The present invention relates to microfluidic devices, namely, to a microfluidic chip for studying cell-cell interaction at single-cell level.
Cell-cell interactions play a vital role in fundamental biological processes including adaptive immune responses, stem cell differentiation, embryogenesis, and tumor progression. One limitation in analyzing the complexity of cell-cell interaction is that current studies are based on mouse models, tissue sections, or bulk cell co-culturing. Considering these are complex systems with various parameters, if only the bulk response is measured, it is difficult to reveal the real process. Therefore, if cell-cell interaction is visualized and characterized at single-cell level, a more proper analysis of cell-cell interaction can be achieved by eliminating irrelevant complex variables.
Microfluidics demonstrates reliable single-cell manipulation enabling the interrogation of this heterogeneous and intricate phenomenon, yet complex designs/operations are usually required in current microfluidic cell-pairing platforms, and cross-pair interference is unavoidable as cell pairs are kept in shared microenvironment. Hence, there exists a need for a microfluidic device that allows for analysis of cell-cell interactions without cross-pair interference.
It is an objective of the present invention to provide a microfluidic trapping array that can efficiently pair single cells in isolated compartments in an easy-to-operate manner, as specified in the independent claims. Embodiments of the invention are given in the dependent claims. Embodiments of the present invention can be freely combined with each other if they are not mutually exclusive.
In some aspects, the present invention features a microfluidic device comprising a microfluidic channel having a first channel portion fluidly connected to a second channel portion, and at least one trapping structure disposed between the first channel portion and the second channel portion. In one embodiment, the trapping structure may comprise a first cavity an opening facing the first channel portion and a first relief channel fluidly connecting the first cavity to the second channel portion, a second cavity adjacent to the first cavity, wherein the second cavity has an opening facing the second channel portion and a second relief channel fluidly connecting the second cavity to the first channel portion, and a connecting channel disposed between the first cavity and the second cavity so as to fluidly connect the two cavities to each other.
In other aspects, the present invention features a microfluidic trapping array disposed in a microfluidic device with a serpentine channel. The microfluidic trapping array may comprise at least one trapping structure disposed between and fluidly connecting two channel portions of the serpentine channel. The trapping structure may comprise a first cavity having an opening facing a first channel portion of the two channel portions and a first relief channel fluidly connecting the first cavity to a second channel portion of the two channel portions. Adjacent to the first cavity is a second cavity having an opening facing the second channel portion and a second relief channel fluidly connecting the second cavity to the first channel portion. A connecting channel may be disposed between the first cavity and the second cavity so as to fluidly connect the two cavities to each other.
In some embodiments, a first cell is squeezed through the narrow opening into the first cavity by a strong forward flow. Afterwards, a second cell is pushed into the second cavity by a low flow rate reverse flow with the first cell locked by the narrow opening. In some embodiments, the double-cell pairs can be sealed by oil phase or hydrogel into isolated compartments, thereby blocking interference from other cell pairs or the surrounding media.
Without wishing to limit the invention to any theory or mechanism, it is believed that the present invention advantageously provides a microfluidic device with a trapping array that can efficiently pair single cells in isolated compartments in an easy-to-operate manner, which can allow for cell-cell interaction analysis, especially at a single-cell level. None of the presently known prior references or works has the unique inventive technical feature of the present invention.
Any feature or combination of features described herein are included within the scope of the present invention provided that the features included in any such combination are not mutually inconsistent as will be apparent from the context, this specification, and the knowledge of one of ordinary skill in the art. Additional advantages and aspects of the present invention are apparent in the following detailed description and claims.
This patent application contains at least one drawing executed in color. Copies of this patent or patent application publication with color drawing(s) will be provided by the Office upon request and payment of the necessary fee.
The features and advantages of the present invention will become apparent from a consideration of the following detailed description presented in connection with the accompanying drawings in which:
Following is a list of elements corresponding to a particular element referred to herein:
As known to one of ordinary skill in the art, a serpentine channel is a channel that winds, or alternates between turning one way and another way. For example, the serpentine channel has a straight section connected to a 180° turn, which is connected to another straight section that is connected to 180° turn, which is connected to another straight section, and so forth. The term “channel portion” refers to the straight or non-turning section of serpentine channel.
Referring now to
In some embodiments, the present invention features a microfluidic device (100) for cell-cell trapping. In some embodiments, the device (100) may comprise a serpentine channel (110) having a plurality of parallel channel portions (112), and a plurality of microfluidic trapping arrays (105). Each array (105) may be disposed between two adjacent parallel channel portions of the serpentine channel such that one channel portion is disposed on a first side (107) of said array and another channel portion is disposed on a second side (109) that is opposite of the first side (107). In some embodiments, each array (105) may comprise one or more trapping structures (120). Each trapping structure (120) may comprise a first cavity (130) having an opening (132) facing the channel portion disposed on the first side (107) and a first relief channel (134) fluidly connecting the first cavity (130) to the channel portion disposed on the second side (109), and a second cavity (140) adjacent to the first cavity (130). The second cavity (140) has an opening (142) facing the channel portion on the second side (109) and a second relief channel (144) fluidly connecting the second cavity (140) to the channel portion on the first side (104), and a connecting channel (150) disposed between and fluidly connecting the first cavity (130) and the second cavity (120).
In one embodiment, the present invention features a microfluidic device (100) comprising a microfluidic channel (110) having a first channel portion (112a) fluidly connected to a second channel portion (112b) and at least one trapping structure (120) disposed between the first channel portion (112a) and the second channel portion (112b). The trapping structure (120) comprises a first cavity (130) with an opening (132) facing the first channel portion (112a) and a first relief channel (134) fluidly connecting the first cavity (130) to the second channel portion (112b), a second cavity (140) adjacent to the first cavity (130), wherein the second cavity (140) has with an opening (142) facing the second channel portion (112b) and a second relief channel (144) fluidly connecting the second cavity (140) to the first channel portion (112a), and a connecting channel (150) disposed between the first cavity (130) and the second cavity (140) so as to fluidly connect the two cavities to each other.
As demonstrated in
In one embodiment, the first fluid flows at a rate such that the first cell is deformed and squeezed through the opening. In another embodiment, the flow rate of the second fluid in the reverse flow direction is lower than a flow rate of the first fluid in the forward flow direction. In other embodiments, the flow rate of the second fluid in the reverse flow direction is the same as the flow rate of the first fluid in the forward flow direction. Preferably, the flow rates are sufficient to increase trapping efficiency.
Without wishing to limit the present invention, the method may trap cells for analysis of cell-cell interactions. In some embodiments, the method may trap cells such that at least 50% of the trapping structures are occupied by cell pairs. In some embodiments, the method may be effective for trapping cells such that at least 75% of the trapping structures are occupied by cell pairs. In other embodiments, the method may be effective for trapping cells such that at least 90% of the trapping structures are occupied by cell pairs.
In some embodiments, the serpentine channel (105) of the microfluidic device has about 2 to 100 parallel channel portions. In other embodiments, the serpentine channel (105) has more than 100 parallel channel portions. In some embodiments, the number of microfluidic trapping arrays (105) may be one less than the number of parallel channel portions. In other embodiments, the microfluidic device may have 1 to 100 trapping arrays (105). In yet other embodiments, the microfluidic device may have more than 100 trapping arrays (105). For instance, the microfluidic device may have 100 to 500 trapping arrays (105). Each trapping array may be juxtaposed between two adjacent parallel channel portions. For instance, each array (105) is patterned into a barrier (115) that is disposed between, or separating, two adjacent parallel channel portions. The barriers (115) may be elongated structures that separate the adjacent channel portions of the serpentine channels. In one embodiment, the cavities of each array are disposed side by side so as to form a single row. Alternatively, the cavities of each array are arranged such that the first cavities form a first row and the second cavities form a second row.
In one embodiment, the number of trapping structures (120) of each array (105) ranges from 1 to 100. In another embodiment, each array (105) may have more than 100 trapping structures (120). Thus, in some embodiments, the microfluidic device may have 1-10,000 trapping structures (120) overall. In other embodiments, the microfluidic device has more than 10,000 trapping structures (120) overall.
In some embodiments, the connecting channel between the two cavities has a width that is smaller than the width of any of the openings, thereby preventing any one of the cells from going to the other cavity. Preferably, the first cavity (130) is sized to fit one cell. The opening (132) of the first cavity has a width that is smaller than a maximum width of the first cavity, thus allowing the first cell to squeeze into the cavity while also preventing the cell from being pushed out of the cavity. In one embodiment, the opening (132) of the first cavity is oriented so as to face away from (e.g. face against) the forward flow direction and towards the reverse flow direction, thereby allowing for higher chance of cell trapping.
In another embodiment, the opening may have a portion thereof jutting out into the channel portion so as to prevent a cell from further flowing down the channel; instead, catching or guiding the cell into the cavity.
Also preferable is the second cavity (140) being sized to fit one cell. The opening (142) of the second cavity has a width that is smaller than a maximum width of the second cavity, thus allowing the second cell to squeeze into the cavity while also preventing the cell from being pushed out of the cavity. In some embodiments, the opening (142) of the second cavity is oriented so as to face away from (e.g. face against) the reverse flow direction and towards the forward flow direction, thereby allowing for higher chance of cell trapping. The opening (142) may have a portion thereof jutting out into the channel portion so as to prevent a cell from further flowing down the channel and instead catching or guiding the cell into the cavity.
In some embodiments, the first cavity (130) and the second cavity (140) are the same in size and/or shape. However, the first cavity and the second cavity are not necessarily of the same size. In some other embodiments, the first cavity (130) and the second cavity (140) are different in size and/or shape. In other embodiments, the first cavity (130) is sized to fit a single cell of one type whereas the second cavity (140) is sized to fit a single cell of another type. In the figures, the two cavities are shown to be similar in size, however, they are not limited to this configuration. As an example, the first cavity (130) may be smaller than the second cavity (140) so as to fit a smaller cell.
In some embodiments, the first relief channel (134) has a width that is smaller than the width of the opening (132) of the first cavity. In one embodiment, the first relief channel (134) may be an L-shaped channel connecting a side of the first cavity to the channel portion disposed on the second side (109) of the array. Said side of the first cavity may be directly opposite of the connecting channel (150). Alternatively, the first relief channel (134) may be a straight or curved channel. This straight or curved channel may be opposite of the opening (132) of the first cavity, or angled relative to the opening (132). In other embodiments, the second relief channel (144) has a width that is smaller than the width of the opening (142) of the second cavity. In one embodiment, the second relief channel (144) may be opposite of the opening (142) of the second cavity (140), or angled relative to the opening (142).
In some embodiments, the floor or bottom surface of the relief channels may lie on a different plane than that of the channel portions. In other words, the floor of the relief channels may be raised relative to the channel portion floor or bottom surface. Similarly, the floor or bottom surface of the connecting may lie on a different plane than that of the channel portions. For instance, the floor of the connecting channel may be raised relative to the channel portion floor.
According to some embodiments, the device may be used to trap cells having diameters ranging from about 10 μm to about 30 μm. In other embodiments, the cell diameters may be larger than 30 μm. Accordingly, the width of the cavities may be the same or slightly larger than the cell diameter, for example, 1-4 μm larger. A height of the cavity may also be the same or slightly larger than the cell diameter, for example, 1-4 μm larger. In some embodiments, the width of the cavity openings may be %, half, or less than half of the cell diameter. In other embodiments, the width of the connection channel may be half, a quarter, or less than a quarter of the cell diameter.
In other embodiments, as shown in
The following is a non-limiting example of the present invention. It is to be understood that said example is not intended to limit the present invention in any way. Equivalents or substitutes are within the scope of the present invention.
Chip Design
In an exemplary embodiment, the cell-pairing array, which may comprise a serpentine channel with 10 double-cell traps along each row, works by hydrodynamic sequential arraying and flow-induced cell deformability. Traps in adjacent rows are in a mirrored configuration because of the serpentine shape. Each trapping unit, as shown in the scanning-electron-microscopic (SEM) image (
For mammalian cells with a diameter −15 μm, the empirically optimized channel height is 16 μm, trap size is 15 μm, narrow opening is 7 μm, and connection opening is 4 μm. The first type of cells squeeze through the narrow openings when pushed and deformed by the strong forward-flow and sequentially enter the first cell traps (
Cell-Cell Pairing Principle and Efficiency
In forward-flow, cells follow the laminar-flow streamlines (
Cell-Pairing Array with Hydrogel Compartments
While sealing the cell-pair compartments by oil phase successfully created isolated compartments, the oil sealing does not allow the continuous supply of media for long-term cell culturing, which is not suitable for continuous monitoring of cell-cell interactions. To overcome this challenge, an alternative method to keep the paired cells in hydrogel compartments is developed using GeIMA, gelatin modified by methacrylic anhydride. GeIMA is biocompatible for long-term cell culturing and is photo-polymerizable in a few seconds (
Dendritic Cell-Cancer Cell Interaction at Single-Cell Level
K562 lymphoma cells in GeIMA solution were introduced into the chip via forward flow, and dendritic cells suspended in GeIMA solution were introduced by reverse flow. Each cell pairs were shined at 385 nm for less than 3 seconds and gelled. The paired cells in GeIMA compartments were cultured for 12 hours on-chip inside the incubator with continuous supply of RPMI medium. Thereafter, the metabolic pattern of dendritic cells was analyzed by fluorescence lifetime imaging microscopy (FLIM). As for the control group, dendritic cells were trapped in the single-cell array and cultured under the same condition in GeIMA compartments.
The bright-field and auto-fluorescence images of the dendritic cells either paired with K562 lymphoma cells or in single-cell traps are plotted in
Based on the phasor-FLIM results of the single-cell paring array, it is clear that dendritic cells are more glycolytic upon pairing with cancer cells. Without wishing to be limited to a particular theory or mechanism, upon activation, dendritic cells rely on glycolysis for the rapid generation of ATP for endocytosis and cytokine biosynthesis. To explain the metabolic switch at biomolecular level, dendritic cells after overnight co-culturing with K562 cells were analyzed using flow cytometry. As shown in
Optimization of the Trapping Array
Based on experimental observation and simulation validation, in some embodiments, it is critical that the relief channel of the first cell trap is on the side instead of at the bottom. As illustrated in
As used herein, the term “about” refers to plus or minus 10% of the referenced number.
Although there has been shown and described the preferred embodiment of the present invention, it will be readily apparent to those skilled in the art that modifications may be made thereto which do not exceed the scope of the appended claims. Therefore, the scope of the invention is only to be limited by the following claims. In some embodiments, the figures presented in this patent application are drawn to scale, including the angles, ratios of dimensions, etc. In some embodiments, the figures are representative only and the claims are not limited by the dimensions of the figures. In some embodiments, descriptions of the inventions described herein using the phrase “comprising” includes embodiments that could be described as “consisting essentially of” or “consisting of”, and as such the written description requirement for claiming one or more embodiments of the present invention using the phrase “consisting essentially of” or “consisting of” is met.
The reference numbers recited in the below claims are solely for ease of examination of this patent application, and are exemplary, and are not intended in any way to limit the scope of the claims to the particular features having the corresponding reference numbers in the drawings.
This application is a non-provisional and claims benefit of U.S. Provisional Application No. 62/884,801, filed Aug. 9, 2019, the specification(s) of which is/are incorporated herein in their entirety by reference.
This invention was made with Government support under Grant No. IIP-1538813, awarded by the National Science Foundation. The Government has certain rights in the invention.
Number | Date | Country | |
---|---|---|---|
62884801 | Aug 2019 | US |