Microfluidic systems and methods of use

Abstract
Microfluidic channels networks and systems are provided. One network includes a first fluid channel having a first depth dimension; at least a second channel intersecting the first channel at a first intersection; at least a third channel in fluid communication with the first intersection, at least one of the first intersection and the third channel having a depth dimension that is greater than the first depth dimension. Also provided is a flow control system for directing fluids in the network. Systems are additionally provided for flowing disrupted particles into a droplet formation junction, whereby a portion of the disrupted particles or the contents thereof are encapsulated into one or more droplets. Further provided is a method for controlling filling of a microfluidic network by controlling passive valving microfluidic channel network features.
Description
BACKGROUND

The field of microfluidics has advanced to the point that it is fulfilling much of its promise to supplant conventional laboratory fluid handling. The ability to precisely control the movement, accession, allocation, and mixing of minute amounts of fluids and subject those fluids to additional processing, analysis, and the like has helped move the field into the mainstream of scientific research, diagnostics, and medical devices.


As research and diagnostic needs become more and more complex, however, there is a need for the field of microfluidics to similarly advance in complexity, requiring a wide range of new functionalities within the microfluidic context. By way of example, microfluidic systems have been used to deliver and combine reagents within microfluidic channels and then perform subsequent processing and/or analytical operations on those reagents, including, e.g., thermal cycling, separations, optical, chemical or electrical detection, and a host of other operations.


In other applications, microfluidic systems have been used to partition small aliquots of aqueous fluids within flowing streams of immiscible fluids, e.g., oils, in order to compartmentalize reactions within those partitions for separate processing, analysis, etc. Specific implementations of these systems have been used to compartmentalize individual nucleic acids in order to perform quantitative amplification and detection reactions (qPCR).


In another implementation, discrete droplets in an emulsion contain both template nucleic acids and beads bearing large numbers of oligonucleotide barcodes, where a given bead will have a constant barcode sequence. The barcode is then used to prime replication of fragments of the template molecules within the particular partition. The replicate fragments created within a given droplet will all share the same barcode sequence, allowing replicate fragments from single long template molecules to be attributed to that longer template. Sequencing of the replicate fragments then provides barcode linked-reads that can be later attributed back to an originating long fragment, provide long range sequence context for shorter sequence reads.


With increasing demands on microfluidic systems, there is a need to add to the microfluidic tools that can be applied to expand their utility. The present disclosure provides a number of such tools and the uses and applications thereof.


SUMMARY

The present disclosure provides novel, improved microfluidic structures, systems and methods for carrying out a variety of different fluid manipulations in microscale channel networks for use in a variety of different applications and methods.


In general a microfluidic channel network is provided, including: a first fluid channel having a first depth dimension; at least a second channel intersecting the first channel at a first intersection; at least a third channel in fluid communication with the first intersection, at least one of the first intersection and the third channel having a depth dimension that is greater than the first depth dimension.


In an aspect, the disclosure provides a microfluidic device. The microfluidic comprises a first fluid channel having a first depth dimension; at least a second channel intersecting the first channel at a first intersection; at least a third channel in fluid communication with the first intersection, at least one of the first intersection and the third channel having a depth dimension that is greater than the first depth dimension. In some embodiments, the microfluidic device further comprises a fourth channel segment, fifth channel segment, sixth channel segment and seventh channel segment intersecting the fourth channel segment at a second intersection, the fifth, sixth and seventh channel segments being coplanar, and where a cross sectional dimension of the seventh channel segment perpendicular to the first plane is larger than the cross sectional dimension of the fourth channel segment perpendicular to the first plane.


In some embodiments, the microfluidic device further comprises one or more steps disposed within one or more of the fourth and seventh channel segments, where the one or more steps provide the cross sectional dimension of the seventh channel segment that is larger than the cross sectional dimension of the fourth channel segment. In some embodiments, the one or more step increases the cross sectional dimension perpendicular to the first plane by at least 1%.


An additional aspect of the disclosure provides a microfluidic system. The microfluidic system comprises a microfluidic channel network comprising first, second, third and fourth channel segments in fluid communication at a first intersection, the first, second, third and fourth channel segments being coplanar, and where a cross sectional dimension of the fourth channel segment perpendicular to the first plane is larger than a cross sectional dimension of the first channel segment perpendicular to the first plane; and a flow control system for directing a first fluid through the first channel segment into the first intersection and into the fourth channel segment, and directing one or more focusing fluids from the second and third channel segments into the first intersection and into the fourth channel segment.


In some embodiments, the microfluidic system comprises a fifth, sixth and seventh channel segment intersecting the fourth channel segment at a second intersection, the fifth, sixth and seventh channel segments being coplanar, and where a cross sectional dimension of the seventh channel segment perpendicular to the first plane is larger than the cross sectional dimension of the fourth channel segment perpendicular to the first plane; and where the flow control system directs the first fluid and focusing fluids and second focusing fluids from the fifth and sixth channel segments into the second intersection. In some embodiments, the first fluid and focusing fluids flow in laminar flow into the fourth channel segment. In some embodiments, the microfluidic system further comprises one or more steps disposed within one or more of the channel segments and providing the larger cross sectional dimensions of the channel segments.


In some embodiments, the one or more step increases the cross sectional dimension perpendicular to the first plane by at least about 1%, at least about 5%, at least about 10%, at least about 20%, at least about 30%, at least about 40%, at least about 50% and least about 100%.


In another aspect, this disclosure provides a microfluidic system. The microfluidic system comprises first, second and third channel segments in fluid communication at a first intersection, the first, second, and third channel segments being coplanar, and where a cross sectional dimension of the third channel segment perpendicular to the first plane is larger than a cross sectional dimension of the first channel segment perpendicular to the first plane; and a flow control system for directing a first fluid through the first channel segment into the first intersection and into the fourth channel segment, and directing a second fluid from the second channel segment into the first intersection and into the third channel segment.


In some embodiments, the microfluidic system further comprises a fifth, sixth and seventh channel segment intersecting the fourth channel segment at a second intersection, the fifth, sixth and seventh channel segments being coplanar, and where a cross sectional dimension of the seventh channel segment perpendicular to the first plane is larger than the cross sectional dimension of the fourth channel segment perpendicular to the first plane; and where the flow control system directs the first fluid and focusing fluids and second focusing fluids from the fifth and sixth channel segments into the second intersection. In some embodiments, the first fluid and focusing fluids flow in laminar flow into the fourth channel segment.


In another aspect, the present disclosure provides a microfluidic system. The microfluidic system comprises a first channel segment fluidly connecting a source of disruptable particles, with a first droplet forming junction, the first channel segment comprising a constricted region proximal to the droplet forming junction; and a flow control system for driving the disruptable particles through the constricted region, where the constricted region comprises a cross sectional dimension reduced sufficiently to induce disruption of the disruptable particles driven through the constricted region, and for flowing disrupted particles into the droplet formation junction, whereby at last a portion of the disrupted particles or the contents thereof are encapsulated into one or more droplets.


In some embodiments, the microfluidic system further comprises a second channel segment, a third channel segment and a fourth channel segment in fluid communication with the first channel segment, where the second channel segment, third channel segment and fourth channel segment facilitate formation of one or more droplets at the droplet forming junction.


In some embodiments, the microfluidic system further comprises a fifth, sixth and seventh channel segment intersecting the fourth channel segment at a second intersection, the fifth, sixth and seventh channel segments being coplanar, and where a cross sectional dimension of the seventh channel segment perpendicular to the first plane is larger than the cross sectional dimension of the fourth channel segment perpendicular to the first plane; and where the flow control system directs the first fluid and focusing fluids and second focusing fluids from the fifth and sixth channel segments into the second intersection. In some embodiments, the first fluid and focusing fluids flow in laminar flow into the fourth channel segment.


In some embodiments, the microfluidic system comprises the constricted region positioned at a distance of fewer than 100 microns, fewer than 50 microns, fewer than 20 microns, fewer than 10 microns or fewer than 5 microns away from the droplet formation junction.


In some embodiments, the present disclosure provides a method of co-partitioning particles using the microfluidic system comprising providing one or more first particle and disrupting the particle by passage through the constriction; providing one or more second particle; and co-partitioning the first and second particle. In some embodiments, the first particle is one or more cells and the second particle is one or more bead. In some embodiments, the first particle is a single cell and the second particle is a single bead. In some embodiments, the bead is a gel bead. In some embodiments, the microfluidic system may further comprise co-partitioning a barcode. In some cases, the barcode is an oligonucleotide. In some cases, the oligonucleotide is a plurality of oligonucleotides having the same sequence. In some embodiments, the method of co-partitioning particles may further comprise providing a lysing agent. In some cases, the method of co-partitioning particles is performed without addition of a lysing agent.


In another aspect, the present disclosure provides a method for controlling filing of a microfluidic network. The method for controlling the filling of a microfluidic network comprises providing a microfluidic channel network comprising a first channel segment and a second channel segment intersecting the first channel segment at a first junction; providing a first fluid in the second channel segment up to the first junction, where capillary flow of the first fluid is interrupted at the first junction; providing a second fluid in the first channel segment, where the second fluid is capable of controlling filling of the microfluidic channel network by releasing the interrupted flow of the first fluid into the microfluidic channel network; and releasing the interrupted flow of the first fluid into the microfluidic channel network.


Some embodiments may provide the method for controlling the filling of a microfluidic network where the first channel segment comprises curved pinning points where the first channel segment meets the first junction. In some cases, the curved pinning points are configured and arranged to provide the interruption of capillary flow of the first fluid. In some embodiments, the method for controlling the filling of a microfluidic network is provided where the microfluidic channel network further comprises a third channel segment at the first junction, where the first fluid and second fluids flow in laminar flow into the third channel segment.


In some embodiments, the second fluid comprises a surfactant. In some embodiments, the surfactant concentration supports release of the interrupted capillary flow of the first fluid upon mixing of the first fluid and the second fluid.


In some embodiments, the microfluidic channel network further comprises one or more additional channel segments intersecting the third channel segment at a second junction, and where the released capillary flow of the first fluid is interrupted at the second junction. In some embodiments, the interruption of capillary flow of the first and second fluids at the second junction is the result of lower surfactant concentration in the mixed first fluid and second fluid. In some embodiments, the method for controlling the filling of a microfluidic network comprises the microfluidic channel network which further comprises a channel expansion feature arranged and configured to control the rate of flow of the first fluid into the microfluidic channel network. In some embodiments, the rate of flow of the first fluid is controlled to be reduced.


In another aspect, the present disclosure provides a method for controlling filing of a microfluidic network. The method for controlling the filling of a microfluidic network comprises providing a microfluidic channel network comprising a first channel segment and a second channel segment intersecting the first channel segment at a first junction; providing a first fluid in the first channel segment up to the first junction, where capillary flow of the first fluid is interrupted at the first junction; providing a second fluid in the second channel segment up to the first junction, where capillary flow of the second fluid is interrupted at the first junction; and providing pressure to both the first and second channel segments to control filling of the microfluidic channel network by releasing the interrupted flow of the first and second fluids into the microfluidic channel network.


In some embodiments, the method for controlling the filling of a microfluidic is where the first channel segment comprises a first curved pinning point and the second channel segment comprises a second curved pinning point where the first and second channel segments meet the first junction. In some cases, the curved pinning points are configured and arranged to provide the interruption of capillary flow of the first and second fluids. In some cases, the first and second curved pinning points each comprise a step feature. In some cases, the step features are configured and arranged to provide a smaller depth at the first junction compared to the depth of the first and second channel segments.


In some embodiments, the microfluidic channel network further comprises a third channel segment at the first junction. In some embodiments, microfluidic channel network further comprises one or more additional channel segments intersecting the third channel segment at a second junction, and where the released flow of the first and second fluids is interrupted at the second junction. In some cases, the method for controlling the filling of a microfluidic network comprises a microfluidic system network further comprising a channel expansion feature arranged and configured to control the rate of flow of the first fluid. In some cases, the rate of flow of the first fluid is reduced.


Additional aspects and advantages of the present disclosure will become readily apparent to those skilled in this art from the following detailed description, wherein only illustrative embodiments of the present disclosure are shown and described. As will be realized, the present disclosure is capable of other and different embodiments, and its several details are capable of modifications in various obvious respects, all without departing from the disclosure. Accordingly, the drawings and description are to be regarded as illustrative in nature, and not as restrictive.


INCORPORATION BY REFERENCE

All publications, patents, and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication, patent, or patent application was specifically and individually indicated to be incorporated by reference. To the extent publications and patents or patent applications incorporated by reference contradict the disclosure contained in the specification, the specification is intended to supersede and/or take precedence over any such contradictory material.





BRIEF DESCRIPTION OF THE DRAWINGS

The novel features of the invention are set forth with particularity in the appended claims. A better understanding of the features and advantages of the present invention will be obtained by reference to the following detailed description that sets forth illustrative embodiments, in which the principles of the invention are utilized, and the accompanying drawings (also “Figure” and “FIG.” herein), of which:



FIG. 1 is an overview schematic illustration of a droplet formation microfluidic channel structure;



FIG. 2A is an overview schematic illustration of a microfluidic channel structure including steps and multiple junctions;



FIG. 2B is a side view schematic illustration of the structure in FIG. 2A;



FIG. 2C is a side view schematic illustration of an alternative configuration of the structure in FIG. 2A;



FIG. 3A is an overview schematic illustration showing flow of fluids in the structure of FIG. 2A;



FIG. 3B is a side view schematic illustration showing fluid flow in the structure of FIG. 3A;



FIG. 4A is an overview schematic illustration of a co-partitioning microfluidic channel network;



FIG. 4B is a close up schematic illustration detailing a side view of a constriction feature of FIG. 4A;



FIGS. 5A-D are schematic illustrations of a passive valving microfluidic channel structure in sequential stages of operation;



FIGS. 6A-D are schematic illustration of a passive valving microfluidic channel structure in sequential stages of operation;



FIGS. 7A-E shows an example system for generating droplets comprising beads and cell beads; and



FIG. 8 shows a computer control system that is programmed or otherwise configured to implement methods provided herein.





DETAILED DESCRIPTION

While various embodiments of the invention have been shown and described herein, it will be obvious to those skilled in the art that such embodiments are provided by way of example only. Numerous variations, changes, and substitutions may occur to those skilled in the art without departing from the invention. It should be understood that various alternatives to the embodiments of the invention described herein may be employed.


The term “barcode,” as used herein, generally refers to a label, or identifier, that conveys or is capable of conveying information about an analyte. A barcode can be part of an analyte. A barcode can be a tag attached to an analyte (e.g., nucleic acid molecule) or a combination of the tag in addition to an endogenous characteristic of the analyte (e.g., size of the analyte or end sequence(s)). A barcode may be unique. Barcodes can have a variety of different formats. For example, barcodes can include: polynucleotide barcodes; random nucleic acid and/or amino acid sequences; and synthetic nucleic acid and/or amino acid sequences. A barcode can be attached to an analyte in a reversible or irreversible manner. A barcode can be added to, for example, a fragment of a deoxyribonucleic acid (DNA) or ribonucleic acid (RNA) sample before, during, and/or after sequencing of the sample. Barcodes can allow for identification and/or quantification of individual sequencing-reads in real time.


The term “subject,” as used herein, generally refers to an animal, such as a mammal (e.g., human) or avian (e.g., bird), or other organism, such as a plant. The subject can be a vertebrate, a mammal, a mouse, a primate, a simian or a human. Animals may include, but are not limited to, farm animals, sport animals, and pets. A subject can be a healthy or asymptomatic individual, an individual that has or is suspected of having a disease (e.g., cancer) or a pre-disposition to the disease, or an individual that is in need of therapy or suspected of needing therapy. A subject can be a patient.


The term “genome,” as used herein, generally refers to genomic information from a subject, which may be, for example, at least a portion or an entirety of a subject's hereditary information. A genome can be encoded either in DNA or in RNA. A genome can comprise coding regions that code for proteins as well as non-coding regions. A genome can include the sequence of all chromosomes together in an organism. For example, the human genome has a total of 46 chromosomes. The sequence of all of these together may constitute a human genome.


The terms “adaptor(s)”, “adapter(s)” and “tag(s)” may be used synonymously. An adaptor or tag can be coupled to a polynucleotide sequence to be “tagged” by any approach including ligation, hybridization, or other approaches.


The term “sequencing,” as used herein, generally refers to methods and technologies for determining the sequence of nucleotide bases in one or more polynucleotides. The polynucleotides can be, for example, deoxyribonucleic acid (DNA) or ribonucleic acid (RNA), including variants or derivatives thereof (e.g., single stranded DNA). Sequencing can be performed by various systems currently available, such as, without limitation, a sequencing system by Illumina, Pacific Biosciences, Oxford Nanopore, or Life Technologies (Ion Torrent). As an alternative, sequencing may be performed using nucleic acid amplification, polymerase chain reaction (PCR) (e.g., digital PCR, quantitative PCR, or real time PCR) or isothermal amplification. Such devices may provide a plurality of raw genetic data corresponding to the genetic information of a subject (e.g., human), as generated by the device from a sample provided by the subject. In some situations, systems and methods provided herein may be used with proteomic information.


The term “bead,” as used herein, generally refers to a particle. The bead may be a solid or semi-solid particle. The bead may be a gel bead. The bead may be formed of a polymeric material. The bead may be magnetic or non-magnetic.


The term “sample,” as used herein, generally refers to a biological sample of a subject. The biological sample may be a nucleic acid sample or protein sample. The biological sample may be derived from another sample. The sample may be a tissue sample, such as a biopsy, core biopsy, needle aspirate, or fine needle aspirate. The sample may be a fluid sample, such as a blood sample, urine sample, or saliva sample. The sample may be a skin sample. The sample may be a cheek swab. The sample may be a plasma or serum sample. The sample may be a cell-free or cell free sample. A cell-free sample may include extracellular polynucleotides. Extracellular polynucleotides may be isolated from a bodily sample that may be selected from the group consisting of blood, plasma, serum, urine, saliva, mucosal excretions, sputum, stool and tears.


The term “biological particle,” as used herein, generally refers to a discrete biological system derived from a biological sample. The biological particle may be a virus. The biological particle may be a cell or derivative of a cell. The biological particle may be an organelle. The biological particle may be a rare cell from a population of cells. The biological particle may be any type of cell, including without limitation prokaryotic cells, eukaryotic cells, bacterial, fungal, plant, mammalian, or other animal cell types, mycoplasmas, normal tissue cells, tumor cells, or any other cell type, whether derived from single cell or multicellular organisms. The biological particle may be obtained from a tissue of a subject. Biological particles may be disruptable particles.


The biological particle may be a hardened cell. Such hardened cell may or may not include a cell wall or cell membrane. The biological particle may include one or more constituents of a call, but may not include other constituents of the cell. A cell may be a live cell. The live cell may be capable of being cultured, for example, being cultured when enclosed in a gel or polymer matrix, or cultured when comprising a gel or polymer matrix.


The term “macromolecular constituent,” as used herein, generally refers to a macromolecule contained within a biological particle. The macromolecular constituent may comprise a nucleic acid. The macromolecular constituent may comprise deoxyribonucleic acid (DNA). The macromolecular constituent may comprise ribonucleic acid (RNA). The macromolecular constituent may comprise a protein. The macromolecular constituent may comprise a peptide. The macromolecular constituent may comprise a polypeptide.


The term “molecular tag,” as used herein, generally refers to a molecule capable of binding to a macromolecular constituent. The molecular tag may bind to the macromolecular constituent with high affinity. The molecular tag may bind to the macromolecular constituent with high specificity. The molecular tag may comprise a nucleotide sequence. The molecular tag may comprise an oligonucleotide or polypeptide sequence. The molecular tag may comprise a DNA aptamer. The molecular tag may be or comprise a primer. The molecular tag may be or comprise a protein. The molecular tag may comprise a polypeptide. The molecular tag may be a barcode.


The efficiency of many single cell applications can increase by improving cell throughput. For example, this can be achieved by sorting a plurality of droplets that may or may not contain cells and/or particles therein to collect only the droplets that contain the cells and/or particles therein. The isolated population of droplets that contain the cells and/or particles therein can then be subject to further applications, such as nucleic acid amplification and/or sequencing applications.


Microfluidic Structures, Systems and Methods for Droplet Generation


In an aspect, the present disclosure provides a microfluidic channel network. The microfluidic channel network may be used for generating droplets. The droplets may include biological samples and reagents necessary for processing the biological samples. In some examples, the droplets include beads comprising barcodes and biological particles comprising the biological samples, such as, for example, DNA and/or RNA. The biological particles may be cells comprising or enclosed in a gel or polymer matrix.


The microfluidic channel network may include a first fluid channel having a first depth dimension, at least a second channel intersecting the first channel at a first intersection, and at least a third channel in fluid communication with the first intersection. At least one of the first intersection and the third channel may have a depth dimension that is greater than the first depth dimension.


The microfluidic channel network may further comprise fourth channel segments, fifth channel segments, sixth channel segments and seventh channel segments intersecting the fourth channel segment at a second intersection. The fourth, fifth, sixth and seventh channel segments may be coplanar. A cross sectional dimension of the seventh channel segment perpendicular to the first plane may be larger than the cross sectional dimension of the fourth channel segment perpendicular to the first plane.


The microfluidic channel network may further comprise one or more steps disposed within one or more of the channel segments. The one or more steps may provide larger cross sectional dimensions of the channels. The one or more steps may increase the cross sectional dimension perpendicular to the first plane by at least about 1%, at least about 5%, at least about 10%, at least about 20%, at least about 30%, at least about 40%, at least about 50%, or at least about 100%. Such increase may be a gradual increase or a steep (or step) increase.


In another aspect, microfluidic system comprises a microfluidic channel network comprising first, second, third and fourth channel segments in fluid communication at a first intersection. The first, second, third and fourth channel segments may be coplanar. A cross sectional dimension of the fourth channel segment perpendicular to the first plane may be larger than a cross sectional dimension of the first channel segment perpendicular to the first plane.


The system may further comprise a flow control system for directing a first fluid through the first channel segment into the first intersection and into the fourth channel segment, and directing one or more focusing fluids from the second and third channel segments into the first intersection and into the fourth channel segment. A focusing fluid may be another aqueous stream or may be non-aqueous (e.g., oil). The flow control system may be or include one or more pumps for providing a negative pressure (e.g., pressure drop) to subject the first fluid to flow. Alternatively, the flow control system may be or include one or more compressors for providing positive pressure to subject a fluid (e.g., the first fluid) to flow.


At least a subset or all of the first, second, third and fourth channel segments may be coplanar (i.e., oriented along the same plane). As an alternative, at least a subset or all of the first, second, third and fourth channel segments may not be coplanar.


The microfluidic system may further comprise a fifth, sixth and seventh channel segment intersecting the fourth channel segment at a second intersection. Such channel segments may be channels or portions of channels. The fifth, sixth and seventh channel segments may be coplanar. A cross sectional dimension of the seventh channel segment perpendicular to the first plane may be larger than the cross sectional dimension of the fourth channel segment perpendicular to the first plane.


The microfluidic system may further comprise a flow control system that directs the first fluid and one or more focusing fluids and one or more additional focusing fluids from the fifth and sixth channel segments into the second intersection. The one or more additional focusing fluids may be the same or different from the one or more focusing fluids.


The first fluid and focusing fluids may flow in laminar flow into the fourth channel segment. As an alternative, the first fluid and focusing fluid may flow in turbulent flow into the fourth channel segment.


In another aspect, the microfluidic system may comprise a microfluidic channel network comprising first, second and third channel segments in fluid communication at a first intersection. The first, second, and third channel segments may be coplanar. A cross sectional dimension of the third channel segment perpendicular to the first plane may be larger than a cross sectional dimension of the first channel segment perpendicular to the first plane.


The system may further comprise a flow control system for directing a first fluid through the first channel segment into the first intersection and into the fourth channel segment, and directing a second fluid from the second channel segment into the first intersection and into the third channel segment. The flow control system may be or include one or more pumps for providing a negative pressure (e.g., pressure drop) to subject the first fluid to flow. Alternatively, the flow control system may be or include one or more compressors for providing positive pressure to subject a fluid (e.g., the first fluid) to flow. The microfluidic system may further comprise a fifth, sixth and seventh channel segment intersecting the fourth channel segment at a second intersection. The fifth, sixth and seventh channel segments may be coplanar. A cross sectional dimension of the seventh channel segment perpendicular to the first plane may be larger than the cross sectional dimension of the fourth channel segment perpendicular to the first plane.


The microfluidic system may further comprise a flow control system which directs the first fluid and focusing fluids and second focusing fluids from the fifth and sixth channel segments into the second intersection. The first fluid and focusing fluids may flow in laminar flow into the fourth channel segment.


The microfluidic system may further comprise a fifth, sixth and seventh channel segment intersecting the fourth channel segment at a second intersection, the fifth, sixth and seventh channel segments being coplanar and wherein a cross sectional dimension of the seventh channel segment perpendicular to the first plane is larger than the cross sectional dimension of the fourth channel segment perpendicular to the first plane; and wherein the flow control system directs the first fluid and focusing fluids and second focusing fluids from the fifth and sixth channel segments into the second intersection.


The first fluid and focusing fluids may flow in laminar flow into the fourth channel segment. Alternatively, the first fluid and focusing fluids may flow in turbulent flow into the fourth channel segment.


The microfluidic channel network may further comprise one or more steps disposed within one or more of the channel segments. The one or more steps may provide larger cross sectional dimensions of the channel segments. The one or more steps may increase the cross sectional dimension perpendicular to the first plane by at least about 1%, at least about 5%, at least about 10%, at least about 20%, at least about 30%, at least about 40%, at least about 50%, or at least about 100%. Such increase may be a gradual increase or a steep (or step) increase.


Reference will now be made to the figures, wherein like numerals refer to like parts throughout. It will be appreciated that the figures and features therein are not necessarily drawn to scale.


In a first example, provided are microfluidic channel networks and systems that provide enhanced partitioning of fluids, e.g., aqueous fluids partitioned as droplets in immiscible oils. For example, in some cases, channel networks may be provided that include a droplet generation junction at the intersection of a first aqueous fluid carrying channel segment and a first partitioning fluid, e.g., oil, carrying channel segment. Typically, aqueous droplets may be formed at the intersection as the aqueous fluid is dripped into the flowing oil stream at the intersection, forming droplets of aqueous fluid within the oil stream. FIG. 1 provides a simplified illustration of a droplet generation junction in which droplets of aqueous fluids are dripped into a non-aqueous fluid stream. As shown, a microfluidic channel network 100 includes a droplet generation junction 102 that may be coupled to an aqueous fluid channel segment 104. Two partitioning fluid inlet channels, 106 and 108, are also provided in fluid communication with the droplet generation junction 102. An outlet channel segment 110 may also be coupled to the droplet generation junction into which the droplets may be dripped into the non-aqueous partitioning fluid.


In operation (and as also illustrated in FIG. 1), an aqueous fluid 120 may be flowed into the droplet generation junction 102 from channel segment 104, while simultaneous streams of partitioning fluid 122 enter the junction from their respective channels 106 and 108. The focusing flow of the partitioning fluid constricts the aqueous fluid, which then drips off as droplets 124 into the flowing stream of partitioning fluid as it travels along the outlet channel segment 110. In some cases a point of constriction may be provided in the droplet generation junction in order to facilitate the dripping mechanism of droplet generation by accelerating the fluid flow through the junction.


Droplets of similar or substantially the same dimensions, e.g., cross section and/or volume, may be repeatedly formed. A number of factors can influence how such droplets are formed, including flow rates of the fluids that are interacting at the droplet generation junction, dimensions of the channels flowing into and out of the intersection, fluid characteristics of the fluids, and interactions between the fluids and the walls of the channels at or near the junction and in the downstream channels.


While certain immiscible phase emulsion arrangements like water in oil are discussed in respect to droplet formation herein, other emulsion arrangements in relation to the systems and methods described herein are envisioned, including but not limited to arrangements of immiscible phases such as air-in-water, oil-in-water, oil-in-water-in-oil, or the likes.


Improved Flow Channel Structures


In some cases, including as illustrated above, droplets being formed at a droplet generation junction have been focused away from the side walls of the channels in which they are flowing by simultaneously flowing the non-aqueous partitioning fluid, e.g., oil, from opposing side channels, e.g., channel segments 106 and 108 in FIG. 1. While this may maintain a barrier stream of fluid between droplets and the side walls of the channel, because these microfluidic systems are fabricated in two dimensional planes, focusing flow tends to be only provided in those two dimensions. This leaves the possibility of droplets making contact with the upper and/or lower walls of a channel segment, with a possible result of a fluid contaminating the surface of the channels, and/or other adverse effects on droplet size and uniformity. Such contamination can be particularly problematic where partitions are used to contain different reagents or sample components, and cross-contamination may lead to aberrant results from downstream analyses. This potential problem is compounded where multiple reagents are combined and partitioned in these systems.


As described herein, in some cases, the droplet generation junction, e.g., FIG. 1 droplet generation junction 102, and/or the downstream channel segment coupled to the droplet generation junction, e.g., channel segment 110, are provided with a depth dimension that is greater than the depth dimension of the channel segments leading into the junction, e.g., channel segments 104, 106 and 108. It is envisioned that channels as shown in the figures presented need not be limited to uniform dimensions. Different height, width and length dimensions of the various channels described herein are envisioned. The dimensions may be uniform or different between channels or in respect to different portions of the same channel.



FIGS. 2A and 2B schematically illustrate an example of a microfluidic channel system that employs such channel structures. As shown in FIG. 2A (top view), a channel network 200 may include a main flow direction channel 202 made up of three distinct channel segments 202a, 202b and 202c, that may be divided by intersections 204 and 206. Intersection 204 may join channel segments 202a and 202b with side channel segments 208a and 208b. Likewise, intersection 206 may join channel segments 202b and 202c with side channel segments 210a and 210b. FIG. 2B is a profile view of the system.



FIG. 2C schematically illustrates a profile view of an additional example of a microfluidic channel system employing channel structures as described for FIGS. 2A and 2B.


As shown in FIGS. 2A-C, a first step structure 212 may be provided at the point at which channel segment 202a connects with intersection 204. Likewise a second step structure 214 may be provided at the point that channel segment 202b connects with intersection 206. The step structure may result in an increase in depth in moving from each of channel segments 202a and 202b into intersections 204 and 206, respectively. This is schematically illustrated in FIGS. 2B and 2C, which provide profile views of the channel network illustrating the change in depth dimension as channel segment 202a expands into segment 202b and 202c at intersections 204 and 206, respectively.


The step structures described herein may exist at one or both of the upper and/or lower channel walls, and may result in an increase in the depth dimension of the channel, e.g., the dimension perpendicular to the main plane of a device, of at least about 1%, at least about 5%, at least about 10%, at least about 20%, at least about 30%, at least about 40%, at least about 50%, and in some cases by at least about 100% or more.


While steps can be provided as structural pinning features, it is envisioned that the same or similar effects can be achieved using a material-based “step”, for example, by patterning sections of channels using a variety of compounds, compositions or even texture. For example, in a channel that has been patterned chemically to form well-defined sections of hydrophilic and hydrophobic surface conditions, an aqueous fluid flowing across a hydrophilic section will pin at an interface with a hydrophobic section.



FIGS. 3A and 3B give an example of the FIGS. 2A and 2B channel networks in operation. Fluids introduced into a given intersection, e.g., from channel 302a into intersection 306, may remain separated from the lower channel walls by virtue of the presence of the fluid 303 brought into the intersection from channel segments 305a and 305b. FIG. 3A shows an example of an aqueous fluid in 303 being used as a focusing fluid to narrow the stream of the fluid in 301. Likewise, the combined fluids flowing into channel segment 302b may be displaced from the lower channel wall by fluids flowed into intersection 308 by the fluid 304 brought in from channel segments 306a and 306b. Although described in some cases in terms of the intersections being droplet generation junctions, such step structures may also be useful in maintaining laminar flow separation of combined fluids that are not at a droplet generation junction, but merely at a mixing or fluid combination intersection. For example, two or more different aqueous fluids may be brought together at intersection 308 via channel segments 302a-c, 305a-b and 306a-b. FIG. 3B details the flow of fluids 301, 303 and 304 in this fashion. By virtue of the presence of the step structures 312 and 314 indicated in FIG. 3B, any adverse interactions between one or more of the aqueous fluids and side walls, e.g., adsorption of sample components, may be reduced or avoided as the focusing flows may shield such fluids from the side, upper and/or lower channel walls.


As the combined fluid is flowed into intersection 308, immiscible partitioning fluid may be introduced from each of side channels 304a and 304b, to further surround the combined fluid stream. This is illustrated in a side view in FIG. 3B, where the partitioning fluid is illustrated as the white space around the cell fluid and lysis agent. As will be appreciated, at this intersection, the fluids may be partitioned into droplets of cell suspension combined with lysis agent, surrounded by the partitioning fluid. By incorporating the step, as well as the focusing function of the fluids from the side channels, one may minimize the level of contamination of the side walls from the first fluid introduced, e.g., the lysis agent/surfactant. As will be appreciated, the ability to avoid surface contamination with other surfactants, e.g., that one is using as a lysis agent as described in greater detail herein, is of significant importance in droplet based partitioning systems, which rely on specific surfactant compositions to ensure proper partitioning and subsequent stability of aqueous droplets in oil based fluids. Likewise it will be appreciated that other side wall contaminants such as polymers and lipids may be avoided.


Co-Partitioning Channel Networks


In another aspect, microfluidic system is described. The microfluidic system may comprise a first channel segment fluidly connecting a source of disruptable particles, with a first droplet forming junction. The disruptable particles may be a single cell or multiple cells from a biological specimen.


The first channel segment may comprise a constricted region proximal to the droplet forming junction. A flow control system may further drive the disruptable particles through the constricted region. The constricted region may comprise a cross sectional dimension reduced sufficiently to induce disruption of the disruptable particles driven through the constricted region. The disruptable particles may then physically become disrupted, damaged or lysed upon passage through the channel, resulting in a damaged or lysed cell. The flow control system may then be used to flow the disrupted particles into the droplet formation junction, whereby a portion of the disrupted particles or the contents thereof may be encapsulated into one or more droplets.


The microfluidic system may further comprise a second channel segment, a third channel segment and a fourth channel segment in fluid communication with the first channel segment. The second channel segment, third channel segment and fourth channel segment may facilitate the formation of one or more droplets at the droplet forming junction.


The microfluidic system may further comprise fifth channel segments, sixth channel segments and seventh channel segments intersecting the fourth channel segment at a second intersection. The fifth, sixth and seventh channel segments may be coplanar. A cross sectional dimension of the seventh channel segment perpendicular to the first plane may be larger than the cross sectional dimension of the fourth channel segment perpendicular to the first plane. The flow control system may direct the first fluid and focusing fluids and second focusing fluids from the fifth and sixth channel segments into the second intersection.


The first fluid and focusing fluids may flow in laminar flow into the fourth channel segment. As an alternative, the first fluid and focusing fluid may flow in turbulent flow into the fourth channel segment.


The microfluidic system may position the constricted region at a distance fewer than 100 microns, 50 micrometers (microns), 20 microns, 10 microns, 5 microns 1 micron, 0.5 microns, or less away from the droplet formation junction.


In addition, a method of co-partitioning particles is provided using the microfluidic system described above. The method may comprise providing a first particle (e.g., cell from a biological specimen) and disrupting the particle by passaging through the constricted region. The microfluidic system may further provide a second particle (e.g., bead/beads which may contain barcodes and/or other reagents); and co-partitioning the first and second particle in to one/more droplets for further processing of the biological specimen. Alternatively, the first particle may comprise multiple cells. The second particle may also comprise multiple beads to be co-partitioned with the first particle comprising multiple cells.


The microfluidic system may enable co-partitioning the first and the second particle in the microfluidic system, where, the second particle may comprise a gel bead. Additionally, the second particle may comprise a barcode. The barcode may comprise an oligonucleotide. Alternatively, the barcode may comprise a plurality of oligonucleotides having the same sequence. In another embodiment, the first or the second particle may comprise a lysing agent. In yet another embodiment, the method of co-partitioning the first and the second particle may be performed without the addition of a lysing agent.



FIGS. 4A and 4B schematically illustrate an example of an operation in which disruptable particles, e.g., cells, are co-partitioned with other reagents and or particles in an iterative fluid combining step using the channel networks related to those described above, including laminar flow of fluids and use of step features. Exemplary reagents may include, e.g., lysis agents such as an effective concentration of a surfactant and exemplary particles may include, e.g., other cells or beads such as gel beads.


As shown in FIG. 4A, with reference to the microfluidic channel networks illustrated in FIGS. 2A and 3A, a first fluid 415 which can be aqueous, may include a bead 403, may be flowed along channel segment 401a and into intersection 413. Intersection 413 may also be in fluid communication with one or more other channel segment. As illustrated in FIG. 4A, the channel intersecting is a constriction 402 feature comprised of sections 402a-c. As illustrated there may be two channels intersecting channel 401a at intersection 413, but it should be understood that a single or three or more channels may intersect.


The constriction 402 feature is detailed in FIG. 4B. As shown, it may be comprised of a channel 402a having a first depth leading to a ramp or step 418 feature that connects to a channel 402b having a smaller second depth and/or width. Channel 402b may be connected to a second ramp or step 419 feature that connects to a channel 402c having a depth similar or the same as for channel 402a. As shown, disruptable particles, e.g., a cell or cells 408 may be introduced into the constriction 402 feature and physically become disrupted, damaged or lysed upon passage through channel 402b, resulting in a damaged or lysed cell 410.


As shown in FIG. 4A, disruptable particles, e.g., cell or cells 410 may be introduced to constriction feature 402 through channel 411a and 411b in a second fluid 410, which may be aqueous. As fluid 410 and cells 408 encounter the constriction 402, the cell or cells may be damaged or lysed, then mix with aqueous fluid 415 at intersection 413, where in some cases a bead 415 can be associated with the damaged or lysed cell 410. A cell, e.g., a single cell, may be associated with a bead to form a lysed cell-bead complex 404, either at intersection 413 or as passing along channel 401b. Channel 401b connects to one or more additional channels at intersection 414. As shown in FIG. 4A, three channels, 412a, 412b and 401c may connect with channel 401b at intersection 414. As indicated by hash marks, channels 412a and 412b may bring a third partitioning fluid 406 (hash marked) to intersection 414 for interaction with the fluids 415 and 410 surrounding the lysed cell-bead complex 404. As indicated at 409, droplet or partitioning fluid 406 may be immiscible with fluids 415 and 410, creating a partitioned lysed cell-bead complex 405. As shown, the partitioned lysed cell-bead complex 405 may flow along channel 401c for subsequent purposes.


Cell Content Analysis


As noted above, in some cases, microfluidic channel networks are particularly desired for use in analyzing the contents of cells, and particularly for evaluation of the contents of individual cells. In certain cases, an individual cell may be partitioned within a single droplet of aqueous fluid in an immiscible partitioning fluid. By co-partitioning a lysis agent, e.g., as described above, along with the cell, one may disrupt the cell and release its contents into the droplet for subsequent processing and/or analysis within the droplet. For example, as described in co-pending U.S. Patent Application Publication No. 2015/0376609, filed on Jun. 26, 2015, which is entirely incorporated herein by reference, an individual cell may be co-partitioned with a lysis agent and a set of oligonucleotide barcodes, as described above. The lysis agent may then act on the cells to release the contents of the cell into the partition. The co-partitioned barcodes may then be used to tag the nucleic acid contents of the cell as described above. Different barcode sequences may be added to different droplets or partitions within the overall emulsion, such that nucleic acids from a given cell will only be tagged with one barcode, allowing more effective attribution of the barcodes, and their connected nucleic acids, to an originating cell, once those nucleic acids and barcodes are sequenced.


In some cases, as shown in and discussed above for FIGS. 4A and 4B above, it may be desirable to forego the use of a lysis agent, or provide additional efficacy to the lysis step of the overall process through the inclusion of a mechanical lysis structure within the channels of the microfluidic device. However, the same mechanical forces that may result in disruption of a cellular membrane, may also result in disruption of fluid forces (e.g., surface tension) holding a partitioned droplet together. As such, as described herein, the lysis structure may be included proximal to, but upstream from the droplet forming junction at which it is desired to partition the cell contents.


It is worth noting that while the systems and methods disclosed herein are capable of performing cell lysis, even complete cell lysis, it is envisioned and can be understood that modifications to the lysis structures or lysis agent used can result in any desired degree of partial lysis or disruption of the cell, e.g., disruption of a cell membrane. For convenience however, the phrases lysis structure and lysis agent will be used to describe any level of cell disruption.


A particular advantage of the systems and methods disclosed herein includes the ability to lyse a cell, e.g., a single cell, immediately upstream of the droplet generation junction, so one can be more certain that the contents of a given cell will be partitioned within a single droplet (or a small number of droplets). Moreover, because of the laminar flow characteristics of microfluidic systems, one may be reasonably certain that only minimal diffusion of the cellular contents will occur. It is envisioned that minimal diffusion or dispersion of cell contents may be achieved by providing short residence times (the time between lysis and encapsulation for example). In some cases, the lysis structure may be provided within a distance of fewer than 100 microns, fewer than 50 microns, fewer than 20 microns, fewer than 10 microns, fewer than 5 microns away from the droplet generation junction. In other cases, the lysis structure may be provided at a distance that provides for minimal amount of diffusion time for the released contents of a cell between lysis and partitioning within the droplet generation junction at the flow rates used in a given operation. For example, in some cases, this time may be less than about 100 milliseconds (ms), less than about 50 ms, less than about 30 ms, less than about 20 ms, less than about 10 ms, or even less than about 5 ms down to as low as 1 ms, 0.5 ms, 0.1 ms or even less than about 0.01 ms.


In some cases, a lysis structure may include a cross-sectional restricted region of a channel that imparts sufficient shear forces upon a cell or other particle so as to cause its disruption under the conditions being applied, e.g., flow rates, pressures, presence of other lysis reagents, etc. An example of such a structure is illustrated in FIGS. 4A and 4B. As shown, a constricted channel segment 402 through which cells are passed prior to entering into a droplet generation junction, may be provided with a significantly reduced cross section, in at least one dimension, and in some cases, two dimensions. In such cases, transition of flowing streams through such constricted spaces may subject cells within those streams to high shear stresses than can result in lysis of those cells. As noted, this may be accompanied by the presence of other lysis forces, such as lysis agents present in the cell suspension.


In some cases the lysis structure may include a series of constrictions, e.g., at least 2, at least 3, at least 4, at least 5, etc. or more constrictions provided in a series. In other cases the lysis structure may include pillar features arranged in a pathway a cell or cells may traverse and in so doing suffer partial or complete lysis. Combinations of the above lysis structures are also envisioned.


Passive Valving Structures—Aqueous Channels at Intermediate Positions


The present disclosure provides methods for controlling filling of a microfluidic network. A method for controlling filling of a microfluidic channel network may comprise providing a first channel segment and a second channel segment intersecting the first channel segment at a first junction. The first channel segment and second channel segment may be part of a device, such as an integrated device. The device may be a microfluidic device. The device may be a droplet generator. The device may be part of a system. Such system may include a controller for regulating, for example, fluid flow. The system may include one or more pumps and/or one or more compressors (or other actuators) for facilitating fluid flow.


A first fluid may be provided in the second channel segment up to the first junction. In this embodiment the capillary flow of the first fluid may be interrupted at the first junction. A second fluid may also be provided in the first channel segment. The second fluid may be capable of controlling filling of the microfluidic channel network by releasing the interrupted flow of the first fluid into the microfluidic channel network. This may assist in releasing the interrupted flow of the first fluid into the microfluidic channel network.


In some cases, the first channel segment comprises curved or angled pinning points where the first channel segment meets the first junction. Such curved pinning points may be configured and arranged to provide the interruption of capillary flow of the first fluid.


The device may further comprise a third channel segment at the first junction. The first fluid and second fluids may further flow in laminar flow into the third channel segment. Alternatively, the first fluid and second fluids may further flow in turbulent flow in to the third channel.


In some cases, a second fluid comprising a surfactant may be used. The surfactant concentration in the second fluid may be adjusted to support the release of the interrupted capillary flow of the first fluid upon mixing of the first fluid and the second fluid. The interruption of capillary flow of the first and second fluids at the second junction may be the result of a lower surfactant concentration in the mixed first fluid and second fluid. The mixed first and second fluids may be interrupted by either decreased surfactant concentration due to mixing or due to physical pinning of meniscus which may be provided at a step change in channel depth and or channel width.


The microfluidic channel network may further comprise one or more additional channel segments. Such additional channel segments may intersect the third channel segment at a second junction. The released capillary flow of the first fluid may further be interrupted at the second junction.


The device may comprise a microfluidic channel network further comprising a channel expansion feature. This channel expansion feature may be arranged and configured to control the rate of flow of the first fluid into the microfluidic channel network. The channel expansion feature may control the rate of flow of the first fluid. The channel expansion feature may reduce the flow rate of the first fluid. Alternatively, in yet another embodiment, the microfluidic channel expansion may increase the flow rate of the first fluid.


In yet another aspect, a method for controlling filing of a microfluidic network is described. The microfluidic network may comprise providing a microfluidic channel network comprising a first channel segment and a second channel segment intersecting the first channel segment at a first junction. The microfluidic channel network may provide a first fluid in the first channel segment up to the first junction. Capillary flow of the first fluid may be interrupted at the first junction. Additionally, it may provide a second fluid in the second channel segment up to the first junction. Capillary flow of the second fluid may also be interrupted at the first junction. The method may then further include providing pressure to both the first and second channel segments to control the filling of the microfluidic channel network by releasing the interrupted flow of the first and second fluids into the microfluidic channel network.


The microfluidic network may further comprise a first channel segment comprising a first curved pinning point and the second channel segment comprising a second curved pinning point where the first and second channel segments meet the first junction. The curved pinning points in both the first channel segment and the second channel segment may be configured and arranged to provide the interruption of capillary flow of the first and second fluids.


In some cases, the first and second curved pinning points in the first channel segment and the second channel segment respectively may each comprise a step feature. Additionally, the step features may be configured and arranged to provide a smaller depth at the first junction compared to the depth of the first and second channel segments. In some cases, the microfluidic channel network may further comprise a third channel segment at the first junction. These additional channel segments may intersect the third channel segment at a second junction, wherein the released flow of the first and second fluids is interrupted at the second junction.


Some embodiments of this method of controlling the filling of the microfluidic network may further comprise a channel expansion feature. This channel expansion feature may be arranged and configured to control the rate of flow of the first fluid. The channel expansion feature may control the rate of flow of the first fluid. The channel expansion feature may reduce the flow rate of the first fluid. Alternatively, in some cases, the microfluidic channel expansion may increase the flow rate of the first fluid.


As described elsewhere herein, microfluidic channel networks may be used in conjunction with different types of fluids within the same channel network, including different types of aqueous fluids, aqueous and non-aqueous fluids, etc. In such systems, as well as in many other applications of microfluidic systems, it may be desirable to provide stepwise additions of different fluid materials to the channel networks, in order to rely on capillary action and wicking to fill the channels, while only having such filling reach certain portions of the channel network and not others.


In certain cases, microfluidic structures or arrangements may be provided to ensure proper and selective filling of different channel segments. One example of such an arrangement incorporates an intervening passive valving structure disposed between two channel segments in which differential filling is desired. In a simple context, such valving structures may include areas of increased cross sectional dimension disposed at an end of a given channel segment, such that capillary forces can draw fluid into the valving structure. These structures may include step structures that increase the depth of the channel, widened channel regions that increase the lateral cross section of the channels or combinations of these. In some cases, the passive valving may be provided at intersections with connected channel segments, which provide the increased cross sectional area.


Despite the use of these passive valving structures, in many cases, additional measures may be used to prevent fluid wicking beyond a desired point. For example, in certain cases, fluids may be disposed within channel segments that include concentrations of surfactants, e.g., either for partitioning or for use as cell lysis agents. Such surfactant laden fluids can, in some instances, be prone to wicking through microfluidic channel networks despite the presence of passive valves, e.g., by decreasing the contact angle between the fluid and the surface of the channel, resulting in a higher capillary pressure. As such, in using such passive valving structures it may sometimes be desirable to incorporate additional measures to avoid such unintended wicking. In one exemplary approach, an intervening aqueous fluid that may be low in surfactant, e.g., has a higher contact angle than the surfactant laden fluid, may be provided at a passive valving structure. When the surfactant laden fluid reaches the passive valve and adjacent aqueous fluid barrier, the surfactant may be diluted and the contact angle at the interface may be increased such that the passive valve structure functions as desired, preventing further wicking into the channels of the device.



FIG. 5 is a schematic illustration of an approach to such valving structures, useful, for example, in the context of a droplet generating microfluidic device in which aqueous fluids are partitioned into non-aqueous fluids as an emulsion. As noted, in many cases, these systems may include concentrations of surfactants mixed into one or both of the aqueous and non-aqueous fluids within the channel network in order to facilitate partitioning of fluids within the channel network, e.g., at a droplet generation junction or the like.


In some cases, additional elements may be incorporated into these intersecting channel segments to allow for segmented introduction of the differing fluids into the device. In some cases, two channel segments in which different filling is desired may be joined at an intersection with a third channel segment. The third channel segment may be first filled with a fluid that will provide a break in the capillary action on one or more fluids introduced into the two other channel segments. FIG. 5 provides one example of such a valving arrangement. As will be appreciated, one, two, three, four or more such structures may be provided within a microfluidic device in order to facilitate differential fluid introduction. Furthermore, the additional structures may be arranged at a variety of angles and provided in staggered or other configurations.


In providing a droplet generation junction within a microfluidic channel network, e.g., as described above, it is generally desirable to provide the non-aqueous fluids in the downstream channels without them wicking into the channels that are to deliver aqueous fluids into the droplet generation junction. Due to the high wettability of non-aqueous fluids on material surfaces, the only way to prevent contamination of the upstream, aqueous fluid-delivering channels with non-aqueous fluid is to fill the desired channels with the aqueous fluids before introducing the non-aqueous fluid. Hydrostatic pressure may then be used to passively balance or counteract the capillary pressure associated with an oil-aqueous or oil-air meniscus.



FIGS. 5A-D illustrate an exemplary passive valving structure arrangement and the process of operating a passive valve. FIG. 5A shows an initial resting state of the passive valving in structure 500. Fluid 506, which can be a surfactant poor aqueous fluid, is shown within channel 514a and may be pinned at intersection 513, which is filled with air. Pinning point 512 serves to hold the fluid in a primed fluid state shown as menisci 504 against air 511. A second fluid 507, which may be surfactant-rich, is shown entering channel 501a and approaching the primed valve fluid 504. It should be understood that surfactant-rich fluid traveling quickly through the corners/gutters of the channels may be useful. In particular, the second fluid 507 “tendrils” of the surfactant-rich fluid move faster than the bulk surfactant-rich fluid. This feature may control the dilution of surfactant-rich with surfactant-free, and thus the stability of the pinning of the combined fluid at pinning point 513 (higher stability may be achieved at higher dilution). The shape of the cross-section is a useful design feature for controlling the speed of the second fluid 507 “tendrils”, which can be faster than the source fluid within the channel. For example, the shape may be polygonal, trapezoidal, rectangular, square, etc. (not shown).


The pinning point 512 may be configured and arranged, e.g., as curved corners at intersection 513. The radii of curvature may be adjusted to optimize the action of pinning point 512 as desired, the action being in a range from slight to strong restraint of fluid 506 at pinning points 512. Physical or chemical steps may be included within channels or at intersections of channels as required to provide and enable pinning points as described herein. For example, as illustrated in FIGS. 5A-D, steps 502, 503, 518 and/or 519 can be included.



FIG. 5B shows the releasing of the primed passive valve as fluid 509 extends further into intersection 513. The release of fluid at the passive valve was triggered by fluid 507 when it reached and contacted fluid 504 as shown in FIG. 5A. In some cases, after crossing step 502 in channel 501a, fluid 507 may touch and fluidically communicate with fluid 504 of FIG. 5A, resulting in pin release and the protrusion of fluid face 509.



FIG. 5C shows the flow of fluid 506 extending into intersection 513 as well as into channels 501a, 514b and 501b and displacing air 511. FIG. 5D shows further flow of fluid 506 beyond step 503 in channel 501b, to pinning point 516 to form fluid face 510 at intersection 517 against air 511. Channels 515a, 515b and 501c may remain air 511 filled, flow of fluid 507 is stopped and structure 500 may be pinned at intersection 517.



FIG. 6 is a schematic illustration of an alternative approach to providing pinning, useful, for example, in the context of a droplet generating microfluidic device in which aqueous fluids are partitioned into non-aqueous fluids as an emulsion.



FIGS. 6A-D illustrate an example of a pinning structure arrangement and the process of its operation. FIG. 6A shows an initial pinned state of the fluids in structure 600. First fluid 606 and second fluid 623, which may be surfactant-poor aqueous fluids, are shown within channels 614a and 601 respectively, and are pinned at intersection 613, that may be filled with air 611. Pinning points 612 and 621 serve to hold the fluid in a primed fluid state shown as menisci 604 against air at intersection 613. The pinning points 612 and 621 may be configured and arranged, e.g., as curved corners at intersection 613. The radii of curvature may be adjusted to optimize the action of pinning points 612 and 621 as desired, the action being in a range from slight to strong restraint of fluids 606 and 623 at pinning points 612 and 621 respectively.


Physical and chemical steps may be included within channels or at intersections of channels as required to provide and enable pinning points as described herein. For example, as illustrated in FIGS. 6A-D, steps 602, 603, 618 and/or 619 may be included. Physical steps may provide downward or upward or ramped sections within the systems depending on the optimal action of pinning, the action being in a range from slight to strong. For example, steps 618 and 619 may be raised steps that provide a shallower depth at intersection 613 than for channels 614a and 601, to provide a slight pinning action. Chemical steps may provide regions of high or low hydrophobicity by treatment with different compounds, e.g., fluorinated compounds for high hydrophobicity, depending on the optimal action of pinning, the action being in the range from slight to strong.



FIG. 6B shows the releasing of the primed pinning points as fluids 606 and 623 extend further into intersection 613. The release of fluid at the pinning points may be triggered, for example, by hydrostatic pressure acting on the fluid or by design of the pinning points to provide only a slight restraint of fluids 606 and 623. After a desired time (e.g., 3, 5, 10, 30, 60, 120, 240 seconds), the menisci may merge and the merged liquid may be re-pinned at a desired location.


The time required for the menisci to merge may be controlled by the hydrostatic pressure acting on the fluids, by the resistance of the microchannels through which the liquids flow, and/or by the aspect ratio of the channels near the junction. For example, when the channels in which the fluids reside are wider and/or deeper than the channel across which they merge, once pinned at the intersection, the menisci may have a shorter distance to travel before they meet. Wider and/or deeper channels may accommodate greater curvature of the pinned menisci, which may allow them to extend further into the intersection. If the fluids wet the channel surface, decreasing the channel depth in the region shown (the region can also extend further down the channels, up to a point where it starts to increase the resistance of the channels appreciably, which may be undesired when it increases the merging time too much) may generate a stronger capillary pressure in the region, which may accelerate the speeds at which the menisci travel and may cause them to merge faster.


After merging of menisci 604 and 621, the combined fluids 606 and 623 may flow further into the structure 600. FIG. 6C shows the flow of the combined fluids extending along channel 601a and 601b, beyond intersection 613. Step 602 may include pinning of combined fluids. Step 602 may include meniscus 620.



FIG. 6D shows further flow of the combined fluids beyond step 603 in channel 601b, to pinning point 622 to form meniscus 610 at intersection 617 against air 611. Channels 615a, 615b and 601c may remain air 611 filled.


In a further embodiment, stagnation zones that may occur at, for example, pinning points 612 and 621 shown in FIGS. 6A and 6B as a result of steps and may potentially trap undesirable air bubbles. To prevent such bubble formation a pulse of pressure may be applied to the microfluidic channel network to displace air into a well, reservoir, channel or other component of the network.


Additional features may be included in any of the microfluidic channel networks described herein. Features may include, but are not limited to, constrictions, expansions, steps, coatings, etc. One particularly useful feature is an expansion feature for controlling flow rate. In one embodiment the flow rate may be slowed by inclusion of one or more expansion feature in a given channel or at a junction of channels. The expansion feature may be configured in any of a number of ways but generally is provided as a widening or expansion of a portion of a channel or intersection. The shape of the expansion feature may be regular, irregular, short, elongated, staggered, etc. In one embodiment the expansion feature may be trapezoidal in shape. In another embodiment the expansion feature may be triangular, for example, scalene, isosceles, acute, right, equilateral or obtuse.


Channel networks of the present disclosure may include multiple steps, such as at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, 50, 60, 70, 80, 90, or 100 steps. The steps may be oriented in order of increase cross-section.


A channel network of the present disclosure may be disposed in an integrated device, such as a microfluidic device (e.g., a cartridge or chip). Such device may be consumable (e.g., a single-use device, which may be disposed). Alternatively, a channel network of the present disclosure may be disposed in multiple devices. Such devices may be configured to integrate with a system that is configured to, for example, facilitate fluid flow.



FIGS. 7A-E schematically illustrates an example operation using both passive valving and pinning structure arrangements. FIG. 7A shows an initial resting state of fluid 701. Fluid 701, which may be a surfactant poor (e.g., less than 10%, 5%, 4%, 3%, 2%, 1%, or less (e.g., not detectable) concentration of a surfactant) aqueous fluid containing biological specimens or biological particles (e.g., cells) is shown within channels 701a and 701b. The fluid 701 may, for example, biological particles, such as, for example, one or more cells. Such biological particles may include one or more cells. Each of the one or more cells may include or be enclosed within a gel or polymer matrix.



FIG. 7B shows pinning points which may serve to hold the fluid in a primed fluid state shown as menisci 702 and 703. The pinning points may be configured and arranged, e.g., as curved corners at the intersection. The radii of curvature may be adjusted to optimize the action of pinning points as desired, the action being in a range from slight to strong restraint of fluid 701 at the pinning points.


In some examples, the radii of curvature may be from about 1×10−8 to 1×10−1 meters (m), from about 1×10−7 to 1×10−2 m, from about 1×10−6 to 1×10−3 m, from about 1×10−6 to 1×10−4 m, or from about 1×10−6 to 1×10−5 m.



FIG. 7C shows the merging of menisci 702 and 703 and the combined fluids flow further in to the passive valve structure 704. Fluid 701 may also be pinned at the generation step junction 705.



FIG. 7D shows the stepwise addition of a surfactant laden fluid 706. This fluid may comprise beads that comprise further of barcodes and/or other reagents needed for further processing of the biological sample 701. Air or other fluid (e.g., gas) trapped between 701 and 706 may prevent contacts of fluids and may prevent the surfactant laden fluid from wetting the generation region.



FIG. 7E shows the stepwise addition of the fluid 707 which may be used as a partitioning fluid. Fluid 707 may flow through the channels 707a and 707b to fluidically interact with the fluids 701 and 706 at the junction 705. These combinations of fluids may further flow in to channel 708.


Computer Control Systems


The present disclosure provides computer control systems that are programmed to implement methods of the disclosure. FIG. 8 shows a computer system 801 that is programmed or otherwise configured to control or regulate the microfluidic system. The computer system 801 can regulate various aspects of the microfluidic system of the present disclosure, such as, for example, the stepwise flow of various fluids through channel segments of a channel network, and/or use negative or positive pressure to subject a fluid to flow through a channel network. The computer system 801 can be an electronic device of a user or a computer system that is remotely located with respect to the electronic device. The electronic device can be a mobile electronic device.


The computer system 801 includes a central processing unit (CPU, also “processor” and “computer processor” herein) 805, which can be a single core or multi core processor, or a plurality of processors for parallel processing. The computer system 801 also includes memory or memory location 810 (e.g., random-access memory, read-only memory, flash memory), electronic storage unit 815 (e.g., hard disk), communication interface 820 (e.g., network adapter) for communicating with one or more other systems, and peripheral devices 825, such as cache, other memory, data storage and/or electronic display adapters. The memory 810, storage unit 815, interface 820 and peripheral devices 825 are in communication with the CPU 805 through a communication bus (solid lines), such as a motherboard. The storage unit 815 can be a data storage unit (or data repository) for storing data. The computer system 801 can be operatively coupled to a computer network (“network”) 830 with the aid of the communication interface 820. The network 830 can be the Internet, an internet and/or extranet, or an intranet and/or extranet that is in communication with the Internet. The network 830 in some cases is a telecommunication and/or data network. The network 830 can include one or more computer servers, which can enable distributed computing, such as cloud computing. The network 830, in some cases with the aid of the computer system 801, can implement a peer-to-peer network, which may enable devices coupled to the computer system 801 to behave as a client or a server.


The CPU 805 can execute a sequence of machine-readable instructions, which can be embodied in a program or software. The instructions may be stored in a memory location, such as the memory 810. The instructions can be directed to the CPU 805, which can subsequently program or otherwise configure the CPU 805 to implement methods of the present disclosure. Examples of operations performed by the CPU 805 can include fetch, decode, execute, and writeback.


The CPU 805 can be part of a circuit, such as an integrated circuit. One or more other components of the system 801 can be included in the circuit. In some cases, the circuit is an application specific integrated circuit (ASIC).


The storage unit 815 can store files, such as drivers, libraries and saved programs. The storage unit 815 can store user data, e.g., user preferences and user programs. The computer system 801 in some cases can include one or more additional data storage units that are external to the computer system 801, such as located on a remote server that is in communication with the computer system 801 through an intranet or the Internet.


The computer system 801 can communicate with one or more remote computer systems through the network 830. For instance, the computer system 801 can communicate with a remote computer system of a user (e.g., technician or researcher). Examples of remote computer systems include personal computers (e.g., portable PC), slate or tablet PC's (e.g., Apple® iPad, Samsung® Galaxy Tab), telephones, Smart phones (e.g., Apple® iPhone, Android-enabled device, Blackberry®), or personal digital assistants. The user can access the computer system 801 via the network 830.


Methods as described herein can be implemented by way of machine (e.g., computer processor) executable code stored on an electronic storage location of the computer system 801, such as, for example, on the memory 810 or electronic storage unit 815. The machine executable or machine readable code can be provided in the form of software. During use, the code can be executed by the processor 805. In some cases, the code can be retrieved from the storage unit 815 and stored on the memory 810 for ready access by the processor 805. In some situations, the electronic storage unit 815 can be precluded, and machine-executable instructions are stored on memory 810.


The code can be pre-compiled and configured for use with a machine having a processer adapted to execute the code, or can be compiled during runtime. The code can be supplied in a programming language that can be selected to enable the code to execute in a pre-compiled or as-compiled fashion.


Aspects of the systems and methods provided herein, such as the computer system 801, can be embodied in programming. Various aspects of the technology may be thought of as “products” or “articles of manufacture” typically in the form of machine (or processor) executable code and/or associated data that is carried on or embodied in a type of machine readable medium. Machine-executable code can be stored on an electronic storage unit, such as memory (e.g., read-only memory, random-access memory, flash memory) or a hard disk. “Storage” type media can include any or all of the tangible memory of the computers, processors or the like, or associated modules thereof, such as various semiconductor memories, tape drives, disk drives and the like, which may provide non-transitory storage at any time for the software programming. All or portions of the software may at times be communicated through the Internet or various other telecommunication networks. Such communications, for example, may enable loading of the software from one computer or processor into another, for example, from a management server or host computer into the computer platform of an application server. Thus, another type of media that may bear the software elements includes optical, electrical and electromagnetic waves, such as used across physical interfaces between local devices, through wired and optical landline networks and over various air-links. The physical elements that carry such waves, such as wired or wireless links, optical links or the like, also may be considered as media bearing the software. As used herein, unless restricted to non-transitory, tangible “storage” media, terms such as computer or machine “readable medium” refer to any medium that participates in providing instructions to a processor for execution.


Hence, a machine readable medium, such as computer-executable code, may take many forms, including but not limited to, a tangible storage medium, a carrier wave medium or physical transmission medium. Non-volatile storage media include, for example, optical or magnetic disks, such as any of the storage devices in any computer(s) or the like, such as may be used to implement the databases, etc. shown in the drawings. Volatile storage media include dynamic memory, such as main memory of such a computer platform. Tangible transmission media include coaxial cables; copper wire and fiber optics, including the wires that comprise a bus within a computer system. Carrier-wave transmission media may take the form of electric or electromagnetic signals, or acoustic or light waves such as those generated during radio frequency (RF) and infrared (IR) data communications. Common forms of computer-readable media therefore include for example: a floppy disk, a flexible disk, hard disk, magnetic tape, any other magnetic medium, a CD-ROM, DVD or DVD-ROM, any other optical medium, punch cards paper tape, any other physical storage medium with patterns of holes, a RAM, a ROM, a PROM and EPROM, a FLASH-EPROM, any other memory chip or cartridge, a carrier wave transporting data or instructions, cables or links transporting such a carrier wave, or any other medium from which a computer may read programming code and/or data. Many of these forms of computer readable media may be involved in carrying one or more sequences of one or more instructions to a processor for execution.


The computer system 801 can include or be in communication with an electronic display 835 that comprises a user interface (UI) 840 for providing, for example, a sample readout, such as results upon assaying a biological sample, or instructions for using systems of the present disclosure to process a biological sample(s). Examples of UI's include, without limitation, a graphical user interface (GUI) and web-based user interface.


Methods and systems of the present disclosure can be implemented by way of one or more algorithms. An algorithm can be implemented by way of software upon execution by the central processing unit 805.


While preferred embodiments of the present invention have been shown and described herein, it will be obvious to those skilled in the art that such embodiments are provided by way of example only. It is not intended that the invention be limited by the specific examples provided within the specification. While the invention has been described with reference to the aforementioned specification, the descriptions and illustrations of the embodiments herein are not meant to be construed in a limiting sense. Numerous variations, changes, and substitutions will now occur to those skilled in the art without departing from the invention. Furthermore, it shall be understood that all aspects of the invention are not limited to the specific depictions, configurations or relative proportions set forth herein which depend upon a variety of conditions and variables. It should be understood that various alternatives to the embodiments of the invention described herein may be employed in practicing the invention. It is therefore contemplated that the invention shall also cover any such alternatives, modifications, variations or equivalents. It is intended that the following claims define the scope of the invention and that methods and structures within the scope of these claims and their equivalents be covered thereby.

Claims
  • 1. A microfluidic system, comprising: a first channel segment fluidly connecting a source of disruptable particles with a droplet forming junction, the first channel segment comprising a constricted region proximal to the droplet forming junction;a second channel segment in fluid communication with the droplet forming junction and first channel segment, wherein the first channel segment and second channel segment meet at a first intersection upstream of the droplet forming junction and downstream of the constricted region; anda flow control system for driving the disruptable particles through the constricted region, wherein the constricted region comprises a cross sectional dimension reduced sufficiently to induce disruption of the disruptable particles driven through the constricted region, and for flowing the disrupted particles and a fluid from the second channel segment into the droplet formation junction, whereby for each of the disrupted particles, at least a portion of the disrupted particle and the fluid from the second channel segment are encapsulated into a droplet, wherein the droplet contains at least a portion of only one disrupted particle.
  • 2. The system of claim 1, further comprising a fourth channel segment in fluid communication with the first channel segment and disposed between the first intersection and the droplet forming junction.
  • 3. The system of claim 2, further comprising a fifth, sixth and seventh channel segment intersecting the fourth channel segment at a second intersection, wherein the fourth channel segment has a first depth at the droplet forming junction and the seventh channel segment and/or second intersection has a second depth that is greater than the first depth; and wherein the flow control system directs the disruptable particles and fluid from the first and second channel segments and partitioning fluid from the fifth and sixth channel segments into the second intersection.
  • 4. The system of claim 1, wherein the constricted region is positioned at a distance of less than 100 microns away from the droplet formation junction.
  • 5. The system of claim 1, wherein the constricted region is positioned at a distance of less than 50 microns away from the droplet formation junction.
  • 6. The system of claim 1, wherein the constricted region is positioned at a distance of less than 20 microns away from the droplet formation junction.
  • 7. The system of claim 1, wherein the constricted region is positioned at a distance of less than 10 microns away from the droplet formation junction.
  • 8. The system of claim 1, further comprising a third channel segment fluidly connecting a source of disruptable particles with the droplet forming junction, the third channel segment comprising a constricted region proximal to the droplet forming junction; wherein the third channel segment meets the second channel segment and first channel segment at the first intersection.
  • 9. The system of claim 1, wherein the fluid from the second channel segment comprises reagents and/or beads.
CROSS-REFERENCE

This application claims priority to U.S. Provisional Application No. 62/335,870, filed on May 13, 2016, which is entirely incorporated herein by reference.

US Referenced Citations (622)
Number Name Date Kind
2797149 Skeggs Jun 1957 A
3047367 Kessler Jul 1962 A
3479141 Smythe et al. Nov 1969 A
4124638 Hansen Nov 1978 A
4253846 Smythe et al. Mar 1981 A
4582802 Zimmerman et al. Apr 1986 A
5137829 Nag et al. Aug 1992 A
5149625 Church et al. Sep 1992 A
5185099 Delpuech et al. Feb 1993 A
5202231 Drmanac et al. Apr 1993 A
5270183 Corbett et al. Dec 1993 A
5413924 Kosak et al. May 1995 A
5418149 Gelfand et al. May 1995 A
5436130 Mathies et al. Jul 1995 A
5478893 Ghosh et al. Dec 1995 A
5489523 Mathur Feb 1996 A
5512131 Kumar et al. Apr 1996 A
5558071 Ward et al. Sep 1996 A
5585069 Zanzucchi et al. Dec 1996 A
5587128 Wilding et al. Dec 1996 A
5605793 Stemmer Feb 1997 A
5618711 Gelfand et al. Apr 1997 A
5658548 Padhye et al. Aug 1997 A
5695940 Drmanac et al. Dec 1997 A
5700642 Monforte et al. Dec 1997 A
5705628 Hawkins Jan 1998 A
5708153 Dower et al. Jan 1998 A
5736330 Fulton Apr 1998 A
5739036 Parris Apr 1998 A
5744311 Fraiser et al. Apr 1998 A
5756334 Perler et al. May 1998 A
5834197 Parton Nov 1998 A
5842787 Kopf-Sill et al. Dec 1998 A
5846719 Brenner et al. Dec 1998 A
5846727 Soper et al. Dec 1998 A
5851769 Gray et al. Dec 1998 A
5856174 Lipshutz et al. Jan 1999 A
5872010 Karger et al. Feb 1999 A
5897783 Howe et al. Apr 1999 A
5900481 Lough et al. May 1999 A
5942609 Hunkapiller et al. Aug 1999 A
5958703 Dower et al. Sep 1999 A
5965443 Reznikoff et al. Oct 1999 A
5989402 Chow et al. Nov 1999 A
5994056 Higuchi Nov 1999 A
5997636 Gamarnik et al. Dec 1999 A
6033880 Haff et al. Mar 2000 A
6046003 Mandecki Apr 2000 A
6051377 Mandecki Apr 2000 A
6057107 Fulton May 2000 A
6057149 Burns et al. May 2000 A
6103537 Ullman et al. Aug 2000 A
6133436 Koster et al. Oct 2000 A
6143496 Brown et al. Nov 2000 A
6159717 Savakis et al. Dec 2000 A
6171850 Nagle et al. Jan 2001 B1
6172218 Brenner Jan 2001 B1
6207384 Mekalanos et al. Mar 2001 B1
6258571 Chumakov et al. Jul 2001 B1
6265552 Schatz Jul 2001 B1
6281254 Nakajima et al. Aug 2001 B1
6291243 Fogarty et al. Sep 2001 B1
6294385 Goryshin et al. Sep 2001 B1
6296020 McNeely et al. Oct 2001 B1
6297006 Drmanac et al. Oct 2001 B1
6297017 Schmidt et al. Oct 2001 B1
6303343 Kopf-Sill Oct 2001 B1
6306590 Mehta et al. Oct 2001 B1
6327410 Walt et al. Dec 2001 B1
6355198 Kim et al. Mar 2002 B1
6361950 Mandecki Mar 2002 B1
6372813 Johnson et al. Apr 2002 B1
6379929 Burns et al. Apr 2002 B1
6406848 Bridgham et al. Jun 2002 B1
6409832 Weigl et al. Jun 2002 B2
6432290 Harrison et al. Aug 2002 B1
6432360 Church Aug 2002 B1
6481453 O'Connor et al. Nov 2002 B1
6485944 Church et al. Nov 2002 B1
6492118 Abrams et al. Dec 2002 B1
6503757 Chow Jan 2003 B1
6511803 Church et al. Jan 2003 B1
6524456 Ramsey et al. Feb 2003 B1
6569631 Pantoliano et al. May 2003 B1
6579851 Goeke et al. Jun 2003 B2
6586176 Trnovsky et al. Jul 2003 B1
6593113 Tenkanen et al. Jul 2003 B1
6613752 Kay et al. Sep 2003 B2
6632606 Ullman et al. Oct 2003 B1
6632655 Mehta et al. Oct 2003 B1
6670133 Knapp et al. Dec 2003 B2
6723513 Lexow Apr 2004 B2
6767731 Hannah Jul 2004 B2
6800298 Burdick et al. Oct 2004 B1
6806052 Bridgham et al. Oct 2004 B2
6806058 Jesperson et al. Oct 2004 B2
6859570 Walt et al. Feb 2005 B2
6880576 Karp et al. Apr 2005 B2
6884788 Bulpitt et al. Apr 2005 B2
6913935 Thomas Jul 2005 B1
6929859 Chandler et al. Aug 2005 B2
6969488 Bridgham et al. Nov 2005 B2
6974669 Mirkin et al. Dec 2005 B2
7041481 Anderson et al. May 2006 B2
7115400 Adessi et al. Oct 2006 B1
7129091 Ismagilov et al. Oct 2006 B2
7138267 Jendrisak et al. Nov 2006 B1
7211654 Gao et al. May 2007 B2
7268167 Higuchi et al. Sep 2007 B2
7282370 Bridgham et al. Oct 2007 B2
7294503 Quake et al. Nov 2007 B2
7297485 Bornarth et al. Nov 2007 B2
7316903 Yanagihara et al. Jan 2008 B2
7323305 Leamon et al. Jan 2008 B2
7329493 Chou et al. Feb 2008 B2
7425431 Church et al. Sep 2008 B2
7536928 Kazuno May 2009 B2
7544473 Brenner Jun 2009 B2
7604938 Takahashi et al. Oct 2009 B2
7608434 Reznikoff et al. Oct 2009 B2
7608451 Cooper et al. Oct 2009 B2
7622280 Holliger et al. Nov 2009 B2
7638276 Griffiths et al. Dec 2009 B2
7645596 Williams et al. Jan 2010 B2
7666664 Sarofim et al. Feb 2010 B2
7700325 Cantor et al. Apr 2010 B2
7708949 Stone et al. May 2010 B2
7709197 Drmanac May 2010 B2
7745178 Dong Jun 2010 B2
7745218 Kim et al. Jun 2010 B2
7776927 Chu et al. Aug 2010 B2
RE41780 Anderson et al. Sep 2010 E
7799553 Mathies et al. Sep 2010 B2
7842457 Berka et al. Nov 2010 B2
7901891 Drmanac Mar 2011 B2
7910354 Drmanac et al. Mar 2011 B2
7943671 Herminghaus et al. May 2011 B2
7947477 Schroeder May 2011 B2
7960104 Drmanac et al. Jun 2011 B2
7968287 Griffiths et al. Jun 2011 B2
7972778 Brown et al. Jul 2011 B2
8003312 Krutzik et al. Aug 2011 B2
8008018 Quake et al. Aug 2011 B2
8053192 Bignell et al. Nov 2011 B2
8067159 Brown et al. Nov 2011 B2
8101346 Takahama Jan 2012 B2
8124404 Alphey Feb 2012 B2
8133719 Drmanac et al. Mar 2012 B2
8137563 Ma et al. Mar 2012 B2
8168385 Brenner May 2012 B2
8252539 Quake et al. Aug 2012 B2
8268564 Roth et al. Sep 2012 B2
8273573 Ismagilov et al. Sep 2012 B2
8278071 Brown et al. Oct 2012 B2
8298767 Brenner et al. Oct 2012 B2
8304193 Ismagilov et al. Nov 2012 B2
8318433 Brenner Nov 2012 B2
8318460 Cantor et al. Nov 2012 B2
8329407 Ismagilov et al. Dec 2012 B2
8337778 Stone et al. Dec 2012 B2
8361299 Sabin et al. Jan 2013 B2
8420386 Ivics et al. Apr 2013 B2
8461129 Bolduc et al. Jun 2013 B2
8563274 Brenner et al. Oct 2013 B2
8592150 Drmanac et al. Nov 2013 B2
8598328 Koga et al. Dec 2013 B2
8603749 Gillevet Dec 2013 B2
8679756 Brenner et al. Mar 2014 B1
8748094 Weitz et al. Jun 2014 B2
8748102 Berka et al. Jun 2014 B2
8765380 Berka et al. Jul 2014 B2
8822148 Ismagliov et al. Sep 2014 B2
8829171 Steemers et al. Sep 2014 B2
8835358 Fodor et al. Sep 2014 B2
8871444 Griffiths et al. Oct 2014 B2
8889083 Ismagilov et al. Nov 2014 B2
8927218 Forsyth Jan 2015 B2
8975302 Light et al. Mar 2015 B2
8986286 Tanghoej et al. Mar 2015 B2
9005935 Belyaev Apr 2015 B2
9012390 Holtze et al. Apr 2015 B2
9017948 Agresti et al. Apr 2015 B2
9029083 Griffiths et al. May 2015 B2
9029085 Agresti et al. May 2015 B2
9068210 Agresti et al. Jun 2015 B2
9074251 Steemers et al. Jul 2015 B2
9080211 Grunenwald et al. Jul 2015 B2
9089844 Hiddessen et al. Jul 2015 B2
9102980 Brenner et al. Aug 2015 B2
9126160 Ness et al. Sep 2015 B2
9133009 Baroud et al. Sep 2015 B2
9150916 Christen et al. Oct 2015 B2
9175295 Kaminaka et al. Nov 2015 B2
9238671 Goryshin et al. Jan 2016 B2
9249460 Pushkarev et al. Feb 2016 B2
9273349 Nguyen et al. Mar 2016 B2
9290808 Fodor et al. Mar 2016 B2
9328382 Drmanac et al. May 2016 B2
9347059 Saxonov May 2016 B2
9388465 Hindson et al. Jul 2016 B2
9410201 Hindson et al. Aug 2016 B2
9500664 Ness et al. Nov 2016 B2
9567631 Hindson et al. Feb 2017 B2
9574226 Gormley et al. Feb 2017 B2
9636682 Hiddessen et al. May 2017 B2
9637799 Fan et al. May 2017 B2
9644204 Hindson et al. May 2017 B2
9649635 Hiddessen et al. May 2017 B2
9689024 Hindson et al. Jun 2017 B2
9694361 Bharadwaj et al. Jul 2017 B2
9695468 Hindson et al. Jul 2017 B2
9701998 Hindson et al. Jul 2017 B2
9856530 Hindson et al. Jan 2018 B2
9951386 Hindson et al. Apr 2018 B2
9957558 Leamon et al. May 2018 B2
9975122 Masquelier et al. May 2018 B2
10011872 Belgrader et al. Jul 2018 B1
10030267 Hindson et al. Jul 2018 B2
10041116 Hindson et al. Aug 2018 B2
10053723 Hindson et al. Aug 2018 B2
10059989 Giresi et al. Aug 2018 B2
10071377 Bharadwaj et al. Sep 2018 B2
10137449 Bharadwaj et al. Nov 2018 B2
10150117 Bharadwaj et al. Dec 2018 B2
10221442 Hindson et al. Mar 2019 B2
10245587 Masquelier et al. Apr 2019 B2
11084036 Bharadwaj et al. Aug 2021 B2
20010020588 Adourian et al. Sep 2001 A1
20010036669 Jedrzejewski et al. Nov 2001 A1
20010041357 Fouillet et al. Nov 2001 A1
20010044109 Mandecki Nov 2001 A1
20010048900 Bardell et al. Dec 2001 A1
20010052460 Chien et al. Dec 2001 A1
20010053519 Fodor et al. Dec 2001 A1
20020001856 Chow et al. Jan 2002 A1
20020003001 Weigl et al. Jan 2002 A1
20020005354 Spence et al. Jan 2002 A1
20020034737 Drmanac Mar 2002 A1
20020043463 Shenderov Apr 2002 A1
20020051971 Stuelpnagel et al. May 2002 A1
20020051992 Bridgham et al. May 2002 A1
20020058332 Quake et al. May 2002 A1
20020065609 Ashby May 2002 A1
20020068278 Giese et al. Jun 2002 A1
20020089100 Kawasaki Jul 2002 A1
20020092767 Bjornson et al. Jul 2002 A1
20020113009 O'Connor et al. Aug 2002 A1
20020119455 Chan Aug 2002 A1
20020119536 Stern Aug 2002 A1
20020131147 Paolini et al. Sep 2002 A1
20020160518 Hayenga et al. Oct 2002 A1
20020164820 Brown Nov 2002 A1
20020166582 O'Connor et al. Nov 2002 A1
20020172965 Kamb et al. Nov 2002 A1
20020175079 Christel et al. Nov 2002 A1
20020179849 Maher et al. Dec 2002 A1
20020182118 Perry Dec 2002 A1
20030005967 Karp Jan 2003 A1
20030007898 Bohm et al. Jan 2003 A1
20030008285 Fischer Jan 2003 A1
20030008323 Ravkin et al. Jan 2003 A1
20030022231 Wangh et al. Jan 2003 A1
20030027203 Fields Feb 2003 A1
20030027214 Kamb Feb 2003 A1
20030027221 Scott et al. Feb 2003 A1
20030028981 Chandler et al. Feb 2003 A1
20030032141 Nguyen et al. Feb 2003 A1
20030036206 Chien et al. Feb 2003 A1
20030039978 Hannah Feb 2003 A1
20030044777 Beattie Mar 2003 A1
20030044836 Levine et al. Mar 2003 A1
20030075446 Culbertson et al. Apr 2003 A1
20030082587 Seul et al. May 2003 A1
20030089605 Timperman May 2003 A1
20030104466 Knapp et al. Jun 2003 A1
20030108897 Drmanac Jun 2003 A1
20030124509 Kenis et al. Jul 2003 A1
20030149307 Hai et al. Aug 2003 A1
20030170698 Gascoyne et al. Sep 2003 A1
20030182068 Battersby et al. Sep 2003 A1
20030207260 Trnovsky et al. Nov 2003 A1
20030215862 Parce et al. Nov 2003 A1
20040021068 Staats Feb 2004 A1
20040040851 Karger et al. Mar 2004 A1
20040063138 McGinnis et al. Apr 2004 A1
20040081962 Chen et al. Apr 2004 A1
20040101680 Barber May 2004 A1
20040101880 Rozwadowski et al. May 2004 A1
20040132122 Banerjee et al. Jul 2004 A1
20040195728 Slomski et al. Oct 2004 A1
20040214175 McKernan et al. Oct 2004 A9
20040224331 Cantor et al. Nov 2004 A1
20040228770 Gandhi et al. Nov 2004 A1
20040258701 Dominowski et al. Dec 2004 A1
20050019839 Jespersen et al. Jan 2005 A1
20050042625 Schmidt et al. Feb 2005 A1
20050079510 Berka et al. Apr 2005 A1
20050130188 Walt et al. Jun 2005 A1
20050172476 Stone et al. Aug 2005 A1
20050181379 Su et al. Aug 2005 A1
20050202429 Trau et al. Sep 2005 A1
20050202489 Cho et al. Sep 2005 A1
20050221339 Griffiths et al. Oct 2005 A1
20050244850 Huang et al. Nov 2005 A1
20050266582 Modlin et al. Dec 2005 A1
20050272159 Ismagilov et al. Dec 2005 A1
20050287572 Mathies et al. Dec 2005 A1
20060002890 Hersel et al. Jan 2006 A1
20060008799 Cai et al. Jan 2006 A1
20060020371 Ham et al. Jan 2006 A1
20060040382 Heffron et al. Feb 2006 A1
20060073487 Oliver et al. Apr 2006 A1
20060078888 Griffiths et al. Apr 2006 A1
20060094108 Yoder et al. May 2006 A1
20060153924 Griffiths et al. Jul 2006 A1
20060163070 Boronkay et al. Jul 2006 A1
20060163385 Link et al. Jul 2006 A1
20060177832 Brenner Aug 2006 A1
20060177833 Brenner Aug 2006 A1
20060199193 Koo et al. Sep 2006 A1
20060240506 Kushmaro et al. Oct 2006 A1
20060257893 Takahashi et al. Nov 2006 A1
20060263888 Fritz et al. Nov 2006 A1
20060275782 Gunderson et al. Dec 2006 A1
20060286570 Rowlen et al. Dec 2006 A1
20060292583 Schneider et al. Dec 2006 A1
20070003442 Link et al. Jan 2007 A1
20070020617 Trnovsky et al. Jan 2007 A1
20070020640 McCloskey et al. Jan 2007 A1
20070031829 Yasuno et al. Feb 2007 A1
20070039866 Schroeder et al. Feb 2007 A1
20070042400 Choi et al. Feb 2007 A1
20070042419 Barany et al. Feb 2007 A1
20070054119 Garstecki et al. Mar 2007 A1
20070072208 Drmanac Mar 2007 A1
20070077572 Tawfik et al. Apr 2007 A1
20070092914 Griffiths et al. Apr 2007 A1
20070099208 Drmanac et al. May 2007 A1
20070134277 Chen et al. Jun 2007 A1
20070154903 Marla et al. Jul 2007 A1
20070160503 Sethu et al. Jul 2007 A1
20070172873 Brenner et al. Jul 2007 A1
20070190543 Livak Aug 2007 A1
20070195127 Ahn et al. Aug 2007 A1
20070207060 Zou et al. Sep 2007 A1
20070228588 Noritomi et al. Oct 2007 A1
20070231823 McKernan et al. Oct 2007 A1
20070238113 Kanda et al. Oct 2007 A1
20070242111 Pamula et al. Oct 2007 A1
20070259357 Brenner Nov 2007 A1
20070264320 Lee et al. Nov 2007 A1
20080003142 Link et al. Jan 2008 A1
20080004436 Tawfik et al. Jan 2008 A1
20080014589 Link et al. Jan 2008 A1
20080056948 Dale et al. Mar 2008 A1
20080124726 Monforte May 2008 A1
20080138878 Kubu et al. Jun 2008 A1
20080166720 Hsieh et al. Jul 2008 A1
20080213766 Brown et al. Sep 2008 A1
20080228268 Shannon et al. Sep 2008 A1
20080230386 Srinivasan et al. Sep 2008 A1
20080241820 Krutzik et al. Oct 2008 A1
20080242560 Gunderson et al. Oct 2008 A1
20080268450 Nam et al. Oct 2008 A1
20090005252 Drmanac et al. Jan 2009 A1
20090011943 Drmanac et al. Jan 2009 A1
20090012187 Chu et al. Jan 2009 A1
20090025277 Takanashi Jan 2009 A1
20090035770 Mathies et al. Feb 2009 A1
20090047713 Handique Feb 2009 A1
20090048124 Leamon et al. Feb 2009 A1
20090053169 Castillo et al. Feb 2009 A1
20090068170 Weitz et al. Mar 2009 A1
20090098555 Roth et al. Apr 2009 A1
20090099041 Church et al. Apr 2009 A1
20090105959 Braverman et al. Apr 2009 A1
20090118488 Drmanac et al. May 2009 A1
20090134027 Jary May 2009 A1
20090137404 Drmanac et al. May 2009 A1
20090137414 Drmanac et al. May 2009 A1
20090143244 Bridgham et al. Jun 2009 A1
20090148961 Luchini et al. Jun 2009 A1
20090155780 Xiao et al. Jun 2009 A1
20090155781 Drmanac et al. Jun 2009 A1
20090197248 Griffiths et al. Aug 2009 A1
20090197772 Griffiths et al. Aug 2009 A1
20090202984 Cantor Aug 2009 A1
20090203531 Kurn Aug 2009 A1
20090208548 Mason et al. Aug 2009 A1
20090264299 Drmanac et al. Oct 2009 A1
20090269248 Falb et al. Oct 2009 A1
20090286687 Dressman et al. Nov 2009 A1
20090311713 Pollack et al. Dec 2009 A1
20090320930 Zeng et al. Dec 2009 A1
20100021973 Makarov et al. Jan 2010 A1
20100021984 Edd et al. Jan 2010 A1
20100022414 Link et al. Jan 2010 A1
20100029014 Wang Feb 2010 A1
20100035254 Williams Feb 2010 A1
20100062494 Church et al. Mar 2010 A1
20100069263 Shendure et al. Mar 2010 A1
20100086914 Bentley et al. Apr 2010 A1
20100105112 Holtze et al. Apr 2010 A1
20100113296 Myerson May 2010 A1
20100120098 Grunenwald et al. May 2010 A1
20100130369 Shenderov et al. May 2010 A1
20100136544 Agresti et al. Jun 2010 A1
20100137163 Link et al. Jun 2010 A1
20100173394 Colston, Jr. et al. Jul 2010 A1
20100184928 Kumacheva Jul 2010 A1
20100187705 Lee et al. Jul 2010 A1
20100210479 Griffiths et al. Aug 2010 A1
20100248237 Froehlich et al. Sep 2010 A1
20100248991 Roesler et al. Sep 2010 A1
20100304982 Hinz et al. Dec 2010 A1
20110000560 Miller et al. Jan 2011 A1
20110008775 Gao et al. Jan 2011 A1
20110028412 Cappello et al. Feb 2011 A1
20110033548 Lai et al. Feb 2011 A1
20110033854 Drmanac et al. Feb 2011 A1
20110046243 Ito et al. Feb 2011 A1
20110053798 Hindson et al. Mar 2011 A1
20110059556 Strey et al. Mar 2011 A1
20110071053 Drmanac et al. Mar 2011 A1
20110086780 Colston, Jr. et al. Apr 2011 A1
20110092376 Colston, Jr. et al. Apr 2011 A1
20110092392 Colston, Jr. et al. Apr 2011 A1
20110118139 Mehta May 2011 A1
20110160078 Fodor et al. Jun 2011 A1
20110195496 Muraguchi et al. Aug 2011 A1
20110201526 Berka et al. Aug 2011 A1
20110217736 Hindson Sep 2011 A1
20110218123 Weitz et al. Sep 2011 A1
20110263457 Krutzik et al. Oct 2011 A1
20110267457 Weitz et al. Nov 2011 A1
20110281736 Drmanac et al. Nov 2011 A1
20110281738 Drmanac et al. Nov 2011 A1
20110287435 Grunenwald et al. Nov 2011 A1
20110305761 Shum et al. Dec 2011 A1
20110306141 Bronchetti et al. Dec 2011 A1
20110319281 Drmanac Dec 2011 A1
20120000777 Garrell et al. Jan 2012 A1
20120003657 Myllykangas et al. Jan 2012 A1
20120010098 Griffiths et al. Jan 2012 A1
20120010107 Griffiths et al. Jan 2012 A1
20120014977 Furihata et al. Jan 2012 A1
20120015382 Weitz et al. Jan 2012 A1
20120015822 Weitz et al. Jan 2012 A1
20120071331 Casbon et al. Mar 2012 A1
20120121481 Romanowsky et al. May 2012 A1
20120132288 Weitz et al. May 2012 A1
20120135893 Drmanac et al. May 2012 A1
20120165219 Van Der Zaag et al. Jun 2012 A1
20120172259 Rigatti et al. Jul 2012 A1
20120190032 Ness et al. Jul 2012 A1
20120190037 Durin et al. Jul 2012 A1
20120196288 Beer Aug 2012 A1
20120208705 Steemers et al. Aug 2012 A1
20120208724 Steemers et al. Aug 2012 A1
20120211084 Weitz et al. Aug 2012 A1
20120220494 Samuels et al. Aug 2012 A1
20120220497 Jacobson et al. Aug 2012 A1
20120222748 Weitz et al. Sep 2012 A1
20120231972 Golyshin et al. Sep 2012 A1
20120252012 Armougom et al. Oct 2012 A1
20120253689 Rogan Oct 2012 A1
20120297493 Cooper et al. Nov 2012 A1
20120309002 Link Dec 2012 A1
20120316074 Saxonov Dec 2012 A1
20120328488 Puntambekar et al. Dec 2012 A1
20130017978 Kavanagh et al. Jan 2013 A1
20130018970 Woundy et al. Jan 2013 A1
20130022682 Lee et al. Jan 2013 A1
20130028812 Prieto et al. Jan 2013 A1
20130041004 Drager et al. Feb 2013 A1
20130046030 Rotem et al. Feb 2013 A1
20130059310 Brenner et al. Mar 2013 A1
20130078638 Berka et al. Mar 2013 A1
20130079231 Pushkarev et al. Mar 2013 A1
20130084243 Goetsch et al. Apr 2013 A1
20130096073 Sidelman Apr 2013 A1
20130109575 Kleinschmidt et al. May 2013 A1
20130109576 Shuber et al. May 2013 A1
20130121893 Delamarche et al. May 2013 A1
20130130919 Chen et al. May 2013 A1
20130157870 Pushkarev et al. Jun 2013 A1
20130157899 Adler, Jr. et al. Jun 2013 A1
20130178368 Griffiths et al. Jul 2013 A1
20130189700 So et al. Jul 2013 A1
20130203605 Shendure et al. Aug 2013 A1
20130203675 DeSimone et al. Aug 2013 A1
20130210639 Link et al. Aug 2013 A1
20130210991 Fonnum et al. Aug 2013 A1
20130211055 Raines et al. Aug 2013 A1
20130225418 Watson Aug 2013 A1
20130225623 Buxbaum et al. Aug 2013 A1
20130274117 Church et al. Oct 2013 A1
20130293246 Pollack et al. Nov 2013 A1
20130296173 Callow et al. Nov 2013 A1
20130343317 Etemad et al. Dec 2013 A1
20140024023 Cauley, III et al. Jan 2014 A1
20140030350 Ashrafi et al. Jan 2014 A1
20140037514 Stone et al. Feb 2014 A1
20140038178 Otto et al. Feb 2014 A1
20140057799 Johnson et al. Feb 2014 A1
20140065234 Shum et al. Mar 2014 A1
20140093916 Belyaev Apr 2014 A1
20140120529 Andersen et al. May 2014 A1
20140155274 Xie et al. Jun 2014 A1
20140155295 Hindson et al. Jun 2014 A1
20140194323 Gillevet Jul 2014 A1
20140199730 Agresti et al. Jul 2014 A1
20140199731 Agresti et al. Jul 2014 A1
20140206554 Hindson et al. Jul 2014 A1
20140227684 Hindson et al. Aug 2014 A1
20140227706 Kato et al. Aug 2014 A1
20140228255 Hindson et al. Aug 2014 A1
20140235506 Hindson et al. Aug 2014 A1
20140242664 Zhang et al. Aug 2014 A1
20140274740 Srinivasan et al. Sep 2014 A1
20140287963 Hindson et al. Sep 2014 A1
20140302503 Lowe et al. Oct 2014 A1
20140315725 Faham et al. Oct 2014 A1
20140315755 Chen et al. Oct 2014 A1
20140357500 Vigneault et al. Dec 2014 A1
20140378322 Hindson et al. Dec 2014 A1
20140378345 Hindson et al. Dec 2014 A1
20140378349 Hindson et al. Dec 2014 A1
20140378350 Hindson et al. Dec 2014 A1
20150005188 Levner et al. Jan 2015 A1
20150005199 Hindson et al. Jan 2015 A1
20150005200 Hindson et al. Jan 2015 A1
20150011430 Saxonov Jan 2015 A1
20150011432 Saxonov Jan 2015 A1
20150057163 Rotem et al. Feb 2015 A1
20150072899 Ward et al. Mar 2015 A1
20150111256 Church et al. Apr 2015 A1
20150111788 Fernandez et al. Apr 2015 A1
20150119280 Srinivas et al. Apr 2015 A1
20150184127 White Jul 2015 A1
20150218633 Hindson et al. Aug 2015 A1
20150224466 Hindson et al. Aug 2015 A1
20150225777 Hindson et al. Aug 2015 A1
20150258543 Baroud et al. Sep 2015 A1
20150259736 Steemers et al. Sep 2015 A1
20150267191 Steelman et al. Sep 2015 A1
20150267246 Baroud et al. Sep 2015 A1
20150291942 Gloeckner et al. Oct 2015 A1
20150298091 Weitz et al. Oct 2015 A1
20150299772 Zhang Oct 2015 A1
20150299784 Fan et al. Oct 2015 A1
20150329891 Tan et al. Nov 2015 A1
20150337298 Xi et al. Nov 2015 A1
20150353999 Agresti et al. Dec 2015 A1
20150361418 Reed Dec 2015 A1
20150368638 Steemers et al. Dec 2015 A1
20150376605 Jarosz et al. Dec 2015 A1
20150376608 Kaper et al. Dec 2015 A1
20150376609 Hindson et al. Dec 2015 A1
20150376700 Schnall-Levin et al. Dec 2015 A1
20150379196 Schnall-Levin et al. Dec 2015 A1
20160024558 Hardenbol et al. Jan 2016 A1
20160032282 Vigneault et al. Feb 2016 A1
20160053253 Salathia et al. Feb 2016 A1
20160060621 Agresti et al. Mar 2016 A1
20160115474 Jelinek et al. Apr 2016 A1
20160122753 Mikkelsen et al. May 2016 A1
20160122817 Jarosz et al. May 2016 A1
20160123858 Kapur et al. May 2016 A1
20160153005 Zhang et al. Jun 2016 A1
20160160235 Solodushko et al. Jun 2016 A1
20160177359 Ukanis et al. Jun 2016 A1
20160208323 Bernstein et al. Jul 2016 A1
20160231324 Zhao et al. Aug 2016 A1
20160244742 Linnarsson et al. Aug 2016 A1
20160244809 Belgrader et al. Aug 2016 A1
20160244825 Vigneault et al. Aug 2016 A1
20160257984 Hardenbol et al. Sep 2016 A1
20160281160 Jarosz et al. Sep 2016 A1
20160304860 Hindson et al. Oct 2016 A1
20160326583 Johnson et al. Nov 2016 A1
20160348093 Price et al. Dec 2016 A1
20160376663 Brown Dec 2016 A1
20170009274 Abate et al. Jan 2017 A1
20170016041 Greenfield et al. Jan 2017 A1
20170114390 Hindson et al. Apr 2017 A1
20170145476 Ryvkin et al. May 2017 A1
20170183701 Agresti et al. Jun 2017 A1
20170247757 Hindson et al. Aug 2017 A1
20170260584 Zheng et al. Sep 2017 A1
20170268056 Vigneault et al. Sep 2017 A1
20170321252 Hindson et al. Nov 2017 A1
20170348691 Bharadwaj et al. Dec 2017 A1
20170356027 Hindson et al. Dec 2017 A1
20180008984 Bharadwaj et al. Jan 2018 A1
20180015472 Bharadwaj et al. Jan 2018 A1
20180015473 Bharadwaj et al. Jan 2018 A1
20180016634 Hindson et al. Jan 2018 A1
20180030512 Hindson et al. Feb 2018 A1
20180030515 Regev et al. Feb 2018 A1
20180051321 Hindson et al. Feb 2018 A1
20180057868 Walder et al. Mar 2018 A1
20180087050 Zheng et al. Mar 2018 A1
20180094298 Hindson et al. Apr 2018 A1
20180094313 Hindson et al. Apr 2018 A1
20180094315 Hindson et al. Apr 2018 A1
20180105808 Mikkelsen et al. Apr 2018 A1
20180112253 Hindson et al. Apr 2018 A1
20180112266 Hindson et al. Apr 2018 A1
20180179580 Hindson et al. Jun 2018 A1
20180195112 Lebofsky et al. Jul 2018 A1
20180216162 Belhocine et al. Aug 2018 A1
20180236443 Masquelier et al. Aug 2018 A1
20180258466 Hindson et al. Sep 2018 A1
20180258482 Hindson et al. Sep 2018 A1
20180265928 Schnall-Levin et al. Sep 2018 A1
20180273933 Gunderson et al. Sep 2018 A1
20180274027 Hindson et al. Sep 2018 A1
20180282804 Hindson et al. Oct 2018 A1
20180327839 Hindson et al. Nov 2018 A1
20180340939 Gaublomme et al. Nov 2018 A1
20190134629 Bernate et al. May 2019 A1
Foreign Referenced Citations (184)
Number Date Country
102292455 Dec 2011 CN
103202812 Jul 2013 CN
0249007 Dec 1987 EP
0271281 Jun 1988 EP
0637996 Jul 1997 EP
1019496 Sep 2004 EP
1672064 Jun 2006 EP
1482036 Oct 2007 EP
1841879 Oct 2007 EP
1594980 Nov 2009 EP
1967592 Apr 2010 EP
2258846 Dec 2010 EP
2145955 Feb 2012 EP
1905828 Aug 2012 EP
2136786 Oct 2012 EP
1908832 Dec 2012 EP
2540389 Jan 2013 EP
2635679 Sep 2013 EP
2752664 Jul 2014 EP
2097692 May 1985 GB
2485850 May 2012 GB
S5949832 Mar 1984 JP
S60227826 Nov 1985 JP
2006-507921 Mar 2006 JP
2006-289250 Oct 2006 JP
2007-015990 Jan 2007 JP
2007-268350 Oct 2007 JP
2009-513948 Apr 2009 JP
2009-208074 Sep 2009 JP
2012-131798 Jul 2012 JP
WO-8402000 May 1984 WO
WO-9418218 Aug 1994 WO
WO-9419101 Sep 1994 WO
WO-9423699 Oct 1994 WO
WO-9530782 Nov 1995 WO
WO-9629629 Sep 1996 WO
WO-9641011 Dec 1996 WO
WO-9802237 Jan 1998 WO
WO-9852691 Nov 1998 WO
WO-9909217 Feb 1999 WO
WO-9952708 Oct 1999 WO
WO-2000008212 Feb 2000 WO
WO-0023181 Apr 2000 WO
WO-0026412 May 2000 WO
WO-0043766 Jul 2000 WO
WO-0070095 Nov 2000 WO
WO-0102850 Jan 2001 WO
WO-0114589 Mar 2001 WO
WO-0189787 Nov 2001 WO
WO-0190418 Nov 2001 WO
WO-0127610 Mar 2002 WO
WO-0231203 Apr 2002 WO
WO-02086148 Oct 2002 WO
WO-0218949 Jan 2003 WO
WO-03062462 Jul 2003 WO
WO-2004002627 Jan 2004 WO
WO-2004010106 Jan 2004 WO
WO-2004061083 Jul 2004 WO
WO-2004065617 Aug 2004 WO
WO-2004069849 Aug 2004 WO
WO-2004091763 Oct 2004 WO
WO-2004102204 Nov 2004 WO
WO-2004103565 Dec 2004 WO
WO-2004105734 Dec 2004 WO
WO-2005002730 Jan 2005 WO
WO-2005021151 Mar 2005 WO
WO-2005023331 Mar 2005 WO
WO-2005040406 May 2005 WO
WO-2005049787 Jun 2005 WO
WO-2005082098 Sep 2005 WO
WO-2006030993 Mar 2006 WO
WO-2006078841 Jul 2006 WO
WO-2006096571 Sep 2006 WO
WO-2007001448 Jan 2007 WO
WO-2007002490 Jan 2007 WO
WO-2007012638 Feb 2007 WO
WO-2007018601 Feb 2007 WO
WO-2007024840 Mar 2007 WO
WO-2007081387 Jul 2007 WO
WO-2007084192 Jul 2007 WO
WO-2007089541 Aug 2007 WO
WO-2007093819 Aug 2007 WO
WO-2007111937 Oct 2007 WO
WO-2007114794 Oct 2007 WO
WO-2007121489 Oct 2007 WO
WO-2007133710 Nov 2007 WO
WO-2007138178 Dec 2007 WO
WO-2007139766 Dec 2007 WO
WO-2007140015 Dec 2007 WO
WO-2007147079 Dec 2007 WO
WO-2007149432 Dec 2007 WO
WO-2008021123 Feb 2008 WO
WO-2008091792 Jul 2008 WO
WO-2008102057 Aug 2008 WO
WO-2008121342 Oct 2008 WO
WO-2007081385 Nov 2008 WO
WO-2008061193 Nov 2008 WO
WO-2008109176 Nov 2008 WO
WO-2008134153 Nov 2008 WO
WO-2008150432 Dec 2008 WO
WO-2009005680 Jan 2009 WO
WO-2009011808 Jan 2009 WO
WO-2009015296 Jan 2009 WO
WO-2009048532 Apr 2009 WO
WO-2009061372 May 2009 WO
WO-2009085215 Jul 2009 WO
WO-2009147386 Dec 2009 WO
WO-2010004018 Jan 2010 WO
WO-2010014604 Feb 2010 WO
WO-2010033200 Mar 2010 WO
WO-2010048605 Apr 2010 WO
WO-2010104604 Sep 2010 WO
WO-2010115154 Oct 2010 WO
WO-2010148039 Dec 2010 WO
WO-2010151776 Dec 2010 WO
WO-2010117620 Feb 2011 WO
WO-2011028539 Mar 2011 WO
WO-2011047870 Apr 2011 WO
WO-2011056546 May 2011 WO
WO-2011074960 Jun 2011 WO
WO-2011140627 Nov 2011 WO
WO-2012012037 Jan 2012 WO
WO-2012019765 Feb 2012 WO
WO-2012047889 Apr 2012 WO
WO-2012048340 Apr 2012 WO
WO-2012048341 Apr 2012 WO
WO-2012061832 May 2012 WO
WO-2011066476 Aug 2012 WO
WO-2012106546 Aug 2012 WO
WO-2012112804 Aug 2012 WO
WO-2012112970 Aug 2012 WO
WO-2012083225 Sep 2012 WO
WO-2012136734 Oct 2012 WO
WO-2012142611 Oct 2012 WO
WO-2012148497 Nov 2012 WO
WO-2012149042 Nov 2012 WO
WO-2012166425 Dec 2012 WO
WO-2013019751 Feb 2013 WO
WO-2013036929 Mar 2013 WO
WO-2013055955 Apr 2013 WO
WO-2013096643 Jun 2013 WO
WO-2013122996 Aug 2013 WO
WO-2013123125 Aug 2013 WO
WO-2013126741 Aug 2013 WO
WO-2013134261 Sep 2013 WO
WO-2013150083 Oct 2013 WO
WO-2013177220 Nov 2013 WO
WO-2013188872 Dec 2013 WO
WO-2014028537 Feb 2014 WO
WO-2014053854 Apr 2014 WO
WO-2014071361 May 2014 WO
WO-2014074611 May 2014 WO
WO-2014093676 Jun 2014 WO
WO-2014108810 Jul 2014 WO
WO-2014140309 Sep 2014 WO
WO-2014144495 Sep 2014 WO
WO-2014150931 Sep 2014 WO
WO-2014182835 Nov 2014 WO
WO-2014189957 Nov 2014 WO
WO-2014210353 Dec 2014 WO
WO-2015031691 Mar 2015 WO
WO-2015044428 Apr 2015 WO
WO-2015164212 Oct 2015 WO
WO-2016040476 Mar 2016 WO
WO-2016061517 Apr 2016 WO
WO-2016126871 Aug 2016 WO
WO-2016170126 Oct 2016 WO
WO-2016176322 Nov 2016 WO
WO-2016187717 Dec 2016 WO
WO-2016191618 Dec 2016 WO
WO-2016207647 Dec 2016 WO
WO-2016207653 Dec 2016 WO
WO-2016207661 Dec 2016 WO
WO-2017015075 Jan 2017 WO
WO-2017025594 Feb 2017 WO
WO-2017053902 Mar 2017 WO
WO-2017053903 Mar 2017 WO
WO-2017053905 Mar 2017 WO
WO-2017075265 May 2017 WO
WO-2017156336 Sep 2017 WO
WO-2018045186 Mar 2018 WO
WO-2018119301 Jun 2018 WO
WO-2018191701 Oct 2018 WO
WO-2019028166 Feb 2019 WO
Non-Patent Literature Citations (428)
Entry
Ahn et al., “Electrocoalescence of drops synchronized by size-dependent flow in microfluidic channels,” Appl Phys Lett. 88: 264105-1-264105-3 (2006).
“How many species of bacteria are there” (wisegeek.com; accessed Jan. 21, 2014).
Huebner et al., “Microdroplets: A sea of applications?” Lab on a Chip. 8: 1244-1254 (2008).
Kiss et al., “High-Throughput Quantitative Polymerase Chain Reaction in Picoliter Droplets,” Anal Chem. 80(23): 8975-8981 (2008).
“List of sequenced bacterial genomes” (Wikipedia.com; accessed Jan. 24, 2014).
Pascaline et al., “Controlling droplet incubation using close-packed plug flow,” Biomicrofluidics. 5: 024101-1-024101-6 (2011).
“Portable Water Filters” (http://www.portablewaterfilters.org/water-filter-guide/particle- contaminant-size-chart-microns/) 2015, accessed Oct. 19, 2017.
“U.S. Appl. No. 61/982,001, filed Apr. 21, 2014 (Year:2014)”.
10x Genomics. “10x Genomics Chromium™ Single Cell 3′ Solution Utilized for Perturb-seq Approach,” Press Release, <https://www.10xgenomics.com/news/10x-genomics-chromium-single-cell-3-solution-utilized-perturb-seq-approach/>, dated Dec. 19, 2016.
Abate et al., “Syringe-vacuum microfluidics: A portable technique to create monodisperse emulsions,” Biomicrofluidics. 5(1): 014107 (2011).
Abate et al., “Valve-based flow focusing for drop formation,” Appl Phys Lett. 94 (2009) (3 pages).
Abate et al., “Beating Poisson encapsulation statistics using close-packed ordering,” Lab Chip. 9(18):2628-31 (2009).
Abate et al., “High-throughput injection with microfluidics using picoinjectors,” Proc Natl Acad Sci USA. 107(45):19163-6 (2010).
Adamson et al., “Production of arrays of chemically distinct nanolitre plugs via repeated splitting in microfluidic devices,” Lab Chip. 6(9): 1178-1186 (2006).
Adamson et al., “A Multiplexed Single-Cell CRISPR Screening Platform Enables Systematic Dissection of the Unfolded Protein Response,” Cell. 167(7):1867-1882.e21 (2016).
Adey et al. “Rapid, low-input, low-bias construction of shotgun fragment libraries by high-density in vitro transposition,” Genome Biology. 11:R119 (2010).
Adey et al., “Ultra-low-input, tagmentation-based whole-genome bisulfite sequencing,” Genome Research. 22(6): 1139-1143 (2012).
Agresti et al., “Selection of Ribozymes that Catalyse Multiple-Turnover Diels-Alder Cycloadditions by Using in Vitro Compartmentalization,” Proc Natl Acad Sci U S A. 102(45):16170-5 (2005).
Agresti et al., “Ultra-high-throughput screening in drop-based microfluidics for directed evolution,” Proc Natl Acad Sci USA. 107(9): 4004-9 (2010).
Ahern, “Biochemical, Reagents Kits Offer Scientists Good Return on Investment,” The Scientist.9(15):1-7 (1995).
Ahn et al., “Dielectrophoretic manipulation of drops for high-speed microfluidic sorting devices,” Applied Physics Letter. 88 (2006).
Aitman et al., “Copy number polymorphism in Fcgr3 predisposes to glomerulonephritis in rats and humans,” Nature. 439(7078):851-5 (2006).
Akselband, “Enrichment of slow-growing marine microorganisms from mixed cultures using gel microdrop (GMD) growth assay and fluorescence-activated cell sorting,” J Exp Marine Biol. 329: 196-205 (2006).
Akselband, “Rapid mycobacteria drug susceptibility testing using gel microdrop (GMD) growth assay and flow cytometry,” J Microbiol Methods. 62: 181-197 (2005).
Ali-Cherif et al., “Programmable Magnetic Tweezers and Droplet Microfluidic Device for High-Throughput Nanoliter Multi-Step Assays,” Angew Chem Int Ed. 51: 10765-10769 (2012).
Altemose et al., “Genomic Characterization of Large Heterochromatic Gaps in the Human Genome Assembly,” PLOS Computational PLoS Comput Biol. 10(5) (2014) (14 pages).
Amini et al. “Haplotype-resolved whole-genome sequencing by contiguity-preserving transposition and combinatorial indexing” Nat Genet. 46(12):1343-1349 (2014).
Anna et al., “Formation of dispersions using ‘flow focusing’ in microchannels,” Applied Physics Letters. 82(3): 364-366 (2003).
Anonymous, “Oligo(dT)25 cellulose beads” NEB (2012) Retrieved from the Internet:https://www.neb.com/˜/media/Catalog/All-Products/286CA51268E24DE1B06F1CB288698B54/Datacards%20or%Manuals/S1408Datasheet-Lot0011205.pdf.
Anonymous, “Oligotex Handbook” Qiagen (2012) XP055314680, Retrieved from the Internet: URL:http://www.qiagen.com/de/resources/download.apsx?id=f9fald98-d54d-47e7-a20b-8b0cb8975009&lang=en.
Anonymous: “TCEP=HCI” Thermo Scientific, Dec. 31, 2013 (Dec. 31, 2013), XP055508461, Retrieved from the Internet: URL:https://assets.thermofisher.com/TFS-Assets/LSG/manuals/MAN0011306_TCEP_HCI_UG.pdf.
Anonymous: “Viscosity-Basic concepts” (2004) XP055314117. Retrieved from the Internet: URL:http://lhtc.epfl.ch/webdav/site/lhtc/shared/import/migration/2_VISCOSITY.pdf.
Ason et al. “DNA sequence bias during Tn5 transposition. Journal of molecular biology” J Mol Biol. 335(5):12-13-25 (2004).
Attia et al., “Micro-injection moulding of polymer microfluidic devices,” Microfluidics and Nanofluidics. 7(1):1-28 (2009).
Balikova et al. “Autosomal-dominant microtia linked to five tandem copies of a copy-number-variable region at chromosome 4p16,” Am J Hum Genet. 82(1):181-7 (2008).
Bardin et al., “High-speed, clinical-scale microfluidic generation of stable phase-change droplets for gas embolotherapy,” Lab Chip. 11: 3990-3998 (2011).
Baret et al., “Kinetic aspects of emulsion stabilization by surfactants: a microfluidic analysis,” Langmuir. 25:6088-6093 (2009).
Baret et al., “Fluorescence-activated droplet sorting (FADS): efficient microfluidic cell sorting based on enzymatic activity,” Lab Chip. 9(13):1850-8 (2009).
BD. BD Rhapsody™ Single-Cell Analysis System: Analyze hundreds of genes across tens of thousands of single cells in parallel. BD, Becton, Dickinson and Company. BDGM1012 Rev. 1. 2017. 8 pages.
Becker et al., “Polymer Microfabrication Technologies for Microfluidic,” Anal Bioanal Chem. 390(1): 89-111 (2008).
Belder, “Microfluidics with Droplets,” Angew Chem Int Ed. 44: 3521-3522 (2005).
Bentzen et al., “Large-scale detection of antigen-specific T cells using peptide-MHC-I multimers labeled with DNA barcodes,” Nat Biotechnol. 34(10):1037-1045 (2016).
Berkum et al. “Hi-C: a method to study the three-dimensional architecture of genomes,” J Vis Exp. (39):1869 (2010).
Biles et al., “Low-fidelity Pyrococcus furiosis DNA polymerase mutants useful in error-prone PCR,” Nucleic Acids Res. 32(22):e176 (2004).
Bilotkach et al., “Fabrication of PDMS Membranes with Aqueous Molds for Microfluidic Systems,” 12th Int'l Conference Miniaturized Sys for Chemistry and Life Scis (2008).
Bjornsson et al., “Intra-individual change over time in DNA methylation with familial clustering,” JAMA. 299(24):2877-83 (2008).
Bodi et al., “Comparison of Commercially Available Target Enrichment Methods for Next-Generation Sequencing,” J Biomol Tech. 24(2): 73-86 (2013).
Boone et al., “Plastic advances microfluidic devices. The devices debuted in silicon and glass, but plastic fabrication may make them hugely successful in biotechnology application,” Analytical Chemistry. 78A-86A (2002).
Boulanger et al., “Massively parallel haplotyping on microscopic beads for the high- throughput phase analysis of single molecules,” PLoS One.7(4):1-10 (2012).
Boyle et al., “High-resolution genome-wide in vivo footprinting of diverse transcription factors in human cells,” Genome Res. 21(3):456-64 (2011).
Braeckmans et al., “Scanning the Code,” Modern Drug Discovery. 28-32 (2003).
Bransky et al., “A microfluidic droplet generator based on a piezoelectric actuator,” Lab Chip. 9(4):516-20 (2009).
Brenner et al., “In vitro cloning of complex mixtures of DNA on microbeads: physical separation of differentially expressed cDNAs,” Proc Natl Acad Sci U S A. 97(4):1665-70 (2000).
Brenner, et al., “Injection Molding of Microfluidic Chips by Epoxy-Based Master Tools” (Oct. 9, 2005).
Briggs, et al. “Tumor-infiltrating immune repertoires captures by single-cell barcoding in emulsion” with Supplementary material. bioRxiv 134841; doi: https://doi.org/10.1101/134841. Posted May 5, 2017.
Brody et al., “Biotechnology at Low Reynolds Numbers,” Biophys J. 71:3430-3441 (1996).
Brouzes et al., “Droplet microfluidic technology for single-cell high-throughput screening,” Proc Natl Acad Sci U S A. 106(34):14195-200 (2009).
Brown, K., Targeted Sequencing Using Droplet-Based Microfluidics, RainDance Technologies, 2009, 1-18.
Browning et al., “Haplotype phasing: existing methods and new developments,” Nat Rev Genet. 12(10):703-14 (2011).
Buchman et al., “Selective RNA amplification: a novel method using dUMP-containing primers and uracil DNA glycosylase,” PCR Methods Appl. 3(1):28-31 (1993).
Buenrostro et al., “Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position,” Nat Methods. 10(12):1213-8 (2013).
Buenrostro et al., “ATAC-seq: A Method for Assaying Chromatin Accessibility Genome-Wide,” Curr Protoc Mol Biol. 109: 21.29.1-21.29.9. (2015).
Buenrostro et al., “Single-cell chromatin accessibility reveals principles of regulatory variation,” Nature. 523(7561):486-90 (2015).
Burns et al., “An Integrated Nanoliter DNA Analysis Device,” Science. 282(5388):484-7 (1998).
Burns et al., “Microfabricated structures for integrated DNA analysis,” Proc Natl Acad Sci U S A. 93(11):5556-5561 (1996).
Burns et al., “The intensification of rapid reactions in multiphase systems using slug flow in capillaries,” Lab Chip. 1(1): 10-5 (2001).
Cappuzzo et al., “Increased HER2 gene copy No. is associated with response to gefitinib therapy in epidermal growth factor receptor-positive non-small-cell lung cancer patients,” J Clin Oncol. 23(22):5007-18 (2005).
Carroll, “The selection of high-producing cell lines using flow cytometry and cell sorting,” Exp Op Biol. Therp. 4(11): 1821-1829 (2004).
Caruccio et al. “Preparation of Next-Generation Sequencing Libraries Using Nextera Technology: Simultaneous DNA Fragmentation and Adaptor Tagging by In Vitro Transposition,” Methods Mol Biol. 733:241-55 (2011).
Caruccio, et al., “Nextera Technology for NGS DNA Library Preparation: Simultaneous Fragmentation and Tagging by In Vitro Transposition,” Nextera Technology. 16-3: 1-3 (2009).
Casbon et al., “Reflex: intramolecular barcoding of long-range PCR products for sequencing multiple pooled DNAs,” Nucleic Acids Res. 41(10) 1-6 (2013).
Chan et al., “High-Temperature Microfluidic Synthesis of CdSe Nanocrystals in Nanoliter Droplets,” J Am Soc. 127: 13854-13861 (2005).
Chang et al., “Droplet-based microfluidic platform for heterogeneous enzymatic assays,” Lab Chip. 13: 1817-1822 (2013).
Chaudhary, “A rapid method of cloning functional variable-region antibody genes in Escherichia coli as single-chain immunotoxins,” Proc Natl Acad Sci USA. 87: 1066-1070 (1990).
Chechetkin et al., “Sequencing by hybridization with the generic 6-mer oligonucleotide microarray: an advanced scheme for data processing,” J Biomol Struct Dyn. 8(1):83-101 (2000).
Chen et al., “Chemical transfection of cells in picoliter aqueous droplets in fluorocarbon oil,” Anal Chem. 83(22): 8816-20 (2011).
Chien et al., “Multiport flow-control system for lab-on-a-chip microfluidic devices,” Fresenius J Anal Chem. 371:106-111 (2001).
Choi et al., “Identification of novel isoforms of the EML4-ALK transforming gene in non-small cell lung cancer,” Cancer Res. 68(13):4971-6 (2008).
Chokkalingam et al., “Probing cellular heterogeneity in cytokine-secreting immune cells using droplet-based microfluidics,” Lab Chip. 13(24):4740-4 (2013).
Chou et al., “Disposable Microdevices for DNA Analysis and Cell Sorting,” Proc Solid-State Sensor and Actuator Workshop, Hilton Head, SC, Jun. 8-11, 1998. 11-14.
Christian et al., “Targeting DNA double-strand breaks with TAL effector nucleases,” Genetics. 186 (2): 757-61 (2010).
Christiansen et al., “The Covalent Eukaryotic Topoisomerase I-DNA Intermediate Catalyzes pH-dependent Hydrolysis and Alcoholysis,” J Biol Chem. 269(15):11367-11373 (1994).
Christopher et al., “Microfluidic methods for generating continuous droplet streams,” J Phys D: Appl Phys. 40: R319-R336 (2007).
Chu et al., “Controllable monodisperse multiple emulsions,” Angew Chem Int Ed Engl. 46(47): 8970-4 (2007).
Chung et al., “Structural and molecular interrogation of intact biological systems,” Nature. 497(7449):332-7 (2013).
Clark et al., “Single-cell epigenomics: powerful new methods for understanding gene regulation and cell identity,” Genome Biol. 17:72 (2016).
Clausell-Tormos et al., “Droplet-based microfluidic platforms for the encapsulation and screening of mammalian cells and multicellular organisms,” Chem Biol. 15:427-437 (2008).
Co-pending U.S. Appl. No. 15/440,772, filed Feb. 23, 2017.
Co-pending U.S. Appl. No. 15/449,741, filed Mar. 3, 2017.
Co-pending U.S. Appl. No. 16/033,065, filed Jul. 11, 2018.
Co-pending U.S. Appl. No. 16/044,374, filed Jul. 24, 2018.
Co-pending U.S. Appl. No. 16/107,685, filed Aug. 21, 2018.
Co-pending U.S. Appl. No. 16/170,980, filed Oct. 25, 2018.
Co-pending U.S. Appl. No. 16/180,378, filed Nov. 5, 2018.
Co-pending U.S, Appl. No. 16/274,134, filed Feb. 12, 2019.
Co-pending U.S. Appl. No. 16/419,820, filed May 22, 2019.
Cong et al., “Multiplex genome engineering using CRISPR/Cas systems,” Science. 339 (6121) 819-23 (2013).
Cook et al., “Copy-number variations associated with neuropsychiatric conditions,” Nature. 455(7215):919-23 (2008).
Coufal et al., “L1 retrotransposition in human neural progenitor cells,” Nature. 460(7259):1127-31 (2009).
Curcio, Mario, Thesis: “Improved Techniques for High-Throughput Molecular Diagnostics,” Doctor in Philosophy of Chemistry, Royal Institute of Technology, 2002 (131 pages).
Cusanovich et al., “Supplementary materials for Multiplex single-cell profiling of chromatin accessibility by combinatorial cellular indexing,” Science. 348(6237):910-4 (2015).
Cusanovich et al., “Multiplex single-cell profiling of chromatin accessibility by combinatorial cellular indexing,” Science. (6237): 910-4 (2015).
Damean et al., “Simultaneous measurement of reactions in microdroplets filled by concentration gradients,” Lab Chip. 9(12): 1707-13 (2009).
Dangla et al., “Droplet microfluidics driven by gradients of confinement,” Proc Natl Acad Sci U S A. 110(3): 853-858 (2013).
De Bruin et al., “UBS Investment Research. Q-Series®: DNA Sequencing,” UBS Securities LLC (2007) (15 pages).
Dekker et al., “Capturing chromosome conformation,” Science. 295(5558):1306-11 (2002).
Demirci et al., “Single cell epitaxy by acoustic picolitre droplets,” Lab Chip. 7(9): 1139-45 (2007).
Dendukuri et al., “Controlled synthesis of nonspherical microparticles Using Microfluidics,” Langmuir. 21: 2113-2116 (2005).
Depristo et al., “A framework for variation discovery and genotyping using next-generation DNA sequencing data,” Nature Genet. 43(5):491-8 (2011).
Dey et al., “Integrated genome and transcriptome sequencing of the same cell,” available in PMC Dec. 18, 2017, published in final edited form as: Nature Biotechnology. 33(3): 285-289 (2015).
Dixit et al., “Perturb-Seq: Dissecting Molecular Circuits with Scalable Single-Cell RNA Profiling of Pooled Genetic Screens,” Cell. 167(7):1853-1866.e17 (2016).
Doerr, “The smallest bioreactor,” Nature Methods. 2(5): 326 (2005).
Doshi et al., “Red blood cell-mimicking synthetic biomaterial particles,” Proc Natl Acad Sci U S A. 106(51):21495-21499 (2009).
Dowding et al., “Oil core/polymer shell microcapsules by internal phase separation from emulsion droplets. II: controlling the release profile of active molecules,” Langmuir. 21(12): 5278-84 (2005).
Draper et al., “Compartmentalization of electrophoretically separated analytes in a multiphase microfluidic platform,” Anal Chem. 84(13): 5801-8 (2012).
Dressler et al., “Droplet-based microfluidics enabling impact on drug discovery,” J Biomol Screen. 19(4): 483-96 (2014).
Dressman et al. Supplementary Information pp. 1-2 of article published 2003, PNAS 100(15:8817-22).
Dressman et al., “Transforming single DNA molecules into fluorescent magnetic particles for detection and enumeration of genetic variations,” Proc Natl Acad Sci U S A.100(15):8817-22 (2003).
Drmanac et al., “Sequencing by hybridization (SBH): advantages, achievements, and opportunities,” Adv Biochem Eng Biotechnol. 77: 75-101 (2002).
“Droplet Based Sequencing,” slides dated Mar. 12, 2008.
Duffy et al., “Rapid Prototyping of Microfluidic Systems in Poly(dimethylsiloxane),” Anal Chem. 70(23):4974-84 (1998).
Eastburn et al., “Ultrahigh-throughput mammalian single-cell reverse-transcriptase polymerase chain reaction in microfluidic droplets,” Anal Chem. 85(16): 8016-21 (2013).
Engl et al., “Controlled production of emulsions and particles by milli- and microfluidic techniques,” Current Opinion in Colloid and Interface Science. 13: 206-216 (2007).
Epicentre .. “EZ-Tn5TM Custom Transposome Construction Kits”, http://www.epicentre.com. pp. 1-17, 2012.
Erbacher et al., “Towards Integrated Continuous-Flow Chemical Reactors,” Mikrochimica Acta. 131: 19-24 (1999).
Esser-Kahn et al., “Triggered release from polymer capsules,” Macromolecules. 44: 5539-5553 (2011).
Fabi, et al. Correlation of efficacy between EGFR gene copy number and lapatinib/capecitabine therapy in HER2-positive metastatic breast cancer. J. Clin. Oncol. 2010; 28:15S. 2010 ASCO Meeting abstract Jun. 14, 2010:1059.
Fan et al., “Noninvasive diagnosis of fetal aneuploidy by shotgun sequencing DNA from maternal blood,” Proc Natl Acad Sci U S A. 105(42):16266-71 (2008).
Fan et al., “Whole-genome molecular haplotyping of single cells,” Nat Biotechnol. 29(1):51-7 (2011).
Fang et al., “Fluoride-cleavable biotinylation phosphoramidite for 5′-end-labeling and affinity purification of synthetic oligonucleotides,” Nucleic Acids Res. 31(2):708-15 (2003).
Ferraro et al., “Microfluidic platform combining droplets and magnetic tweezers: application to HER2 expression in cancer diagnosis,” Scientific Reports. 6:25540 (2016).
Flisher et al., “A scalable, fully automated process for construction of sequence-ready human exome targeted capture libraries,” Genome Biol. 12(1):R1 (2011).
Frampton et al., “Development and validation of a clinical cancer genomic profiling test based on massively parallel DNA sequencing” Nat Biotechnol. 31(11):1023-1031 (2013).
Fredrickson et al., “Macro-to-micro interfaces for microfluidic devices,” Lab Chip. 4(6): 526-33 (2004).
Freiberg et al., “Polymer microspheres for controlled drug release,” Int J Pharm. 282(1-2): 1-18 (2004).
Fu et al., “A Microfabricated Fluorescence-Activated Cell Sorter,” Nature Biotechnology. 17: 1109-1111 (1999).
Fulton et al., “Advanced multiplexed analysis with the FlowMetrix system,” Clin Chem. 43(9): 1749-56 (1997).
Gangadharan et al., “DNA transposon Hermes insert into DNA in nucleosome-free regions in vivo,” Proc Natl Acad Sci U S A. 107(51):21966-72 (2010).
Gao et al., “Toehold of dsDNA Exchange Affects the Hydrogel Swelling Kinetic of a Polymer-dsDNA Hybrid Hydrogel,” Royal Soc Chem. 7:1741-1746 (2010).
Garstecki et al., “Mechanism for Flow-Rate Controlled Breakup in Confined Geometries: A Route to Monodisperse Emulsions,” PRL. 94: 164501 (2005).
Garstecki et al., “Formation of monodisperse bubbles in a microfluidic flow-focusing device,” Applied Physics Letters. 85(13): 2649-2651 (2004).
Gartner et al., “The Microfluidic Toolbox—examples for fluidic interfaces and standardization concepts,” Proc SPIE 4982, Microfluidics, BioMEMS, and Medical Microsystems. (2003).
Gericke et al., “Functional cellulose beads: preparation, characterization, and applications,” Chem Rev. 113(7) 4812-4836 (2013).
Ghadessy et al., “Directed evolution of polymerase function by compartmentalized self-replication,” Proc Natl Acad Sci USA. 98: 4552-4557 (2001).
Gonzalez et al., “The influence of CCL3L1 gene-containing segmental duplications on HIV-1/AIDS susceptibility,” Science. 307(5714): 1434-40 (2005).
Granieri, Lucia, Thesis: “Droplet-based microfluidics and engineering of tissue plasminogen activator for biomedical applications,” Doctor of Philosophy in Chemistry, L'Universite de Strasbourg, 2009 (131 pages).
Grasland-Mongrain et al., “Droplet coalescence in microfluidic devices,” <http://www.eleves.ens.fr/home/grasland/rapports/stage4.pdf>, dated Jan.-Jul. 2003 (31 pages).
Green et al., “Insertion site preference of Mu, Tn5, and Tn7 transposons,” Mob DNA 3(1):3 (2012).
Greenleaf, “Assaying the epigenome in limited Nos. of cells,” Methods. 72:51-6 (2015).
Guo et al., “Droplet microfluidics for high-throughput biological assays,” Lab Chip. 12(12):2146-55 (2012).
Gyarmati et al., “Reversible disulphide formation in polymer networks: a versatile functional group from synthesis to applications,” European Polymer Journal. 49:1268-1286 (2013).
Hamilton, “microRNA in erythrocytes,” Biochem Soc Trans. 38 (Pt 1): 229-231.(2010).
Han et al., “Targeted Sequencing of Cancer-Related Genes in Colorectal Cancer Using Next- Generation Sequencing,” PLOS One. 8(5):e64271 (2013).
Han et al., “CRISPR-Cas9 delivery to hard-to-transfect cells via membrane deformation” Science Advances. 1(7): E1500454 (2015) (8 pages).
Haring et al., “Chromatin immunoprecipitation: optimization, quantitative analysis and data normalization., ”Plant Methods. 3:11 (2007).
Hashimshony et al., “CEL-Seq: Single-Cell RNA-Seq by Multiplexed Linear Amplification,” Cell Rep. 2(3):666-73 (2012).
He, “Selective Encapsulation of Single Cells and Subcellular Organelles into Picoliter- and Femtoliter-Volume Droplets,” Anal Chem. 77: 1539-1544 (2005).
He et al., “Genotyping-by-sequencing (GBS), an ultimate marker-assisted selections (MAS) tool to accelerate plant breeding,” Frontiers Plant Sci. 5:1-8 (2014).
Hettiarachchi et al., “Controllable microfluidic synthesis of multiphase drug-carrying lipospheres for site-targeted therapy,” Biotechnol Prog. 25(4): 938-45 (2009).
Hiatt et al., “Parallel, tag-directed assembly of locally derived short sequence reads,” Nat Methods. 7(2):119-22 (2010).
Hirsch et al. “Easily reversible desthiobiotin binding to streptavidin, avidin, and other biotin-binding proteins: uses for protein labeling, detection, and isolation.” Anal Biochem. 308(2):343-357 (2002).
Hjerten et al., “General methods to render macroporous stationary phases nonporous and deformable, exemplified with agarose and silica beads and their use in high-performance ion-exchange and hydrophobic-interaction chromatography of proteins,” Chromatographia. 31.1-2: 85-94 (1991).
Holmberg et al., “The biotin-streptavidin interaction can be reversibly broken using water at elevated temperatures,” Electrophoresis. 26(3):501-10 (2005).
Holtze et al., “Biocompatible surfactants for water-in-fluorocarbon emulsions,” Lab Chip. 8(10): 1632-9 (2008).
Hosokawa et al., “Massively parallel whole genome amplification for single-cell sequencing using droplet microfluidics,” Scientific Reports. 7: No. 5199 (2017).
Hosono et al., “Unbiased whole-genome amplification directly from clinical samples, ” Genome Res. 13(5):954-64 (2003).
Hu et al., “Shape Controllable Microgel Particles Prepared by Microfluidic Combining External Crosslinking,” Biomicrofluidics. 6(2):26502-265029 (2012).
Huebner, “Quantitative detection of protein expression in single cells using droplet microfluidics,” Chem Commun. 1218-1220 (2007).
Hug et al., “Measurement of the number of molecules of a single mRNA species in a complex mRNA preparation,” J Theor Biol. 221(4): 615-24 (2003).
Hung et al., “PLGA micro/nanosphere synthesis by droplet microfluidic solvent evaporation and extraction approaches,” Lab chip. 10: 1820-1825 (2010).
Hung et al., “Alternating droplet generation and controlled dynamic droplet fusion in microfluidic device for Cds nanoparticle synthesis,” Lab Chip. 6(2): 174-8 (2006).
Illumina Nextera Enrichment Sample Preparation Guide. Feb. 2013.
Illumina TruSeq Custom Enrichment Kit Data Sheet. (c) 2014.
Imburgio et al., “Studies of promoter recognition and start site selection by T7 RNA polymerase using a comprehensive collection of promoter variants,” Biochemistry. 39(34):10419-30 (2000).
Invitrogen Dynal, Product Sheet for “Dynabeads@ M-280 Streptavidin,” (2006) (2 pages).
Ioannidis, N. Manufacturing of agarose-based chromatographic adsorbents with controlled pore and particle sizes. A thesis submitted to The University of Birmingham for the degree of Doctor of Philosophy. 2009.
Ivanova et al., “Droplet Formation in a Thin Layer of a Two-Component Solution under the Thermal Action of Laser Radiation,” Colloid Journal. 69(6): 735-740 (2007).
Jeffries et al., “Controlled Shrinkage and Re-expansion of a Single Aqueous Droplet inside an Optical Vortex Trap,” J Phys Chem B. 111(11): 2806-2812 (2007).
Jeffries et al., “Dynamic modulation of chemical concentration in an aqueous droplet,” Angew Chem Int Ed Engl. 46(8): 1326-1328 (2007).
Jena et al., “Cyclic olefin copolymer based microfluidic devices for biochip applications: Ultraviolet surface grafting using 2-methacryloyloxyethyl phosphorylcholine,” Biomicrofluidics. 6(1): 12822-1282212 (2012).
Joanicot et al., “Droplet Control For Microfluidics,” Science. 309:887-888 (2005).
Johnson, “Rapid microfluidic mixing,” Analytical Chemistry. 74(1): 45-51 (2002).
Joneja et al., “Linear nicking endonuclease-mediated strand-displacement DNA amplification,” Anal Biochem. 414(1):58-69 (2011).
JPK “Determining the elastic modulus of biological samples using atomic force microscopy” (https://www.jpk.com/app-technotes-img/AFM/pdf/jpk-app-elastic-modulus.14-1.pdf) 2009, pp. 1-9 (Year: 2009).
Jung et al., “Micro machining of injection mold inserts for fluidic channel of polymeric biochips,” Sensors. 7(8): 1643-1654 (2007).
Kamperman et al., “Centering Single Cells in Microgels via Delayed Crosslinking Supports Long-Term 3D Culture by Preventing Cell Escape,” Small. 13(22) (2017).
Kaper et al., “Supporting Information for Whole-genome haplotyping by dilution, amplification, and sequencing,” Proc Natl Acad Sci U S A. 110(14):5552-7 (2013).
Kaper et al., “Whole-genome haplotyping by dilution, amplification, and sequencing,” Proc Natl Acad Sci U S A. 110(14):5552-7 (2013).
Karmakar et al., “Organocatalytic removal of formaldehyde adducts from RNA and DNA bases,” Nat Chem. 7(9):752-8 (2015).
Katsura et al., “Indirect micromanipulation of single molecules in water-in-oil emulsion,” Electrophoresis. 22(2): 289-93 (2001).
Kawari et al., “Mass-Production System of Nearly Monodisperse Diameter Gel Particles Using Droplets Formation in a Microchannel,” Micro Total Analysis Systems. 1:368-370 (2002).
Kebschull et al., “High-Throughput Mapping of Single-Neuron Projections by Sequencing of Barcoded RNA,” Neuron. 91(5):975-87 (2016).
Kenis et al., “Microfabrication Inside Capillaries Using Multiphase Laminar Flow Patterning,” Science. 285: 83-85 (1999).
Khomiakova et al., “Analysis of perfect and mismatched DNA duplexes by a generic hexanucleotide microchip,” Mol Biol (Mosk). 37(4): 726-41 (2003) (Abstract only).
Kim et al., “Albumin loaded microsphere of amphiphilic poly( ethylene glycol)/poly(a-ester) multiblock copolymer,” Eu J Pharm Sci. 23: 245-51 (2004).
Kim et al., “Fabrication of monodisperse gel shells and functional microgels in microfluidic devices,” Angew Chem Int Ed Engl. 46(11): 1819-22 (2007).
Kim et al., “Rapid prototyping of microfluidic systems using a PDMS/polymer tape composite,” Lab Chip. 9(9): 1290-3 (2009).
Kirkness et al., “Sequencing of isolated sperm cells for direct haplotyping of a human genome,” Genome Res. 23:826-83 (2013).
Kitzman et al., “Haplotype-resolved genome sequencing of a Gujarati Indian individual.” Nat Biotechnol. 29:59-63 (2011).
Kitzman et al., “Noninvasive whole-genome sequencing of a human fetus,” Sci Transl Med. 4(137):137ra76 (2016).
Kivioja et al., “Counting absolute Nos. of molecules using unique molecular identifiers,” Nat Methods. 9(1):72-4 (2011).
Klein et al., “Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells,” Cell. 161(5): 1187-201 (2015).
Knapp et al., “Generating barcoded libraries for multiplex high-throughput sequencing,” Methods Mol Biol. 840:155-70 (2012).
Knight et al., “Subtle chromosomal rearrangements in children with unexplained mental retardation,” Lancet. 354(9191):1676-81 (1999).
Kobayashi et al., “Straight-Through Microchannel Devices For Generating Monodisperse Emulsion Droplets Several Microns In Size,” Microfluid Nanofluid. 4: 167-177 (2008).
Kobayashi et al., “Effect of slot aspect ratio on droplet formation from silicon straight-through microchannels,” J Colloid Interface Sci. 279(1): 277-80 (2004).
Kohler et al., “Nanoliter Segment Formation in Micro Fluid Devices For Chemical and Biological Micro Serial Flow Processes in Dependence on Flow Rate and Viscosity,” Sensors and Actuators A. 119: 19-27 (2005).
Kolodeziejczyk et al., “The technology and biology of single-cell RNA sequencing,” Molecular Cell. 58(4): 610-20 (2015).
Korlach et al., “Methods in Enzymology, Real-Time DNA Sequencing from Single Polymerase Molecules,” 472:431-455 (2010).
Koster et al., “Drop-based microfluidic devices for encapsulation of single cells,” Lab Chip. 8(7): 1110-1115 (2008).
Kozarewa et al., “96-plex molecular barcoding for the Illumina Genome Analyzer,” Methods Mol Biol. 733:279-98 (2011).
Kozarewa et al., “Amplification-free Illumina sequencing-library preparation facilitates improved mapping and assembly of GC-biased genomes,” Nat Methods. 6: 291-5 (2009).
Kutyavin, et al., “Oligonucleotides containing 2-aminoadenine and 2-thiothymine act as selectively binding complementary agents,” Biochemistry. 35(34):11170-6 (1996).
Kwok et al., “Single-molecule analysis for molecular haplotyping,” Hum Mutat. 23:442-6 (2004).
Lagally et al., “Single-Molecular DNA Amplification and Analysis in an Integrated Microfluidic Device,” Anal Chem. 73(3): 565-70 (2001).
Lagus et al., “A review of the theory, methods and recent applications of high-throughput single-cell droplet microfluidics,” J Phys D Appl Phys. 46:114005 (2013) (21 pages).
Lai et al., “Characterization and Use of Laser-Based Lysis for Cell Analysis on-Chip,” Journal of the Royal Society. 5(2): S113-S121(2008).
Laird et al., “Hairpin-bisulfite PCR: Assessing epigenetic methylation patterns on complementary strands of individual DNA molecules,” PNAS. 101, 204-209 (2004).
Lake et al., “Integrative Single-Cell Analysis By Transcriptional And Epigenetic States in Human Adult Brain,” Apr. 19, 2017. doi: https://doi.org/10.1101/128520.
Lan et al. “Single-cell genome sequencing at ultra-high-throughput with microfluidic droplet barcoding” Nat Biotechnol. 35(7):640-646(2017).
Lander et al., “Initial sequencing and analysis of the human genome,” Nature. 409: 860-921 (2001).
Lasken et al., “Archaebacterial DNA Polymerases Tightly Bind Uracil-containing Dna,” J Biol Chem. 271(30):17692-17696 (1996).
Laulicht et al., “Evaluation of continuous flow nanosphere formation by controlled microfluidic transport,” Langmuir. 24(17): 9717-26 (2008).
Lebedev et al,. “Hot Start PCR with heat-activatable primers: a novel approach for improved PCR performance,” NAR. 36(20):E131-1 (2008).
Lee et al., “Alginate: Properties and biomedical applications,” Prog Polym Sci. 37(1):106-126 (2012).
Lee et al., “A tunable microflow focusing device utilizing controllable moving walls and its applications for formation of micro-droplets in liquids,” J Micromech Microeng. 17: 1121-1129 (2007).
Lee et al., “Double emulsion-templated nanoparticle colloidosomes with selective permeability,” Adv Mater. 20: 3498-503 (2008).
Lee et al., “ACT-PRESTO: Rapid and consistent tissue clearing and labeling method for 3-dimensional (3D) imaging,” Sci Rep. 6:18631 (2016).
Lee et al., “Highly multiplexed subcellular RNA sequencing in situ,” Science. 343(6177): 1360-3 (2014).
Lee et al., “Microfluidic air-liquid cavity acoustic transducers for on-chip integration of sample preparation and sample detection,” JALA. 15(6): 449-454 (2010).
Lee et al., “Fluorescent in situ sequencing (FISSEQ) of RNA for gene expression profiling in intact cells and tissues,” Nature Protocols. 10(3):442-458 (2015).
Lennon et al., “A scalable, fully automated process for construction of sequence-ready barcoded libraries for 454,” Genome Biol. 11(2):R15 (2010).
Li et al., “A single-cell-based platform for copy No. variation profiling through digital counting of amplified genomic DNA fragments,” ACS Appl Mater Interfaces. doi: 10.1021/acsami.7b03146 (2017).
Li et al., “Step-emulsification in a microfluidic device,” Lab Chip. 15(4): 1023-31 (2015).
Li et al., “PEGylated PLGA Nanoparticles as protein carriers: synthesis, preparation and biodistribution in rats,” Journal of Controlled Release. 71: 203-211 (2001).
Lienemann et al., “Single cell-laden protease-sensitive microniches for long-term culture in 3,”. Lab Chip. 17(4):727-737(2017).
Linch et al., “Bone marrow processing and cryopreservation,” Journal of Clinical Pathology. 35(2): 186-190 (1982).
Liu et al., “Droplet-based synthetic method using microflow focusing and droplet fusion,” Microfluid Nanofluid. 3: 239-24 (2007).
Liu et al., “Dynamics of coalescence of plugs with a hydrophilic wetting layer induced by flow in a microfluidic chemistrode,” Langmuir. 25(5): 2854-9 (2009).
Liu et al., “Droplet formation in a T-shaped microfluidic junction,” Journal of Applied Physics. 106: 034906 (2009).
Liu et al., “Preparation of uniform-sized PLA microcapsules by combining Shirasu porous glass membrane emulsification technique and multiple emulsion-solvent evaporation method,” J Control Release. 103(1): 31-43 (2005).
Liu et al., “Smart thermo-triggered squirting capsules for Nanoparticle delivery,” Soft Matter. 6(16): 3759-3763 (2010).
Lo et al., “On the design of clone-based haplotyping,” Genome Biol. 14(9):R100 (2013).
Lorenceau et al., “Generation of Polymerosomes from Double-Emulsions,” Langmuir. 21: 9183-9186 (2005).
Loscertales et al., “Micro/Nano Encapsulation via Electrified Coaxial Liquid Jets,” Science. 295: 1695-1698 (2002).
Love, “A microengraving method for rapid selection of single cells producing antigen-specific antibodies,” Nature Biotech. 24(6): 703 (2006).
Lowe, Adam James, Thesis: “Norbornenes and [n]polynorbornanes as molecular scaffolds for anion recognition,” Doctor of Philosophy, Deakin University, 2010 (361 pages).
Lundin et al., “Hierarchical molecular tagging to resolve long continuous sequences by massively parallel sequencing,” Sci Rep. 3:1186 (2003).
Lupski et al., “Genomic rearrangements and sporadic disease,” Nat Genet. 39(7 Suppl):S43-7 (2007).
Maan et al., “Spontaneous droplet formation techniques for monodisperse emulsions preparation—Perspectives for food applications,” Journal of Food Engineering. 107(3-4): 334-346 (2011).
Macaulay et al., “Single-Cell Multiomics: Multiple Measurements from Single Cells,” available in PMS Dec. 18, 2017, published in final edited form as: Trends in Genetics. 33(2): 155-168 (2017).
Macaulay et al., “G&T-seq: parallel sequencing of single-cell genomes and transcriptomes,” Nature Methods. p. 1-7 (2005).
Macosko et al., “Highly Parallel Genome-wide Expression Profiling of Individual Cells Using Nanoliter Droplets,” Cell. 161(5): 1202-14 (2015).
Mair et al., “Injection molded microfluidic chips featuring integrated interconnects,” Lab Chip. 6(10): 1346-54 (2006).
Makino et al., “Preparation of hydrogel microcapsules: Effects of preparation conditions upon membrane properties,” Colloids and Surfaces B: Biointerfaces. 12(2): 97-104 (1998).
Malic et al., “Integration and detection of biochemical assays in digital microfluidic LOC devices,” Lab Chip. 10: 418-431 (2010).
Malsch et al., “μPIV-Analysis of Taylor flow in micro channels,” Chemical Engineering Journal. 135S: S166-S172 (2008).
Man, Piu Francis, Thesis: “Monolithic Structures for Integrated Microfluidic Analysis,” Doctor of Philosophy in Electrical Engineering, University of Michigan, 2001 (145 pages).
Marcus, “Gene method offers diagnostic hope,” The Wall Street Journal, <https://www.wsj.com/articles/SB10001424052702303644004577520851224339844>, dated Jul. 11, 2012.
Maricic et al., “Optimization of 454 sequencing library preparation from small amounts of DNA permits sequence determination of both DNA strands,” Biotechniques. 46(1):51-2, 54-7 (2009).
Mason et al., “Shear Rupturing of Droplets in Complex Fluids,” Langmuir. 13(17):4600-4613 (1997).
Matochko et al., “Uniform amplification of phage display libraries in monodisperse emulsions,” Methods. 58(1): 18-27 (2012).
Mazutis et al., “Droplet-Based Microfluidic Systems for High-Throughput Single DNA Molecule Isothermal Amplification and Analysis,” Anal Chem. 81(12): 4813-4821 (2009).
Mazutis et al., “Selective droplet coalescence using microfluidic systems,” Lab Chip. 12(10): 1800-6 (2012).
Mazutis et al., “Preparation of monodisperse emulsions by hydrodynamic size fractionation,” Appl Phys Lett. 95: 204103 (2009).
Mcginnis et al., “MULTI-seq: Scalable sample multiplexing for single-cell RNA sequencing using lipid-tagged indices,” bioRxiv 387241; doi: https://doi.org/10.1101/387241.
Meier et al., “Plug-Based Microfluidics with Defined Surface Chemistry to Miniaturize and control aggregation of amyloidogenic peptides,” Angew Chem Ed Engl. 48(8): 1487-1489 (2009).
Merriman et al., “Progress in ion torrent semiconductor chip based sequencing,” Electrophoresis. 33(23): 3397-417 (2012).
Microfluidic ChipShop, Microfluidic Product Catalogue, dated Feb. 2005.
Microfluidic ChipShop, Microfluidic product catalogue, dated Mar. 2005.
Microfluidic ChipShop, Microfluidic product catalogue, dated Oct. 2009.
Miller et al., “An improved zinc-finger nuclease architecture for highly specific genome editing,” Nat Biotechnol. 25:778-785 (2007).
Miller-Stephenson Chemicals 157 FS Series catalog, www.miller-stephenon.com.
MiRNA (http://www.exiqon.com/what-are-microRNAs) accessed Oct. 19, 2017.
Mirzabekov, “DNA Sequencing by Hybridization—a Megasequencing Method and A Diagnostic Tool?” Trends in Biotechnology. 12(1): 27-32 (1994).
Moore et al., “Behavior of capillary valves in centrifugal microfluidic devices prepared by three-dimensional printing,” Microfluidics and Nanofluidics. 10(4):877-888 (2011).
Morgan et al., “Chapter 12: Human microbiome analysis,” PLoS Comput Biol. 8(12):e1002808 (2012).
Morimoto et al., “Monodisperse semi-permeable microcapsules for continuous observation of cells,” Lab Chip 9(15):2217-2223 (2009).
Morton, “Parameters of the human genome,” Proc Natl Acad Sci U S A. 88(17):7474-6 (1991).
Mouritzen et al., “Single nucleotide polymorphism genotyping using locked nucleic acid (LNa),” Expert Rev Mol Diagn. 3(1): 27-38 (2003).
Mozhanova, A.A. et al. “Local elastic properties of biological materials studied by SFM” (2003) XP055314108, Retrieved from the Internet: URL:http://www.ntmdt.com/data/media/files/publications/2003/08.08_a.a.mozhanova_n.i.n_english.pdf.
Muotri et al., “L1 retrotransposition in neurons is modulated by MeCP2,” Nature. 468(7322):443-6 (2010).
Myllykangas et al., “Targeted Sequencing Library Preparation By Genomic DNA Circularization,” BMC Biotechnology. 11(122), 1-12 (2011).
Nagano et al., “Single-cell Hi-C reveals cell-to-cell variability in chromosome structure,” Nature. 502(7469):59-64 (2013).
Nagashima et al., “Preparation of monodisperse poly (acrylamide-co-acrylic acid) hydrogel microspheres by a membrane emulsification technique and their size-dependent surface properties,” Colloids and Surfaces B: Biointerfaces. 11(1-2): 47-56 (1998).
Narayanan et al., “Determination of agarose gel pore size: Absorbance measurements vis a vis other techniques,” Journal of Physics: Conference Series 28. 83-86 (2006).
National Human Genome Research Institute (NHGRI), “The Human Genome Project Completion: Frequently Asked Questions,” retrieved from <https://www.genome.gov/11006943/human-genome-project-completion-frequently-asked-questions/> on May 10, 2018, last updated Oct. 30, 2010 (8 pages).
Navin, “The first five years of single-cell cancer genomics and beyond,” Genome Res. 25(10):1499-507 (2015).
Nguyen et al., “In situ hybridization to chromosomes stabilized in gel microdrops,” Cytometry. 21(2):111-9 (1995).
Nisisako et al., “Novel microreactors for functional polymer beads,” Chem Eng J. 101(1-3):23-9 (2004).
Nisisako et al., “Synthesis of Monodisperse Bicolored Janus Particles with Electrical Anisotropy Using a Microfluidic Co-Flow System,” Adv Mater. 18(9):1152-6 (2006).
Nisisako et al., “Droplet formation in a microchannel network,” Lab Chip. 2(1):24-6 (2002).
Nisisako et al., “Droplet Formation in a Microchannel on PMMA Plate,” Micro Total Analysis Systems 2001. J.M. Ramsey and A. van den Berg, 137-138 (2001).
Nisisako et al., “Microfluidic large-scale integration on a chip for mass production of monodisperse droplets and particles,” Lab Chip. 8(2):287-293 (2008).
Niu et al., “Droplet-based compartmentalization of chemically separated components in two-dimensional separations,” Chem Commun (Camb). (41):6159-61 (2009).
Niu et al., “A hybrid microfluidic chip for digital electro-coalescence of droplets, ” Thirteenth International Conference on Miniaturized Systems for Chemistry and Life Sciences, Nov. 1-5, Jeju, Korea. pp. 94-96 (2009).
Novak et al., “Single cell multiplex gene detection and sequencing using microfluidically-generated agarose emulsions,” available in PMC Jan. 10, 2012, published in final edited form as: Angew Chem Int Ed Engl. 50(2):390-5 (2011) (10 pages).
Oberholzer et al., “Polymerase chain reaction in liposomes,” Chem Biol. 2(10):677-82 (1995).
Ogawa et al., “Production and characterization of O/W emulsions containing cationic droplets stabilized by lecithin-chitosan membranes,” J Agric Food Chem. 51(9):2806-12 (2003).
Okushima et al., “Controlled Production of Monodisperse Double Emulsions by Two-Step Droplet Breakup in Microfluidic Devices,” Langmuir. 20(23):9905-8 (2004).
Oligotex Handbook. For purification of poly A+ RNA from total RNA and directly from cultured cells or tissues as well as purification of polyadenylated in vitro transcripts. Jun. 2012.
Ong et al., “Experimental and computational analysis of droplet formation in a high-performance flow-focusing geometry,” Sensors and Actuators A: Physical. 138(1):203-12 (2007).
Orakdogen et al., “Novel responsive poly(N,N-dimethylaminoethyl methacrylate) gel beads: preparation, mechanical properties and pH-dependent swelling behavior,” J Polym Res. 19:9914 (2012).
Oyola et al., “Optimizing Illumina next-generation sequencing library preparation for extremely AT-biased genomes,” BMC Genomics. 13:1 (2012).
Pantel et al., “Detection methods of circulating tumor cells,” J Thorac Dis. 4(5):446-7 (2012).
Park et al., “ChIP-seq: advantages and challenges of a maturing technology,” Nature Reviews Genetics. 10: 669-680 (2009).
Patel et al., “Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma,” Science. 344(6190):1396-401 (2014).
Perez et al., “Poly(lactic acid)-poly(ethylene glycol) nanoparticles as new carriers for the delivery of plasmid Dna,” J Control Release. 75(1-2):211-24 (2001).
Perrott, Jimmy, Thesis: “Optimization and Improvement of Emulsion PCR for the lon Torrent Next-Generation Sequencing Platform,” Bachelor of Science in Bioengineering, University of California, Santa Cruz, 2011 (25 pages).
Perroud et al., “Isotropically etched radial micropore for cell concentration, immobilization, and picodroplet generation,” Lab Chip. 9(4):507-15 (2009).
Peters et al., “Accurate whole-genome sequencing and haplotyping from 10 to 20 human cells,” Nature. 487(7406):190-5 (2012).
Picot et al., “A biomimetic microfluidic chip to study the circulation and mechanical retention of red blood cells in the spleen” Am J Hematology. 90(4):339-345 (2015).
Pinto et al., “Functional impact of global rare copy number variation in autism spectrum disorders,” Nature. 466(7304):368-72 (2015).
Plunkett et al., “Chymotrypsin responsive hydrogel: application of a disulfide exchange protocol for the preparation of methacrylamide containing peptides,” Biomacromolecules. 6(2):632-7 (2005).
Porteus et al., “Chimeric nucleases stimulate gene targeting in human cells,” Science. 300(5620):763 (2003).
Pott et al., “Single-cell ATAC-seq: strength in numbers,” Genome Biol. 16(1):172 (2015).
Preissl, et al. Single nucleus analysis of the chromatin landscape in mouse forebrain development. Posted Jul. 4, 2017. bioRxiv 159137; doi: https://doi.org/10.1101/159137.
Qiagen, “Omniscript® Reverse Transcription Handbook,” Oct. 2010 (32 pages).
Rakszewska, A. et al. “One drop at a time: toward droplet microfluidics as a versatile tool for single-cell analysis” NPG Asia Materials (2014) 6(10):e133 (12 pages).
Ram et al., “Strategy for microbiome analysis using 16S rRNA gene sequence analysis on the Illumina sequencing platform,” Syst Biol Reprod Med. 57(3):162-70 (2011).
Ramsey, “The burgeoning power of the shrinking laboratory” Nat Biotechnol. 17(11):1061-2 (1999).
Ramskold et al., “Full-length mRNA-Seq from single-cell levels of RNA and individual circulating tumor cells” Nat Biotechnol. 30(8):777-782 (2012).
Ran et al., “Genome engineering using the CRISPR-Cas9 system,” available in PMC Mar. 30, 2014, published in final edited form as: Nat Protoc. 8(11):2281-2308 (2013) (49 pages).
Reis et al., “CRISPR/Cas9 and Targeted Genome Editing: A New Era in Molecular Biology,” XP002766825: URL:https://ww.neb.com/tools-and-resources/feabture-articles/crispr- cas9-and-targeted-genome-editing-a-new-era-in-molecular-biology (2014).
Reisner et al., “Single-molecule denaturation mapping of DNA in nanofluidic channels,” Proc Natl Acad Sci U S.A., 107: 13294-9,(2010).
Repp et al., “Genotyping by Multiplex Polymerase Chain Reaction for Detection of Endemic Hepatitis B Virus Transmission” J Clinical Microbiology. 31:1095-1102 (1993).
Richardson et al., “Novel inhibition of archaeal family-D DNA polymerase by uracil,” Nucleic Acids Res. 41(7):4207-18 (2013).
Roche, “Using Multiplex Identifier (MID) Adaptors for the GS FLX Titanium Chemistry Basic MID Set Genome Sequencer FLX System,” Technical Bulletin 004-2009, <http://454.com/downloads/my454/documentation/technical-bulletins/TCB-09004 UsingMultiplexIdentifierAdaptorsForTheGSFLXTitaniumSeriesChemistry-BasicMIDSet.pdf>, dated Apr. 1, 2009 (7 pages).
Roche, “Using Multiplex Identifier (MID) Adaptors for the GS FLX Titanium Chemistry Extended MID Set Genome Sequencer FLX System,” Technical Bulletin 005-2009, <http://454.com/downloads/my454/documentation/technical-bulletins/TCB-09005UsingMultiplexIdentifierAdaptorsForTheGSFLXTitaniumChemistry-ExtendedMIDSet.pdf>, dated Apr. 1, 2009 (7 pages).
Rodrigue et al., “Whole genome amplification and de novo assembly of single bacterial cells,” PLoS One. 4(9):e6864 (2009).
Rogozin et al., “A highly conserved family of inactivated archaeal B family DNA polymerases,” Biol Direct. 3:32 (2008).
Ropers, “New perspectives for the elucidation of genetic disorders,” Am J Hum Genet. 81(2):199-207 (2007).
Rotem et al., “High-Throughput Single-Cell Labeling (Hi-SCL) for RNA-Seq Using Drop-Based Microfluidics,” PLoS One. 10(5):e0116328 (2015).
Rotem et al., “Single Cell Chip-Seq Using Drop-Based Microfluidics,” Frontiers of Single Cell Analysis, September 5-7, Stanford University. Abstract #50 (2013).
Rotem et al., “Single-cell ChIP-seq reveals cell subpopulations defined by chromatin state,” Nat Biotechnol. 33(11):1165-72 (2015).
Ryan et al., “Rapid assay for mycobacterial growth and antibiotic susceptibility using gel microdrop and encapsulation,” J Clin Microbiol. 33(7):1720-6 (1995).
Sahin et al., “Microfluidic EDGE emulsification: the importance of interface interactions on droplet formation and pressure stability,” Sci Rep. 6:26407 (2016).
Sakaguchi et al., “Cautionary Note on the Use of dUMP-Containing PCR Primers with Pfu and VentR®,” BioTechniques. 21(3): 369-370 (1996).
Sander et al., “Selection-free zinc-finger-nuclease engineering by context-dependent assembly (CoDA),” Nat Methods. 8(1):67-9 (2011).
Savva et al., “The structural basis of specific base-excision repair by uracil-DNA glycosylase,” Nature. 373(6514):487-93 (1995).
Schirinzi et al., “Combinatorial sequencing-by-hybridization: Analysis of the NF1 gene,” Genet Test. 10(1):8-17 (2006).
Schmeider et al., “Fast identification and removal of sequence contamination from genomic and metagenomic datasets,” PLoS One. 6(3):e17288 (2011).
Schmitt et al., “Bead-based multiplex genotyping of human papillomaviruses,” J Clin Microbiol. 44(2):504-12 (2006).
Schubert et al., “Microemulsifying fluorinated oils with mixtures of fluorinated and hydrogenated surfactants,” Colloids and Surfaces A: Physicochemical and Engineering Aspects. 84(1):97-106 (1994).
Schwartz et al., “Capturing native long-range contiguity by in situ library construction and optical sequencing,” Proc Natl Acad Sci U S A. 109(46):18749-54 (2012).
Sebat et al., “Strong association of de novo copy number mutations with autism,” Science. 316(5823):445-9 (2007).
Seiffert et al., “Microfluidic fabrication of smart microgels from macromolecular precursors,” Polymer. 51(25):5883-9 (2010).
Seiffert et al., “Smart microgel capsules from macromolecular precursors,” J Am Chem Soc. 132(18):6606-9 (2010).
Sessoms et al., “Droplet motion in microfluidic networks: Hydrodynamic interactions and pressure-drop measurements,” Phys Rev E Stat Nonlin Soft Matter Phys. 80(1 Pt 2):016317 (2009).
Shah et al., “Fabrication of monodisperse thermosensitive microgels and gel capsules in microfluidic devices,” Soft Matter. 4(12):2303-9 (2008).
Shahi et al., “Abseq: Ultrahigh-throughput single cell protein profiling with droplet microfluidic barcoding,” Sci Rep. 7:44447 (2017).
Shaikh et al., “A modular microfluidic architecture for integrated biochemical analysis,” Proc Natl Acad Sci U S A. 102(28):9745-9750 (2005).
Shimkus et al., “A chemically cleavable biotinylated nucleotide: usefulness in the recovery of protein-DNA complexes from avidin affinity columns,” Proc Natl Acad Sci U S A. 82(9):2593-7 (1985).
Shlien et al., “Copy number variations and cancer,” Genome Med. 1(6):62 (2009).
Shlien et al., “Excessive genomic DNA copy number variation in the Li-Fraumeni cancer predisposition syndrome,” Proc Natl Acad Sci U S A. 105(32):11264-9 (2008).
Shuttleworth et al., “Recognition of the pro-mutagenic base uracil by family B DNA polymerases from archaea,” J Mol Biol. 337(3):621-34 (2004).
“Streptavidin-agarose (S1638) product information sheet,” Sigma, <www.sigma-aldrich.com>.
Simeonov et al., “Single nucleotide polymorphism genotyping using short, fluorescently labeled locked nucleic acid (LNA) probes and fluorescence polarization detection,” Nucleic Acids Res. 30(17):e91 (2002).
Simon et al., “Using formaldehyde-assisted isolation of regulatory elements (FAIRE) to isolate active regulatory DNA,” Nat Protoc. 7(2):256-67 (2012).
Skerra, “Phosphorothioate primers improve the amplification of DNA sequences by DNA polymerases with proofreading activity,” Nucleic Acids Res. 20(14):3551-4 (1992).
Smith et al., “Highly-multiplexed barcode sequencing: an efficient method for parallel analysis of pooled samples,” Nucleic Acids Res. 38(13):e142 (2010).
Song et al., “Reactions in droplets in microfluidic channels,” Angew Chem Int Ed Engl. 45(44):7336-56 (2006).
Song et al., “DNase-seq: A High-Resolution Technique for Mapping Active Gene Regulatory Elements across the Genome from Mammalian Cells,” Cold Spring Harb Protoc. 2 (2010) (13 pages).
Sorokin et al., “Discrimination between perfect and mismatched duplexes with oligonucleotide gel microchips: role of thermodynamic and kinetic effects during hybridization,” J Biomol Struct Dyn. 22(6):725-34 (2005).
“Spormann Laboratory, Polymerase Chain Reaction (PCR),” Alfred Spormann Laboratory. 1-3 (2009).
Srisa-Art et al., “High-throughput DNA droplet assays using picoliter reactor volumes,” Anal Chem. 79(17):6682-9 (2007).
Stoeckius et al., “Large-scale simultaneous measurement of epitopes and transcriptomes in single cells,” available in PMC Jan. 31, 2018, published in final edited form as: Nat Methods. 14(9):865-868 (2017).
Stoeckius et al., “Simultaneous epitope and transcriptome measurement in single cells,” Nat Methods. 14: 865-868 (2017) (Supplemental Materials).
Su et al., “Microfluidics-Based Biochips: Technology Issues, Implementation Platforms, and Design—Automation Challenges,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. 25(2):211-23 (2006).
Sun et al., “Progress in research and application of liquid-phase chip technology,” Chin J Exp Surg. 22(5):639-40 (2005) (7 pages).
Susaki et al., “Whole-brain imaging with single-cell resolution using chemical cocktails and computational analysis,” Cell. 157(3):726-39 (2014).
Syed et al., “Next-generation sequencing library preparation: simultaneous fragmentation and tagging using in vitro transposition,” Nat Methods. 6: i-ii (2009).
Tawfik et al., “Man-made cell-like compartments for molecular evolution,” Nat Biotechnol. 16(7):652-6 (1998).
Tayyab et al., “Size exclusion chromatography and size exclusion HPLC of proteins,” Biochem Ed, Pergamon. 19(3):149-152 (1991).
Tetradis-Meris et al., “Novel parallel integration of microfluidic device network for emulsion formation,” Ind Eng Chem Res. 48(19):8881-9 (2009).
Tewhey et al., “Supplementary Materials,” Nature Biotechnology. 27(11): 1-22 (2009).
Tewhey et al., “Microdroplet-based PCR amplification for large-scale targeted sequencing,” available in PMC May 1, 2010, published in final edited form as: Nat Biotechnol. 27(11):1025-31 (2009) (22 pages).
Theberge et al., “Microdroplets in microfluidics: an evolving platform for discoveries in chemistry and biology,” Angew Chem Int Ed Engl. 49(34):5846-68 (2010).
“Protocols, M-270 Streptavidin,” ThermoFisherScientific. (2007) (5 pages).
Thorsen et al., “Dynamic pattern formation in a vesicle-generating microfluidic device,” Phys Rev Lett. 86(18):4163-4166 (2001).
Tomer et al., “Advanced CLARITY for rapid and high-resolution imaging of intact tissues,” Nat Protoc. 9(7):1682-97 (2014).
Tonelli et al., “Perfluoropolyether functional oligomers: unusual reactivity in organic chemistry” Journal of Fluorine Chemistry. 118(1-2):107-21 (2002).
Tubeleviciute et al., “Compartmentalized self-replication (CSR) selection of Thermococcus litoralis Sh1B DNA polymerase for diminished uracil binding,” Protein Eng Des Sel. 23(8):589-97 (2010).
Turner et al., “High-throughput haplotype determination over long distances by haplotype fusion PCR and ligation haplotyping,” Nat Protoc. 4(12):1771-83 (2009).
Turner et al., “Assaying chromosomal inversions by single-molecule haplotyping,” Nat Methods. 3(6):439-45 (2006).
Turner et al., “Methods for genomic partitioning,” Annu Rev Genomics Hum Genet. 10:263-84 (2009).
Umbanhowar et al., “Monodisperse Emulsion Generation via Drop Break Off in a Coflowing Stream,” Langmuir. 16(2):347-51 (2000).
Ushijima et al., “Detection and interpretation of altered methylation patterns in cancer cells,” Nat Rev Cancer. 5: 223-231 (2005).
Van Dijke et al., “Effect of viscosities of dispersed and continuous phases in microchannel oil-in-water emulsification,” Microfluid Nanofluid. 9:77-85 (2010).
Van Nieuwerburgh et al., “Illumina mate-paired DNA sequencing-library preparation using Cre-Lox recombination,” Nucleic Acids Res. 40(3): e24 (2012).
Wagner et al., “Biocompatible fluorinated polyglycerols for droplet microfluidics as an alternative to PEG-based copolymer surfactants,” Lab Chip. 16(1):65-9 (2016).
Wang et al., “Self-Formed Adaptor PCR: a Simple and Efficient Method for Chromosome Walking,” Appl Environ Microbiol. 73(15):5048-51 (2007).
Wang et al., “Single nucleotide polymorphism discrimination assisted by improved base stacking hybridization using oligonucleotide microarrays,” Biotechniques. 35(2):300-8 (2003).
Wang et al., “A novel thermo-induced self-bursting microcapsule with magnetic-targeting property,” Chemphyschem. 10(14):2405-9 (2009).
Wang et al., “Digital karyotyping,” Proc Natl Acad Sci U S A. 99(25):16156-61 (2002).
Ward et al., “Microfluidic flow focusing: drop size and scaling in pressure versus flow-rate-driven pumping,” Electrophoresis. 26(19):3716-24 (2005).
Weaver, “Rapid clonal growth measurements at the single-cell level: gel microdroplets and flow cytometry,” Biotechnology (N Y). 9(9):873-877 (1991).
Weigl et al., “Microfluidic Diffusion-Based Separation and Detection,” Science. 283(5400):346-7 (1999).
Wesolowska et al., “Cost-effective multiplexing before capture allows screening of 25 000 clinically relevant SNPs in childhood acute lymphoblastic leukemia, ” Leukemia. 25(6):1001-6 (2011).
Whitesides et al., “Soft lithography in biology and biochemistry,” Annu Rev Biomed Eng. 3:335-73 (2001).
Williams et al., “Amplification of complex gene libraries by emulsion PCR,” Nat Methods. 3(7):545-50 (2006).
Wiseman et al., “Major histocompatibility complex genotyping with massively parallel pyrosequencing,” Nat Med. 15(11):1322-6 (2009).
Wong et al., “Multiplexed Barcoded CRISPR-Cas9 Screening Enabled By CombiGEM,” Proc Natl Acad Sci U S A. 113(9):2544-9 (2016).
Woo et al., “G/C-modified oligodeoxynucleotides with selective complementarity: synthesis and hybridization properties,” Nucleic Acids Res. 24(13):2470-5 (1996).
Wood et al., “Targeted genome editing across species using ZFNs and TALENs,” Science. 333(6040):307 (2011).
Xi et al., “New library construction method for single-cell genomes,” PLoS One. 12(7):e0181163 (2017).
Xia et al., “Soft Lithography,” Ann Rev Mat Sci. 28:153-184 (1998).
Xia et al., “Soft Lithography,” Angew Chem Int Ed Engl. 37(5):550-575 (1998).
Xiao et al., “Determination of haplotypes from single DNA molecules: a method for single-molecule barcoding,” Hum Mutat. 28(9):913-21 (2007).
Yamamoto et al., “Chemical modification of Ce(IV)/EDTA-based artificial restriction DNA cutter for versatile manipulation of double-stranded DNA,” Nucleic Acids Res. 35(7):e53 (2007).
Yan et al., “Rapid one-step construction of hairpin RNA,” Biochem Biophys Res Commun. 383(4):464-8 (2009).
Zeng et al., “High-performance single cell genetic analysis using microfluidic emulsion generator arrays,” Anal Chem. 82(8):3183-90 (2010).
Zentner et al., “Surveying the epigenomic landscape, one base at a time,” Genome Biol. 13(10):250 (2012).
Zhang et al., “Efficient construction of sequence-specific TAL effectors for modulating mammalian transcription,” Nat Biotechnol. 29(2):149-53 (2011).
Zhang et al., “Combinatorial marking of cells and organelles with reconstituted fluorescent proteins,” Cell. 119(1):137-144 (2004).
Zhang et al., “Degradable disulfide core-cross-linked micelles as a drug delivery system prepared from vinyl functionalized nucleosides via the RAFT process,” Biomacromolecules. 9(11):3321-31 (2008).
Zhang et al., “One-step fabrication of supramolecular microcapsules from microfluidic droplets,” Science. 335(6069):690-4 (2012).
Zhang et al., “Reconstruction of DNA sequencing by hybridization,” Bioinformatics. 19(1):14-21 (2003).
Zhang, Michael Yu, Thesis: “Genomics of inherited bone marrow failure and myelodysplasia,” Doctor of Philosophy in Molecular and Cellular Biology, University of Washington, 2015 (142 pages).
Zhao et al., “Preparation of hemoglobin-loaded Nano-sized particles with porous structure as oxygen carriers,” Biomaterials. 28(7):1414-1422 (2007).
Zheng et al., “Massively parallel digital transcriptional profiling of single cells,” Nat Commun. 8:14049 (2017).
Zheng et al., “Haplotyping germline and cancer genomes with high-throughput linked-read sequencing,” Nat Biotechnol. 34(3):303-11 (2016).
Zhou et al., “Development of an enzyme activity screening system for beta-glucosidase-displaying yeasts using calcium alginate micro-beads and flow sorting,” Appl Microbiol Biotechnol. 84: 375-382 (2009).
Zhu et al., “Hydrogel Droplet Microfluidics for High-Throughput Single Molecule/Cell Analysis,” Accounts of Chemical Research. 50(1): 22-31 (2016).
Zhu et al., “Reverse transcriptase template switching: a SMART approach for full-length cDNA library construction,” Biotechniques. 30(4):892-7 (2001).
Zhu et al., “Synthesis and self-assembly of highly incompatible polybutadiene-poly(hexafluoropropylene oxide) diblock copolymers,” J Polymer Sci Part B: Polymer Phys. 43(24):3685-3694 (2005).
Zimmermann et al., “Microscale production of hybridomas by hypo-osmolar electrofusion,” Hum Antibodies Hybridomas. 3(1):14-8 (1992).
Zong et al., “Genome-Wide Detection of Single Nucleotide and Copy Number Variations of a Single Human Cell,” Science. 338(6114):1622-1626 (2012).
Related Publications (1)
Number Date Country
20210362157 A1 Nov 2021 US
Provisional Applications (1)
Number Date Country
62335870 May 2016 US
Continuations (2)
Number Date Country
Parent 16180356 Nov 2018 US
Child 17397146 US
Parent PCT/US2017/032520 May 2017 WO
Child 16180356 US