observed particle behavior (displaced by the array or not displaced by the array) normalized to the gap size versus array tilt as well as predicted critical particle sizes using the method described by Inglis et al., 2006, Lab Chip 6:655-658. The lines in FIG. 7 represent the predicted critical particle size for a given tilt angle the solid line representing predictions for arrays with triangular posts and the dotted line representing predictions for arrays with round posts. Particles above the line are expected to be displaced by the array, particles below the line are not expected to be displaced. The data demonstrated that there is reasonable agreement with the predicted behavior for higher tilt angles while there is some deviation at the shallower tilt angles, especially at a tilt angle ∈ of 1/20 radians. This deviation could be caused by the flow through the array not being completely horizontal, which will have a large affect at shallower array tilts, or because of rounding of the triangular post edges, which will be discussed later in this example.


The predicted particle behavior for circular posts, signified by the dotted line, has been added as a comparison. For any practical tilt angle (between ⅕ and 1/100), the critical size in an array with triangular posts is substantially smaller than the critical size in a similar array with circular posts, the difference amounting to up to 10% of the gap for the steeper tilt angles. These properties allow smaller particles to be separated by an array of triangular posts than can be separated by an array of round posts having the same gap spacing. These properties also mean that the gap spacing for triangular posts that is necessary to separate particles of a selected size is larger than the corresponding gap spacing for round posts that would be necessary to separate the same particles.


In either case, a reduced critical particle size as a fraction of the gap is useful in reducing clogging in the array. One of the major limitations of these arrays is that particles larger than the gap will clog the entrance, causing loss of function. Biological samples often contain species with a broad range of sizes so careful filtering or multiple separation stages are necessary to ensure that the array continues to function. Using triangular posts allows one to increase the size of the gap for a given critical particle size and reduce the chances that the array will clog. FIG. 8 illustrates how much larger the gap between posts can be made as a function of the array tilt. Plotted as a ratio of the two gaps for a fixed critical particle size, a minimum 20% improvement can be seen with increasing gap size as the tilt is reduced, with a ratio of 1.25 for a tilt angle of ¼ and a ratio of 1.94 for a tilt angle of 1/100. Thus, shallower tilt angles facilitate use of larger gaps at the cost of a smaller separation angle and increased array size. However, larger gaps provide another benefit in terms of increased array throughput.


A throughput comparison between an array with triangular and circular posts showed a substantial increase in average velocity for a given pressure drop in the array with triangular posts. Arrays with triangular posts or with circular posts were constructed with nearly identical characteristics. They each had the same overall channel width and length, depth, tilt angle ( 1/10), and post size (the diameters of round posts were equal to the side lengths of the equilateral triangular posts). The single variation was the gap between posts, which was designed and verified with numerical simulation to give a critical particle diameter of approximately 3.2 microns for both arrays. Those numerical simulations indicated that the critical particle diameter was achieved using a gap of 10.5 microns in arrays with triangular posts and a gap of 8.3 microns in arrays with circular posts.


The trajectories of 500 nanometer fluorescent beads were recorded with an electron multiplying charged coupled device (EMCCD) camera capturing video at 10 frames per second and then analyzed using MATLAB™ software for a given pressure gradient across the array.


Small particles that would not be displaced (i.e., bumped) by the array were chosen so they would sample each of the flow streams evenly and provide an accurate representation of the overall average fluid velocity.


The average particle velocities are plotted in FIG. 9 as a function of pressure gradient along with a weighted linear fit. The fitted lines demonstrate that particles in the triangular post array moved much faster. The upper range of pressures was limited by the field of view of the microscope and the capture speed of the camera. Beyond several kPa in pressure, the particles traversed the entire field of view within one or two frames of the video and no accurate estimate of velocity could be made. However, since the Reynolds number in these experiments is on the order of 10−2, the linear fit can safely be extended into the tens of kPa range to match the expected linear relationship between velocity and pressure that is seen for low Reynolds number flows. The posts need not be triangular in cross-section. Posts having other (square, oblong, or irregular) cross-sectional profiles can also be used, so long as the shape of the obstacles causes the gap to be asymmetric.


Comparing the slopes of the two linear fits in FIG. 9, it can be seen that particles in the array with triangular posts traveled 85% faster on average than those in an array with circular posts. This result agrees with numerical simulation performed with COMSOL™ software that showed that the average velocity for was 82% faster for triangular posts. The mechanism behind these findings can be understood by drawing an analogy to Poiseuille flow between two parallel plates, where the average velocity for a fixed pressure gradient is proportional to the smallest distance between the plates squared. The analogy is not exact because the confining structure is an array of posts instead of two parallel plates, but underscores the benefits of increasing the width of the gap, where just a few microns yields a substantial increase in throughput.


The gains achieved by changing the post shape are degraded if care is not taken to maintain sharp post vertices. FIG. 10 shows the effect of rounding triangular post edges on the critical particle size. An array with 10 micron posts, 10 micron gaps between posts, and tilt angle of ⅓o was simulated using COMSOL™ software, with the vertices rounded to various radii of curvature ranging from none (r=0) to complete rounding where the final shape is a circle (r=S/121/2). Flow profiles across the gaps were extracted for each rounding and the critical size for the given tilt was calculated using previously stated methods. As shown in FIG. 10, there is a dramatic increase in the critical particle size as the post shape transitions from triangular to circular. Starting at 0.174 G when the post is completely triangular (i.e., r=0), critical particle size increases 35% to 0.235 G when the post is completely circular (r=S/121/2). The transition suggests that if a fabrication process that produces an undesirable vertex rounding, using larger posts (increasing S) will help to maintain the decreased critical particle size that results from using triangular posts.


This observation also helps to explain the deviation from expected behavior observed for some of the fluorescent beads in FIG. 7. SEM images of the posts show vertex rounding (r/S) of 0.118±0.006, which corresponds to an increase in the critical particle size from 0.93 microns to 1.12 microns.


“Car Wash” devices and methods.


Microfluidic processes known as Deterministic Lateral Displacement (DLD) can remove cells from a flow of fluid, on the basis of their size (2). As a mixture of fluid and particles flows through an array of microposts, in which the micropost axis is tilted at a small angle of a few degrees from the direction of the fluid flow, particles above a certain critical size (such as leukocytes) will “bump” off the posts to flow in a direction along the tilted array axis (hence the device is often referred to as a “bump array”). Smaller particles and dissolved molecules, such as red blood cells, Mabs, and chemical reagents flow straight ahead, on average, with or in the fluid stream. Thus, after travelling across the microfluidic chip, the larger cells will have flowed out of and away from the fluid stream of the original input mixture and can be collected separately. The process can be used to remove a range of objects from an input fluid, ranging from large DNA oligomers (−100 kpb) to E. coli and other bacteria, platelets, erythrocytes and leukocytes (2,4,5). The critical size determining which path the cells or other objects follow is controlled by the design of the micropost array (e.g. post size and shape, gaps between posts, axis tilt angle) (6). Cells or particles several times larger than the critical size that determines bumping (i.e. cell harvest) can flow through the device without clogging. In some cases, the operating conditions (e.g. chip loading, flow rates, output collection) are automated.


No previously existing cell processing method can recover all subsets of leukocytes in >90% yield, which is a performance criteria that can be achieved using the microfluidic device. This methods and devices can be a research, clinical, and commercial innovation that replaces the current standard centrifugal Wash/Concentrate steps that are commonplace in research and clinical laboratories. The use of this cell processing procedure is not restricted to flow cytometry or to leukocytes.


The tests to quantify the numbers and functional states of key leukocyte types from blood samples offer enhanced determination and personalization of clinical diagnosis, prognosis, and treatment response. For example, labeling of >30 cell surface and intracellular target molecules can assess signaling pathway status of multiple types of normal leukocytes vs leukemia cells simultaneously, by multi-parameter flow cytometry or atomic mass spectrometry (1). Stem cells or infected cells could be analyzed similarly. However, current procedures to process blood leukocytes are expensive, time-consuming, and repetitive; and they have low cell yields and require considerable human expertise.


Conventionally, combined surface membrane and intracellular labeling of blood leukocytes requires lysing erythrocytes to harvest the leukocyte population (Lysis); incubating with fluorescent monoclonal antibodies (Mabs) against cell surface leukocyte lineage/stage or cancer markers (Surface Labeling); performing a fixation/permeabilization (Fix/Perm) step; and incubating with reagents (e.g. tagged Mabs, nucleic acids, dyes) that bind to intracellular (cytoplasmic and nuclear) molecules (Intracellular Labeling). Following each of these 4 steps, one or more Wash/Concentrate steps are typically required, currently involving centrifugation and resuspension of the cell pellet. Leukocyte yield is ˜80-90% in each Wash/Concentrate step so overall yield can be <50% after multiple washes.


Described herein are modified designs of a Deterministic Lateral Displacement (DLD) microfluidic technology (2) to replace each of the Wash/Concentrate Steps. Leukocyte harvesting and a Wash/Concentrate step can be combined into a single step, avoiding lysis and further streamlining the workflow. Thus, the current multi-step, labor-intensive process taking up to a half-day can be replaced by a high yield, low cost process that takes <1 hr. In some cases, the multiple sequential steps can be performed to harvest, label, and wash/concentrate leukocytes in a “Car Wash” approach on a single microchip, inputting whole blood and outputting labeled cells for flow cytometric analysis.


DLD Microfluidic Method to Wash and Concentrate Leukocytes from Blood.


The Deterministic Lateral Displacement (DLD) separation described here can outperform standard centrifugal procedures. We will provide microfluidic devices and procedures to wash and concentrate leukocytes rapidly, at low cost, with increased cell yield, and with improved reproducibility. Microfluidic DLD systems can be designed and fabricated to remove and concentrate leukocytes or spiked leukemia cells from a stream containing Mabs used for the Labeling steps or from the solution used for the Fix/Perm step. Volumes of 0.1-1 ml can be processed in <5-10 minutes (e.g., by an automated process). In some embodiments, >90% yield and 90% viability of leukocytes and removal of >99% unbound fluorescent or Fix/Perm reagents with no skewing of sub-populations is achieved.


Combination of Microfluidic Leukocyte Harvesting with Wash/concentrate into a Single Step.


The conventional erythrocyte Lysis step and the subsequent centrifugal Wash/Concentrate step can be replaced by a single DLD microfluidic step.


As described herein, leukocytes can be labeled in whole blood (healthy and leukemia samples), and then a DLD microfluidic process can harvest and concentrate the Mab-labeled leukocytes from the mixture of blood and excess free Mab. In some cases, >99% erythrocyte depletion is achieved.


The methods can prepare leukocytes (including leukemia cells in blood) for flow cytometry, but can also be a general replacement for centrifugation in preparative procedures for diverse tests to be performed (e.g., on blood leukocytes).


Devices and Methods

Multi-parameter flow cytometry or atomic mass spectrometry can be an increasingly powerful and widely used technology in research and clinical diagnostic testing for cancer and many other diseases (1). However, membrane and intracellular labeling of cells for multi-parameter flow cytometry is a labor- and time-intensive process that can lead to a significant loss of cells. Since each centrifugal Wash/Concentrate step in the conventional process (FIG. 16) has a cell yield of only ˜80-90% and since multiple washes may be required for each of the steps, the overall process can take several hours and overall cell yield may be <50%. Low cell yield can necessitate larger blood samples, an especially critical problem for small children and for patients with anemia or who need many blood tests. Animal studies, too, are hampered by the limited sample volumes available, e.g. from mice. Because these steps are done by hand, the results may be highly variable. In one aspect, the significance of these devices and methods is that they can replace all of these inefficient manual Wash/Concentrate steps, as well as the erythrocyte Lysis step, with automated reagent-free microfluidic processes that will effectively harvest, wash and concentrate leukocytes and leukemia cells in several minutes, with high yield, high reproducibility, and low cost.


In some cases, the methods use a DLD microfluidic technology as described in U.S. Patent Publication No. US2010/0059414. Up to at least 8 centrifugal Wash/Concentrate Steps can be reduced to 3 on-chip process of <5-10 min each for 0.1-1 ml samples (FIG. 16). These devices and methods can be a general replacement for centrifugation in cell processing. Leading suppliers of clinical and research instruments are searching for alternatives to the current cell processing methods (3). Applications go far beyond flow cytometry, ranging from laboratory research to existing and new clinical diagnostics.


As shown in FIG. 16, conventional process for labeling of leukocytes (left) and the proposed reduction of the up to 8 centrifugal Wash/Concentrate steps to 3 on-chip microfluidic steps. The embodiment going vertically down the center replaces each centrifugal Wash/Concentrate step with an on-chip Wash/ Concentrate process. The embodiment going vertically down the right avoids erythrocyte lysis entirely, isolating/ harvesting/washing/concentrating leukocytes (and leukemia cells) from blood samples in a single step after the Surface Labeling step.


DLD Microfluidic Technology to Wash and Concentrate Leukocytes from Blood.


DLD separation can outperform standard centrifugal procedures. For each microfluidic Wash/Concentrate step, one can harvest >90% of leukocytes at >90% viability while removing >99% unbound fluorescent or Fix/Perm reagents with no skewing of sub-populations.



FIG. 17A shows a DLD array designed to “bump” E. coli (>1um size). The bacterial suspension is input on the left, and flows left to right, confined by the walls of the microfluidic device. The micropost array causes the fluorescent (GFP-containing) bacteria (seen as the white blurred band) to flow along the tilted array axis, so that they move down to accumulate against the lower array wall, while the fluid stream continues straight ahead. The bacteria thus concentrate along the lower edge of the device, seen as the growing bold white streak. By separately collecting this concentrated output from its own output channel, distant from the waste fluid output channel, bacteria are concentrated by 50-fold during the ˜100 secs they took to flow across the DLD device.


The device shown in FIG. 17A can be extended to include 2 input streams: stream 1 can be a suspension of leukocytes after labeling with Mabs (or treatment with Fix/Perm reagents); stream 2 can be buffer fluid (as shown in FIG. 17B). The redesigned bump array can cause large cells, such as leukocytes (>8 um diameter; and leukemia cells, ˜8-20 um) to move at an angle to the input fluid flow, whereas dissolved molecules or small suspended particles (e.g. fluorescent Mabs, Fix/Perm reagents) tend to move left to right, in or following the fluid flow. The microchip can operate at low Reynolds number, so the flow is laminar and not turbulent; thus, the 2 streams move in parallel. As in FIG. 17A, the desired cells (leukocytes and leukemia cells) concentrate at the lower edge of the array. By routing most of the output fluid to a waste channel and the concentrated cells to a product channel, washing and concentration can be achieved at the same time.


In addition to successful leukocyte harvesting, DLD technology can achieve concurrent washing of the cells. Whole blood can be incubated with CD45 FITC for 30 minutes at room temperature, then leukocytes can be removed from the blood using a DLD microchip. A reduction in fluorescence in the cell-free product of ≧99% can be achieved after leukocyte harvesting on the DLD microchip, indicating efficient removal of fluorescent Mab.


As shown in FIGS. 17A-C: (a)Top view: Example of DLD mechanism showing uniform input of fluorescent (white) E. coli bacteria in a tilted post array being bumped downwards at an angle to the fluid flow, to become highly concentrated against the lower array wall and then collected, while fluid moves horizontally (7). (b) Schematic “washing” of leukocytes and/or leukemia cells by extension of FIG. 17A by adding an input buffer stream. Only large leukocytes move down to the buffer stream and lower wall. (c) Time-lapse image of leukocytes (blue from nuclear stain) being harvested out of a stream of whole blood (reddish/white) moving left to right using a chip with design as in FIG. 17B. Note that the tilted array of microposts can be seen (4,8).


In some cases, 0.111 ml of blood are processed in <5-10 minutes, with a leukocyte yield >90%, no skewing of cell types compared to input cells or conventional methods, and >99% removal of unbound fluorescent Mab and Fix/Perm reagents. In some cases, the cells are moved away from the input stream faster than the input stream widens due to diffusion toward the clean buffer stream. While diffusion coefficients of the large leukocytes (and leukemia cells) can be negligible to first order approximation, the diffusion coefficients of the Mabs or Fix/Perm reagents are generally not negligible. In some cases, these dissolved or suspended molecules are much smaller than cells and thus have a high diffusion coefficient. Unwanted spreading of these reagents can cause contamination of the leukocyte output. Increasing the tilt angle can help prevent spreading, but can reduce the gap between the posts for a fixed cell size, which can be undesirable due to occasional very large cells. Another option is to lengthen the chip, since the cell displacement can be linear with length of the array and the spreading (diffusion) increases only as the square root. However, this has the drawback of requiring a more expensive chip. In some embodiments, DLD is microscopically a deterministic process, not a random one, such as gel electrophoresis. Thus, running a DLD microfluidic process faster may not change the path of the desired cells (2), and high speed can reduce the time for unwanted reagent diffusion. In some cases, the fluid speed is ˜0.1 mm/sec. Thus, running through a chip of typical length (˜3 cm) can take 5 minutes, which may be too slow not only for the goal of leukocyte throughput, but also to prevent the unwanted diffusion. In some cases, the bumping process operates well with little cell damage even at speeds of >100 mm/sec (i.e. flow rates >1 ml/min) (9). Flow speed can be varied as required to reduce reagent contamination of the output. Qualitative images of results with E. coli (5) indicate that this diffusion problem for washing away reagents can be overcome at modest flow speeds.


A second potential challenge is the wide range of cell size of leukocytes and leukemia cells. This can be addressed by using triangular instead of round posts (10, 11), which allows for a larger gap between posts than with round posts, due to flow anisotropies in the gap. Finally, after Fix/Perm, the cells may be “stiffer” than before, and thus act as if they have a different diameter in the DLD chip. If this is observed, a DLD chip with a slightly larger critical size may be needed for cells after Fix/Perm.


Microfluidic Leukocyte Harvesting and DLD Wash/concentrate in a Single Step

The conventional erythrocyte Lysis Step and the subsequent centrifugal Wash/Concentrate Step can be replaced by a single DLD microfluidic step. In addition to >90% yield and viability with thorough removal of labeling and Fix/Perm reagents, some embodiments also achieve this microfluidic Wash/Concentrate system to deplete >99% of erythrocytes from a whole blood sample incubated with fluorescent Mabs.


Because they are larger size than red blood cells, leukocytes can be bumped out from an input stream of whole or diluted blood in a DLD chip (4). Thus, one may perform surface labeling of leukocytes directly in blood (without any lysis or removal of erythrocytes), followed by harvesting, washing, and concentrating the immunostained leukocytes directly from the blood (FIG. 17C). This can allow the complete leukocyte preparation process to be accomplished with only 3 on-chip Wash/Concentrate steps. Note that the microchip can be designed so that the smaller red blood cells (from unlysed blood), platelets, and non-cellular plasma constituents are not bumped (4); thus, the output may contain only the harvested, washed, and concentrated leukocytes.


In some cases, the input stream is not just the leukocytes plus Mabs, but rather whole blood (optionally, diluted with running buffer) plus Mabs. A larger volume of input may be required, because the input will be concentrated leukocytes. Thus, larger amounts of Mabs (to compensate for the dilution factor) may be required for optimal immunostaining.


In some instances, cells are immunostained exactly as described herein, except the starting cell preparation can be unlysed whole blood, rather than lysed blood. Immunostained cells can undergo the developed on-chip Leukocyte Harvest/Wash/Concentrate Step, then enumerated by flow cytometry. Results can be compared vs cells immunostained after a conventional erythrocyte Lysis Step. Statistical comparisons of viability, yield, purity, and leukocyte subsets can be performed.


In some embodiments, 99% of erythrocytes are removed (i.e. obtain leukocytes <10% contaminated by erythrocytes). In some cases, the viscosity of blood (due to the 1000-fold higher numbers of erythrocytes) is higher compared to a suspension of leukocytes in buffer. This can change the internal dynamics of the flow patterns near the boundary between the buffer and the blood. At least three approaches can be used to solve this problem: (a) driving the blood input and the buffer input at different pressures, (b) replacing the pressure-driven approach with a fixed flow rate (syringe pump) approach, and (c) diluting the whole blood (e.g. 3-5-fold) to reduce its viscosity. The latter approach can be the most straightforward, although it requires higher flow rates to achieve throughput targets. In some cases, an output is achieved that concentrates leukocytes by 30-fold from the (diluted) input. In practice, this can require a fairly wide (and thus long) chip, which can limited by the ˜100mm starting wafer size. Options include using a fabrication facility capable of larger wafer sizes (e.g. 200mm), or cascading chips—one chip does the harvesting and initial concentration (FIG. 17C), and then the fluid flows through a second chip designed for concentration (like that of FIG. 17A). Finally, if the triangular post approach for wide gaps does not eliminate clogging due to anomalously large cells (e.g. >30 um), pre-filtering may be performed, or a third chip in series may be used to remove >30 um-sized cells.


In some embodiments, an objective is to replace the conventional lysis and centrifugal steps for the harvesting of leukocytes (and leukemia cells) from blood, and the centrifugal Wash/Concentrate steps after cell surface labeling, Fix/Perm, and intracellular labeling with rapid and repeatable on-chip processes, as described herein.


In some cases, the method resembles a “Car Wash” approach, in which (analogously) a car is subjected to multiple sequential treatments (e.g. wash, rinse, wax, dry) as it moves through the car wash process (FIG.18A). Building on the concept of FIG. 18B, blood enters a chip, and the desired cells are moved through sequential parallel streams of chemicals (labels, fix/perm reagents, etc.) to accomplish one step after another. For example, blood which has already been labeled with a cell surface marker (but not washed) would enter the chip in the top stream (flowing left to right), and the relatively large leukocytes and leukemia cells are induced to flow downwards at an angle to the fluid flow by the DLD bumping process to be harvested out of the blood. The cells then flow through a stream for a stream for fixing and permeabilizing the cells' membranes, then through a stream for intracellular labeling. Finally, the cell surface/intracellular labeled cells are washed and concentrated and collected at the bottom edge of the array.


On-chip labeling of cells by moving them into a labeling stream and subsequent removal of the labeled cells from the labeling stream can be done using previously isolated but unlabeled blood platelets as the input and a CD41 fluorescent label for the labeling stream (FIG. 18B) (5). On-chip lysis of cells by moving them across a stream of lysis agents can be performed (5). On-chip lysis is not required for the “Car Wash” of FIG. 18A, but it provides the possibility of on-chip sequential chemical processing for steps such as Fix/Perm prior to intracellular staining. Required incubation times and concentrations, yields, and broadening of the incubation or Fix/Perm streams due to diffusion may be determined.



FIG. 18A a schematic view of “Car Wash” concept for multiple sequential chemical processing on chip for cellular preparation. A single continuous-flow process combines all steps in FIG. 16 into a single chip. FIG. 18B shows false-color fluorescent time-lapse image of platelets moving downwards in a DLD array across 3 parallel on-chip streams for on-chip label and wash. Upper Stream: input of unlabeled (invisible) platelets; Middle stream: phycoerythrin-conjugated CD41 label; Lower Stream: labeled platelets in wash buffer.


Materials of Construction and Surface Chemistry

In some embodiments, the device is made by hot embossing PMMA and polycarbonate. Due to their low cost compatibility with replication-based fabrication methods, thermoplastics can represent an attractive family of materials for the fabrication of lab-on-a-chip platforms. A diverse range of thermoplastic materials suitable for microfluidic fabrication is available, offering a wide selection of mechanical and chemical properties that can be leveraged and further tailored for specific applications. While high-throughput embossing methods such as reel-to-reel processing of thermoplastics is an attractive method for industrial microfluidic chip production, the use of single chip hot embossing is a cost-effective technique for realizing high-quality microfluidic devices during the prototyping stage. Here we describe methods for the replication of microscale features in two thermoplastics, polymethylmethacrylate (PMMA) and polycarbonate (PC), using hot embossing from a silicon template fabricated by deep reactive-ion etching. Further details can be found in “Microfluidic device fabrication by thermoplastic hot-embossing” by Yang and Devoe, Methods Mol. Biol. 2013; 949: 115-23, which is herby incorporated by reference herein in its entirety.


The device can be sealed and bonded in any suitable manner. The main challenge can be bonding planar microfluidic parts together hermetically without affecting the shape and size of micro-sized channels. A number of bonding techniques such as induction heating are suitable. The channels can be fabricated by using Excimer laser equipment. Further details can be found in “Sealing and bonding techniques for polymer-based microfluidic devices” by Abdirahman Yussuf, Igor Sbarski, Jason Hayes and Matthew Solomon, which is herby incorporated by reference herein in its entirety.


Further bonding techniques include Adhesive Bonding, Pressure sensitive tape/Lamination, Thermal Fusion Bonding, Solvent Bonding, Localized welding, Surface treatment and combinations thereof. Further details can be found in “Bonding of thermoplastic polymer microfluidics” by Chia-Wen Tsao and Don L. DeVoe, Microfluid Nanofluid (2009) 6:1-16, which is herby incorporated by reference herein in its entirety.


In some embodiments, the device is made from a polymer and/or plastic. The polymer and/or plastic can be hydrophilic and/or wettable. Table 1 summarizes properties of some plastics.









TABLE 1







Summary of physical properties for common microfluidic thermoplastics














Water


Optical



CTE
absorption
Solvent
Acid/base
transmissivity
















Polymer
Acronym
Tg (° C.)
Tm(° C.)
(10−6° C.−1)
(%)
resistance
resistance
Visible
UVa



















Cyclic olefin (co)polymer
COC/COP
 70-155
190-320
60-80
0.01
Excellent
Good
Excellent
Excellent


Polymethylmethacrylate
PMMA
100-122
250-260
 70-150
0.3-0.6
Good
Good
Excellent
Good


Polycarbonate
PC
145-148
260-270
60-70
0.12-0.34
Good
Good
Excellent
Poor


Polystyrene
PS
 92-100
240-260
 10-150
0.02-0.15
Poor
Good
Excellent
Poor


Polypropylene
PP
−20
160
 18-185
0.10
Good
Good
Good
Fair


Polyetheretherketone
PEEK
147-158
340-350
47-54
0.1-0.5
Excellent
Good
Poor
Poor


Polyethylene terephthalate
PET
69-78
248-260
48-78
0.1-0.3
Excellent
Excellent
Good
Good


Polyethylene
PE
−30
120-130
180-230
0.01
Excellent
Excellent
Fair
Fair


Polyvinylidene chloride
PVDC
0
76
190
0.10
Good
Good
Good
Poor


Polyvinyl chloride
PVC
80
180-210
50
0.04-0.4 
Good
Excellent
Good
Poor


Polysulfone
PSU
170-187
180-190
55-60
0.3-0.4
Fair
Good
Fair
Poor





Tm melting temperature, CTE coefficient of thermal expansion



ahigh UV transmissivity often requires the selection of special polymer grades, e.g. without stabilizers or other additives







The microfluidic device can be fabricated in any suitable manner. Some techniques include Replica molding, Softlithographt with PDMS, Thermoset polyester, Embossing, Injection Molding, Laser Ablation and combinations thereof. Further details can be found in “Disposable microfluidic devices: fabrication, function and application” by Gina S. Fiorini and Daniel T. Chiu, BioTechniques 38:429-446 (Mar. 2005), which is herby incorporated by reference herein in its entirety. The book “Lab on a Chip Technology” edited by Keith E. Herold and Avraham Rasooly, Caister Academic Press Norfolk UK (2009) is a resource for methods of fabrication, and such which is herby incorporated by reference herein in its entirety.


In some cases, the surface of the (plastic) device is treated to make it hydrophilic and/or wettable. Surfaces in microfluidics can play a critical role because they define properties such as wetting, adsorption and repellency of biomolecules, biomolecular recognition using surface-immobilized receptors, sealing and bonding of different materials. Two types of treatments generally exist to modify the surface properties of microfluidics: wet chemical treatments and gas phase treatments. Wet treatments can be simple in terms of infrastructure requirements; they can be flexible and fast to develop from a research standpoint. Surface treatment of microfluidics for production can be however best achieved using dry processes based on plasma and chemical vapor deposition. These treatments can eliminate the need for rinsing and drying steps, have high throughput capability and are highly reproducible.


In some cases, the treatment is a wet chemical treatment. Among the wet chemical treatments available, the formation of self-assembled monolayers (SAMs) is one of the most versatile and easy to use surface treatments. SAMs have been developed on metals, silicon oxides and polymers. Molecules in SAMs pack closely and are composed of a headgroup usually binding covalently to the substrate, an alkyl chain and a terminal functional group. The thickness of the SAM depends on the length of the alkyl chain and density of the molecules on the surface and is typically a few nanometers. SAMs can be easy to prepare and can be patterned with sub-micrometer lateral resolution. Different terminal groups can be used for defining the wetting properties of the surface as well as the affinity for or repellency of proteins. For glass surfaces, oxides and polymers that can be oxidized, grafting alkylsiloxanes to surfaces might be the simplest and most economical method. A wettability gradient from superhydrophobic to hydrophilic can be achieved by superposing a SAM-based wetting gradient onto microstructures in silicon that have varying lateral spacing.


Polymeric SAMs can comprise block copolymers and can have various three-dimensional structures, which gives the opportunity to vary their mode of grafting to a surface and the types of functionalities that they carry. Such layers can reach a significant thickness of several hundreds of nanometers and protect/functionalize surfaces more reliably than thinner monolayers. For example, a poly(oligo(ethyleneglycol)methacrylate) polymer brush can coat glass microfluidic chips to make them hydrophilic and antifouling.


Coating polymers onto surfaces to modify their properties is possible. For example, poly(ethyleneglycol) is often used to “biologically” passivate microfluidic materials and can be grafted onto PMMA surfaces of capillary electrophoresis microchips to make them hydrophilic. Poly(tetrafluoroethylene) can be used to make chemically resistant microfluidics devices. Polymeric materials employed to fabricate microfluidics can be modified in many ways. Often, functional groups such as amines or carboxylic acids that are either in the native polymer or added by means of wet chemistry or plasma treatment are used to crosslink proteins and nucleic acids. DNA can be attached to COC and PM1VIA substrates using surface amine groups. Surfactants such as Pluronic® can be used to make surfaces hydrophilic and protein repellant by adding Pluronic® to PDMS formulations. It is even possible to spin coat a layer of PMMA on a microfluidic chip and “dope” the PMMA with hydroxypropyl cellulose to vary its contact angle.


Proteins themselves can be used on surfaces to change surface wettability, to passivate a surface from non-specific protein binding and for functionalization. Proteins readily adsorb to hydrophobic substrates such as PDMS and polystyrene. By exploiting this property, PDMS substrates can be coated with neutravidin to immobilize biotinylated proteins or biotinylated dextran. Antibody coatings can be optimized depending on the hydrophobicity of the polymeric substrate. Bovine serum albumin is the most commonly used protein to passivate surfaces from non-specific adsorption and is easy to deposit spontaneously from solution to hydrophobic surfaces. On a hydrophilic substrate, a layer of hydrophobic poly(tetrafluoroethylene) can first be coated to enable the subsequent deposition of bovine serum albumin. Heparin, a biological molecule widely used as an anticoagulant, can be deposited from solution onto PDMS to make microchannels hydrophilic while preventing adhesion of blood cells and proteins.


In some embodiments, the device undergoes a gas phase treatment. Plasma processing not only can modify the chemistry of a polymeric surface but it also can affect its roughness significantly thereby exacerbating wetting properties to make surfaces superhydrophilic and fluorocarbons can be plasma deposited to make surfaces superhydrophobic. Polymeric surfaces can be patterned using ultraviolet light to initiate radical polymerization followed by covalent grafting of polymers. Plasma-induced grafting is used to attach poly(ethyleneglycol) onto polyamide and polyester surfaces to render them antifouling. Dextran is a polysaccharide comprising of many glucose molecules that can be coated to make hydrophilic antifouling surfaces. A common starting point to modifying polymers is to introduce surface hydroxyl groups using a plasma treatment followed by grafting a silane and dextran layer. Similarly, PDMS can be superficially oxidized using ultraviolet light for grafting a dextran hydrogel.


The large surface to volume ratio of microfluidic structures makes any potential surface-analyte/reagent interaction a potential issue. Therefore, irrespective of the method used to treat the surfaces of a microfluidic device for POC testing, the surfaces of the device ideally should not attract and deplete analytes or biochemicals that are needed for the test. In addition, surface treatments should not interfere with signal generation and acquisition principles of the device. Further details can be found in “Capillary microfluidic chips for point of care testing: from research tools to decentralized medical diagnostics” a thesis by Luc Gervais, Ecole polytechnique federale de Lausanne, 23 Jun. 2011, which is herby incorporated by reference herein in its entirety.


Applications

Although this disclosure discusses leukocyte processing for flow cytometry the same technology can be used for multiple existing and new cellular and other (e.g. DNA, RNA) tests for cancer and other diseases.


In some cases, the devices and methods described herein are used to prepare samples for nucleic acid (e.g., DNA or RNA) sequencing. Nucleic acids can be isolated from any type of cell including prokaryotic, eukaryotic, archaea, single celled organisms, multi-cellular organisms or tissues (e.g., plants or animals), and the like. The nucleic acid can be sequenced in any manner, including single molecule or shotgun sequencing, in a nanopore, by detecting a change in pH upon nucleotide incorporation events, by fluorescence detection of incorporated or released dyes, etc . . . The cells are lysed and nucleic acid is sorted from cellular debris using the post arrays as described herein. The nucleic acid can be concentrated to any suitable concentration and/or purified to any suitable purity (e.g., at least 70%, at least 80%, at least 90%, at least 95%, at least 99%, at least 99.9%, and the like).


EXAMPLES
Example 1
Fabrication

Chips are fabricated using highly anisotropic deep reactive ion etching (DRIE) in crystalline silicon polished substrates using a “Bosch” process which cycles between etching and sidewall passivation steps, so the post sidewall differs from vertical by only ˜1° . Optical lithography defines the patterns. Through-holes are micro-machined through the substrate enable fluid loading/unloading from the backside, which are mated to a plastic jig with connectors to input sources and output collection. The chip is pre-treated with Triblock copolymer F108 (2g/1) to reduce cell adhesion. The chip design parameters (e.g. critical size for bumping behavior) are adjusted to obtain a high yield.


Example 2
Operation

Leukocytes from 0.1-1 ml of erythrocyte-lysed whole blood (optionally diluted with buffer (PBS without calcium and magnesium, containing 1% BSA and 4mM EDTA), and optionally spiked with leukemia cells) are incubated (“immunostained”) with fluorescent Mabs against multiple leukocyte differentiation cell surface antigens (i.e. CD45/CD14/15 (to enumerate monogranulocytic cell types), CD3/4/8 (to enumerate the common T lymphocyte subsets), CD19/56/14 (to identify B lymphocytes and NK cells), CD45/CD235a/CD71 (to identify any contaminating erythroid cells) and with a viability dye. This is done conventionally, i.e. off chip. Cells are then washed and concentrated to ˜1-10 million cells/ml using DLD chips designed to move leukocytes and leukemia cells from the initial stream of the input cell suspension containing fluorescent Mabs to the output stream of fresh buffer against the chip wall (FIG. 17B).


The method can recover >90% of the input leukocytes, concentrated back to their original concentration in whole blood (˜1-10 million cells/ml), at a flow rate of ˜200 ul/min. Leukocyte viability is assessed by viability dye(goal: >90% viability), and immunolabeling is assessed by flow cytometry (FACS) to determine content of each major leukocyte cell type (i.e. yield of each of the above leukocyte types and optionally labeled spiked leukemia cells; In some cases, >90% yield of each cell type) vs the identical cells processed by standard centrifugal Wash/Concentrate methods. Quality of immunostaining of each cell type is compared after microfluidic vs standard Wash/Concentration. The amount of residual fluorescent Mabs contaminating the leukocytes obtained by both techniques by measuring fluorescence of cell-free aliquots of the starting sample and of the leukocyte products (goal: <1% of starting Mab remaining) is quantified. These fluorescence measurements are performed in triplicate wells of a 96-well plate using a fluorescence plate reader.


Analogous experiments are performed after an off-chip Fix/Perm reaction on leukocytes from 0.1-1 ml of erythrocyte-lysed whole blood (optionally diluted with buffer, and optionally spiked with leukemia cells). The presence of significant amounts of residual Fix/Perm reagents are determined indirectly by the level of subsequent non-selective binding of irrelevant fluorescent Mabs (fluorescent isotype control Mabs). Finally, similar experiments are performed after intracellular labeling and residual free fluorescent antibody in the leukocyte product are measured.


When the device and protocols are optimized to routinely produce output leukocytes meeting the desired criteria, a series of several successive experiments (number of experiments subject to statistical significance and power calculations) are conducted where leukocytes from a given blood sample are Wash/Concentrated simultaneously in the microfluidic device vs by an experienced individual using conventional centrifugal procedures. Statistical comparisons of cell viability, yield, purity, and leukocyte subsets are performed.


Example 3
Leukocytes from UCB

Leukocytes can be harvested from a variety of tissues. Table 2 shows leukocyte enrichment experiments from umbilical cord blood (UCB). The starting sample is 3 ml UCB, diluted 1:1 with running buffer. The leukocyte-enriched output product contained erythrocyte levels below detection (Hemavet cell counter), so product purity is determined by multicolor FACS analysis using labels against CD45, CD14, CD235a, and a viable nucleic acid dye. For the combined fractions, erythrocyte depletion is 99%, leukocyte recovery is 87%, and leukocyte purity (i.e. 100%-% erythrocytes) is 81-88%. There is some dead volume the instrument configuration, so a small portion of sample remains in the system and is not processed. With some minor engineering changes, the full sample can be sorted, and the leukocyte recovery may rise to ∃90%. Viability by trypan blue dye exclusion is >90% in all fractions. Granulocytes, lymphocytes, and monocytes are close to the initial “differential leukocyte” ratios.
















TABLE 2







Starting
Product 1
Product 2
Product 3
Product 4
Product 5






















WBC count (K/ul)
5.36
2.16
2.60
1.62
2.54
1.64


RBC count (M/ul)
2.41
<0.01*
<0.01*
<0.01*
<0.01*
<0.01*


Volume (ml)
3.00
0.45
0.42
0.47
3.5
1








Yield
87% (for the combined Products)













% Viability
>90
>90
>90
>90
>90
>90


% Purity
0.54
81
88
Not done
86
Not done


% Granulocytes
63.9
61.6
56.8
Not done
51.9
Not done


% Lymphocytes
18.6
17.8
21.1
Not done
25.7
Not done


% Monocytes
7.21
6.61
7.19
Not done
9.83
Not done









In some cases, separate and wash leukocytes from lysed whole blood has confirmed removal of >99% of erythrocytes, platelets, plasma proteins, and unbound Mabs, and close to 90% leucocyte recovery without introducing bias among the leucocyte subpopulations (3).


REFERENCES



  • 1. Bendall S C, Simonds E F, Qiu P, Amir E D, Krutzik P O, Finck R, Bruggner R V, Melamed R, Trejo A, Ornatsky O I, Balderas R S, Plevritis S K, Sachs K, Pe'er D, Tanner S D, Nolan G P. Single-cell mass cytometry of differential immune and drug responses across a human hematopoietic continuum. Science 2011; 332: 687-696.

  • 2. Huang L R, Cox E C, Austin R H, Sturm J C. Continuous particle separation through deterministic lateral displacement. Science 2004; 304(5673): 987-990.

  • 3. Yu L, Donovan M, Warner B, Edmiston J S, Recktenwald D. A microfluidic approach for whole blood leucocyte isolation for leucocyte immunophenotyping by flow cytometry. Poster submitted to CYTO2012 in April 2012. Cited by permission.

  • 4. Davis J A, Inglis D W, Morton K J, Lawrence D A, Huang L R, Chou S Y, et al. Deterministic hydrodynamics: taking blood apart. Proc Natl Acad Sci USA 2006; 103(40): 14779-14784.

  • 5. Morton K J, Loutherback K, Inglis D W, Tsui O K, Sturm J C, Chou S Y, Austin R H. Crossing microfluidic streamlines to lyse, label and wash cells. Lab Chip 2008; 8: 1448-1453.

  • 6. Inglis D W, Davis J A, Austin R H, Sturm J C. Critical particle size for fractionation by deterministic lateral displacement. Lab Chip 2006; 6(5): 655-658.

  • 7. Loutherback K, Austin R H, Sturm J C. Critical size, dynamic range, and throughput improvements in sorting by deterministic lateral displacement enabled by triangular posts. Presented at the Symposium of the Materials Research Society, San Francisco, CA, April 2009.

  • 8. Davis J. Microfluidic separation of blood components through deterministic lateral displacement. Ph.D. Thesis, Princeton University, 2008 (http://www.princeton.edu/˜sturmlab/theses/Davis-Thesis.pdf).

  • 9. Loutherback K, D′ Silva J L, Liu L, Wu A, Sturm J C, Austin R H. Deterministic separation of cancer cells from blood at 10 mL/min. Submitted to Lab on a Chip in March 2012.

  • 10. Loutherback K, Puchalla J, Austin R H, Sturm J C. Deterministic microfluidic ratchet. Phys Rev Lett 2009; 102(4): 045301.

  • 11. Loutherback K, Chou K, Newman J, Puchalla J, Austin R, Sturm J. Improved performance of deterministic lateral displacement arrays with triangular posts. Microfluidics and Nanofluidics 2010; 9(6): 1143-1149.



While preferred embodiments of the present invention have been shown and described herein, it will be obvious to those skilled in the art that such embodiments are provided by way of example only. Numerous variations, changes, and substitutions will now occur to those

    • skilled in the art without departing from the invention. It should be understood that various alternatives to the embodiments of the invention described herein may be employed in practicing the invention. It is intended that the following claims define the scope of the invention and that methods and structures within the scope of these claims and their equivalents be covered thereby.

Claims
  • 1. A device comprising: (a) a channel extending from a plurality of inlets to a plurality of outlets, wherein the channel is bounded by a first wall and a second wall opposite from the first wall; and(b) an array of obstacles disposed within the channel configured to deflect particles toward the first wall when the particles are flowed in one or more fluids from the inlets to the outlets,wherein the device is configured such that at least 4 of the plurality of inlets directs multiple fluids to flow in parallel from the inlets to the outlets, and particles introduced into the channel near the second wall pass through the plurality of fluids while being deflected toward the first wall.
  • 2. The device of claim 1, wherein the device is microfluidic.
  • 3. The device of claim 1, wherein the surface of the device is hydrophilic.
  • 4. The device of claim 1, wherein the obstacles are made from a polymer.
  • 5. The device of claim 1, wherein the channel is at least 0.1 inch wide.
  • 6. The device of claim 1, wherein the channel is at least 1 inch wide.
  • 7. The device of claim 1, wherein the channel is at least 3 inch wide.
  • 8. The device of claim 1, wherein the channel is at least 6 inch wide.
  • 9. The device of claim 1, wherein the channel is at least 0.1 inch long.
  • 10. The device of claim 1, wherein the channel is at least 1 inch long.
  • 11. The device of claim 1, wherein the channel is at least 3 inch long.
  • 12. The device of claim 1, wherein the channel is at least 6 inch long.
  • 13. The device of claim 1, wherein the device comprises at least 6 inlets.
  • 14. The device of claim 1, wherein the obstacles are arranged in a staggered array.
  • 15. The device of claim 1, wherein the obstacles are spaced 10 to 100 microns apart.
  • 16. The device of claim 1, wherein the obstacles are triangularly shaped.
  • 17. The device of claim 1, further comprising a plurality of reservoirs in fluid communication with the inlets.
  • 18. The device of claim 17, wherein the reservoirs comprise a sample, a buffer, a cell surface label, a fix and permeabilize reagent, an intracellular lablel, or any combination thereof.
  • 19. A method for processing leukocytes for molecular diagnostic testing, the method comprising: (a) providing a sample comprising leukocytes;(b) labeling the surface of the leukocytes; and(c) harvesting, washing and concentrating the labeled leukocytes from the sample in a single chamber of a microfluidic chip having a plurality of microscopic obstacles.
  • 20. The method of claim 19, wherein the chip has no moving parts.
CROSS-REFERENCE

This application is a continuation of U.S. application Ser. No. 14/212,294, filed Mar. 14, 2014, which claims the benefit of U.S. Provisional Application No. 61/800,222, filed Mar. 15, 2013, which applications are incorporated herein by reference.

STATEMENT AS TO FEDERALLY SPONSORED RESEARCH

This invention was made with government support under Grant No. CA174121 and Grant No. HL110574 awarded by the National Institutes of Health (NIH). The government has certain rights in the invention.

Provisional Applications (1)
Number Date Country
61800222 Mar 2013 US
Continuations (1)
Number Date Country
Parent 14212294 Mar 2014 US
Child 15478405 US