The subject matter described herein relates to tunable coils.
A coil (also referred to as an inductor) is an electronic component. This component may be implemented using an electrical conductor wound one or more times to form a shape of a coil, a spiral, or a helix. As such, when an electric current flows through the windings, the coil may have an inductance value. The inductance value for a coil of wire may be approximated by the following equation:
where
Some inductors may be tunable, and these tunable inductors can be used for tunable filtering, tunable matching, tunable harmonic suppression, tunable oscillators, and the like. Some surface mount device (SMD) tunable coils rely on a mechanical screw to tune the coil. When this is the case, mechanical tuning is commonly performed only once during the assembly, and once tuned, the mechanical tuning may not be easily changed afterwards.
In some example embodiments, there may be provided an apparatus. The apparatus may include a chamber including a first cavity and a second cavity, wherein the chamber further includes a first fluid suspended in a second fluid; a first electrode adjacent to the first cavity; a second electrode adjacent to the second cavity; a third electrode configured to provide a common electrode to the first electrode and the second electrode; and at least one coil adjacent to at least one of the first cavity or the second cavity, wherein an inductance value of the coil is varied by at least applying a driving signal between the common electrode and the first electrode and/or the second electrode.
In some variations, one or more of the features disclosed herein including the following features can optionally be included in any feasible combination The applied driving signal may move the first fluid. The moving may cause a change in a permeability of at least one of a core of the coil or a medium adjacent to the coil. The first electrode may be in contact, directly and/or through a coating, with at least one of the first fluid or the second fluid. The first fluid and/or the second fluid may include one or more particles and/or one or more nanoparticles having a certain permeability. The driving signal may provide a field that affects the move of the first fluid. The field may be produced by the driving signal includes at least one of an electric field, a magnetic field, and/or a combination of the two. The at least one coil may provide at least one of first electrode, the second electrode, and/or the common electrode. The chamber may be arranged at least one of on top, below, inlaid and/or within a substrate, and wherein the coil is arranged at least one of on top, below, inlaid, and/or within the substrate. A plurality of cavities may be arranged into a chain structure and/or a grid structure, wherein at least one coil is arranged adjacent to at least one of the cavities.
The above-noted aspects and features may be implemented in systems, apparatus, methods, and/or articles depending on the desired configuration. The details of one or more variations of the subject matter described herein are set forth in the accompanying drawings and the description below. Features and advantages of the subject matter described herein will be apparent from the description and drawings, and from the claims.
In the drawings,
Like labels are used to refer to same or similar items in the drawings.
The subject matter disclosed herein may, in some example embodiments, relate to a tunable coil in which the inductance is varied by feeding certain amounts of material into a core of the coil and/or its adjacent space/medium. In some example embodiments, a feeding mechanism may provide to the core a small quantity of a material having a certain permeability to change the permeability of the core and/or its adjacent space and thus the inductance of the coil. In some example embodiments, the feeding mechanism may be configured to provide the material into the core based on a microfluidic mechanism, such as electrowetting. In some example embodiments, the microfluidic technique may provide a certain dose or quantity of material, such as a fluid, in a measured and/or controlled way into a cavity serving as a core for a coil. In some example embodiments, the tunable coil may be used in various discrete and/or integrated forms to provide a dynamically tunable system. This kind of tunable system may be utilized in a radio front-end to for example provide a tunable filter or channel selector for the radio.
The subject matter disclosed herein may, in some example embodiments, relate to measuring an amount of a liquid (for example, in liters and the like) that flows between cavities (for example, natural or excited in some way). The amount of liquid in a cavity may be measured indirectly via an inductance measurement or using another kind of sensor, such as a capacitive sensor, a resistive sensor, and/or an optical sensor.
Although some of the examples disclosed herein refer to dosing for a coil, the dosing disclosed herein may be used in other applications, such as medical, microfluidics, semiconductors, chemical, and the like as well. For example, in some example embodiments, the microfluidic technique, such as electrowetting disclosed herein may be used to measure a quantity of a fluid or other type of material being dispensed.
Electrowetting (also referred to herein as microwetting) may refer to using a voltage, electric field, and/or magnetic field to move for example a fluid, such as a droplet. See, for example, “Electrowetting: from basics to applications” F. Mugele and J-C. Baret, Journal of Physics: Condensed Matter, July 2005, vol. 17, pp. R705-774. In some implementations, the conductive electrodes may come into direct contact with the fluid, which may pose issues with electrolysis of the electrodes. To avoid this electrolysis, a coating, such as dielectric layer may be used on top of the electrodes, which may enable much higher voltages (in which case this is usually called electrowetting on dielectric). Moreover, a low surface energy, low hysteresis coating on top of the dielectric (generally a fluoropolymer) may be used as well to enable reversible wetting.
Although
The first fluid 102 and/or second fluid 104 may include one or more particles, such as nanoparticles. The first fluid 102 may be affected by the field generated by contacts 112 and 114. After the droplet 102 is moved to a location, a constant voltage or current may no longer be needed at the contacts 112/114 or common 190 as the state of droplet 102 in its new location is relatively stable. For example, once droplet 102 is moved to a position near contact 114, substantially no energy (for example, voltage and/or current) is need to keep the droplet 102 at a position near contact 114.
In some example embodiments, a coil is provided which can be tuned, so that the inductance changes based on electrowetting. Specifically, one or more of the fluids used in electrowetting may include one or more particulates (or particles) that have a relatively high magnetic permeability (μ). Examples of such materials include ferrite, manganese, zinc, nickel-zinc, iron, nickel, cobalt, permalloy, neodymium, cobalt-iron, and/or any combination thereof. Moreover, these materials should be small in size to avoid sedimentation or settling in solution due to large material density. For example, the material may be in the form of nanoparticles. The particles suspended in the fluid may be composed of magnetic material that is sensitive to the a magnetic field generated by the contacts (or coils) at the desired operating frequencies. In this way, the magnetic field generated by for example the coils may be used to move the fluid/material containing the suspended particles.
As noted, the fluid including the particles having high permeability may be introduced or dosed into a core or medium adjacent to the coil in a controlled way to dynamically vary the permeability of the core or medium adjacent to the coil and thus the inductance of a coil. Accordingly, the coil may be considered a tunable coil, in accordance with some example embodiments.
When a fluid/droplet 220 is driven by a driving signal from the first cavity 205 in to the second cavity 210, the inductance value of coil 250 varies due to the increase in the effective permeability caused by the introduction of the droplet volume 226 into the second cavity 210. The amount of fluid in the droplet volume 226, size of the particle in the droplet, permeability of the particles in the droplet, and other factors may affect the permeability of cavity 210 and thus the inductance. For example, depending on how deep into the core 210 the droplet 220 is driven, the greater is the change of the inductance.
The tunable coil 200 depicted at
The droplet 220 may be composed of a liquid within an immiscible liquid, such as an oil/water mixture containing one or more particles having a relatively high permeability, where the particles can be located in either phase depending upon their surface functionalization. Furthermore, the immiscible liquids may also have the property of large differences in the electrical polarizability (polarity) such that one liquid is more susceptible to a change in surface tension on application of an applied electric field. If polarizable liquid water is used or if a higher temperature range is desired, alternatives such as propylene carbonate, diethylcarbonate, diacetone alcohol, cyclohexanone, butylacetate, propylacetate and ethylhexanol may be used as well. Examples of the non-polarizable liquid may include immiscible oils such as silicone oils, paraffin oils or organic liquids, such as alkanes, aromatic compounds.
Droplet 220 may, as noted, be transferred from the first cavity 205 to the second cavity 210 by applying a driving voltage or pulse(s) across the common 272 and electrodes 273 and/or 274. The drive signal may be for example 15-20 volts direct current (DC) or pulsed DC, although other types and forms of signals and voltage amounts and polarities may be used as well. The current of the drive signal may be in the range of a few milliamps (although other current amounts may be used as well) during the transfer from the first to the second cavity. As noted, about zero (or negligible) current is needed after the droplet 220 containing the particles has been transferred to the second cavity 210 as the droplet may be in a relatively stable state. The typical velocity of the drop may be about 0.1-1 cm/s, although other velocities may be attained as well. In some example embodiments, the inductor coil 250 may be used to create a magnetic field that moves the high permeability liquid between cavities 205 and 210.
The planar spiral coil 305 may be positioned under one or more chamber structures as shown at
Although
Moreover, although
In the example of
In some example embodiments, the inductance value of the coil 305 may be varied by the quantity of stacked chambers and/or fill-ratio/amount (for example, the amount of material moved into the centre of the coil or left-hand side cavity). For example, adding additional layers of chambers may increase the inductance tuning range by introducing more fluid having a certain permeability. Moreover, the type of liquid in the chambers, the type of particles (for example, the permeability of the particle(s)) suspended in the liquid, the dimensions of the particles, and/or the mutual distances of the droplet chambers may affect to the inductance value of the coil 305. In some example embodiments, the particles suspended in the droplet may all need to be nanometer sized, such as 1-1000 nm, to avoid sedimentation and settling out of solution, although other particle sizes may be used as well.
The windings of the coil 87 and droplet 86 are shown via a cross-sectional view and a top view. Generally, as the driving signal is changed in A, B, and C, the permeability of the medium adjacent to the coil 87 is changed and thus the inductance of the coil changes. For example, the voltage between a common electrodes 83 and 83A is changed to vary the permeability of the medium and thus the inductance of the coil. In the example of
In the example of
The inductance of coil 87 may be dynamically tuned by applying a voltage across the electrodes 83-83A of electrowetting cell 81. When no voltage is applied (see C), the oil layer 86 may sit on the hydrophobic dielectric layer. As an increasing voltage is applied, the oil 86 progressively de-wets from the hydrophobic dielectric layer to minimize the contact area as shown in the progression from C at 0 volts to B at 25 volts, to C at 50 volts. This may allow the concentration of ferrite particles sitting above the inductor coil 87 to be controlled. Suitable materials for the hydrophobic dielectric layer having low wetting/dewetting hysteresis include for example flouropolymers, such as CYTOP (Asahi Glass Corp.) or AF1600 solution processed Teflon from Dupont, although other materials may be used as well.
Although the previous example shows three voltages being used, other voltages may be used in order to attain a certain state/concentration of the ferrite particles.
Although the previous example (as well as
System 1200 includes control circuitry 1250 to control a pump 1270 which pumps liquids 1299-1295 into a chamber 1210 and control measurement circuitry 1275. The chamber 1210 may have electrodes 1202 and 1204 placed alongside the chamber in order to measure changes in the chamber as the fluid 1299-1295 is pumped into chamber 1210. The measured changes may be measured by measurement circuitry 1275. In some example embodiments, measurement circuitry 1225 may measure a change that occurs as the fluids 1299-1295 are introduced by pump 1270 into the chamber 1210. This change may be for example a capacitive or an inductive change. The measured value may correspond to a property or an amount of the fluids 1299-1295 being introduced into chamber 1210. The pump 1270 may be controlled by control circuit 1250 to pump (for example, push or suck) a certain amount of liquid into the inductor 1225, so that the right amount of fluids 1299-1295 are pushed into, or sucked from, the capacitor measurement unit 1202-1204.
The apparatus 10 may, in some example embodiments, include at least one antenna 12 in communication with a transmitter 14 and a receiver 16. Alternatively transmit and receive antennas may be separate.
The apparatus 10 may, in some example embodiments, also include a processor 20 configured to provide signals to and receive signals from the transmitter and receiver, respectively, and to control the functioning of the apparatus. Processor 20 may be configured to control the functioning of the transmitter and receiver by effecting control signaling via electrical leads to the transmitter and receiver. Likewise, processor 20 may be configured to control other elements of apparatus 10 by effecting control signaling via electrical leads connecting processor 20 to the other elements, such as a display or a memory. The processor 20 may, for example, be embodied in a variety of ways including circuitry, at least one processing core, one or more microprocessors with accompanying digital signal processor(s), one or more processor(s) without an accompanying digital signal processor, one or more coprocessors, one or more multi-core processors, one or more controllers, processing circuitry, one or more computers, various other processing elements including integrated circuits (for example, an application specific integrated circuit (ASIC), a field programmable gate array (FPGA), and/or the like), or some combination thereof. Accordingly, although illustrated in
Signals sent and received by the processor 20 may include signaling information in accordance with an air interface standard of an applicable cellular system, and/or any number of different wireline or wireless networking techniques, comprising but not limited to Wi-Fi, wireless local access network (WLAN) techniques, such as Institute of Electrical and Electronics Engineers (IEEE) 802.11, 802.16, and/or the like. In addition, these signals may include speech data, user generated data, user requested data, and/or the like.
The apparatus 10 may be capable of operating with one or more air interface standards, communication protocols, modulation types, access types, and/or the like. For example, the apparatus 10 and/or a cellular modem therein may be capable of operating in accordance with various first generation (1G) communication protocols, second generation (2G or 2.5G) communication protocols, third-generation (3G) communication protocols, fourth-generation (4G) communication protocols, Internet Protocol Multimedia Subsystem (IMS) communication protocols (for example, session initiation protocol (SIP) and/or the like. For example, the apparatus 10 may be capable of operating in accordance with 2G wireless communication protocols IS-136, Time Division Multiple Access TDMA, Global System for Mobile communications, GSM, IS-95, Code Division Multiple Access, CDMA, and/or the like. In addition, for example, the apparatus 10 may be capable of operating in accordance with 2.5G wireless communication protocols General Packet Radio Service (GPRS), Enhanced Data GSM Environment (EDGE), and/or the like. Further, for example, the apparatus 10 may be capable of operating in accordance with 3G wireless communication protocols, such as Universal Mobile Telecommunications System (UMTS), Code Division Multiple Access 2000 (CDMA2000), Wideband Code Division Multiple Access (WCDMA), Time Division-Synchronous Code Division Multiple Access (TD-SCDMA), and/or the like. The apparatus 10 may be additionally capable of operating in accordance with 3.9G wireless communication protocols, such as Long Term Evolution (LTE), Evolved Universal Terrestrial Radio Access Network (E-UTRAN), and/or the like. Additionally, for example, the apparatus 10 may be capable of operating in accordance with 4G wireless communication protocols, such as LTE Advanced and/or the like as well as similar wireless communication protocols that may be subsequently developed.
It is understood that the processor 20 may include circuitry for implementing audio/video and logic functions of apparatus 10. For example, the processor 20 may comprise a digital signal processor device, a microprocessor device, an analog-to-digital converter, a digital-to-analog converter, and/or the like. Control and signal processing functions of the apparatus 10 may be allocated between these devices according to their respective capabilities. The processor 20 may additionally comprise an internal voice coder (VC) 20a, an internal data modem (DM) 20b, and/or the like. Further, the processor 20 may include functionality to operate one or more software programs, which may be stored in memory. In general, processor 20 and stored software instructions may be configured to cause apparatus 10 to perform actions. For example, processor 20 may be capable of operating a connectivity program, such as a web browser. The connectivity program may allow the apparatus 10 to transmit and receive web content, such as location-based content, according to a protocol, such as wireless application protocol, WAP, hypertext transfer protocol, HTTP, and/or the like.
Apparatus 10 may also comprise a user interface including, for example, an earphone or speaker 24, a ringer 22, a microphone 26, a display 28, a user input interface, and/or the like, which may be operationally coupled to the processor 20. The display 28 may, as noted above, include a touch sensitive display, where a user may touch and/or gesture to make selections, enter values, and/or the like. The processor 20 may also include user interface circuitry configured to control at least some functions of one or more elements of the user interface, such as the speaker 24, the ringer 22, the microphone 26, the display 28, and/or the like. The processor 20 and/or user interface circuitry comprising the processor 20 may be configured to control one or more functions of one or more elements of the user interface through computer program instructions, for example, software and/or firmware, stored on a memory accessible to the processor 20, for example, volatile memory 40, non-volatile memory 42, and/or the like. The apparatus 10 may include a battery for powering various circuits related to the mobile terminal, for example, a circuit to provide mechanical vibration as a detectable output. The user input interface may comprise devices allowing the apparatus 20 to receive data, such as a keypad 30 (which can be a virtual keyboard presented on display 28 or an externally coupled keyboard) and/or other input devices.
As shown in
The apparatus 10 may comprise memory, such as a subscriber identity module (SIM) 38, a removable user identity module (R-UIM), a eUICC, an UICC, and/or the like, which may store information elements related to a mobile subscriber. In addition to the SIM, the apparatus 10 may include other removable and/or fixed memory. The apparatus 10 may include volatile memory 40 and/or non-volatile memory 42. For example, volatile memory 40 may include Random Access Memory (RAM) including dynamic and/or static RAM, on-chip or off-chip cache memory, and/or the like. Non-volatile memory 42, which may be embedded and/or removable, may include, for example, read-only memory, flash memory, magnetic storage devices, for example, hard disks, floppy disk drives, magnetic tape, optical disc drives and/or media, non-volatile random access memory (NVRAM), and/or the like. Like volatile memory 40, non-volatile memory 42 may include a cache area for temporary storage of data. At least part of the volatile and/or non-volatile memory may be embedded in processor 20. The memories may store one or more software programs, instructions, pieces of information, data, and/or the like which may be used by the apparatus to perform one or more of the operations disclosed herein with respect to the host, accessory device, and/or extension device. The memories may comprise an identifier, such as an international mobile equipment identification (IMEI) code, capable of uniquely identifying apparatus 10. The functions may include one or more of the operations disclosed with respect the tunable inductor disclosed herein. The memories may comprise an identifier, such as an international mobile equipment identification (IMEI) code, capable of uniquely identifying apparatus 10. In the example embodiment, the processor 20 may be configured using computer code stored at memory 40 and/or 42 to perform one or more of the operations disclosed herein with respect to the tunable filter.
Some of the embodiments disclosed herein may be implemented in software, hardware, application logic, or a combination of software, hardware, and application logic. The software, application logic, and/or hardware may reside on memory 40, the control apparatus 20, or electronic components, for example. In some example embodiment, the application logic, software or an instruction set is maintained on any one of various conventional computer-readable media. In the context of this document, a “computer-readable medium” may be any non-transitory media that can contain, store, communicate, propagate or transport the instructions for use by or in connection with an instruction execution system, apparatus, or device, such as a computer or data processor circuitry, with examples depicted at
Without in any way limiting the scope, interpretation, or application of the claims appearing below, a technical effect of one or more of the example embodiments disclosed herein is tunable coils that can be provided in a small form factor and/or that consume negligible power when in a stable state.
If desired, the different functions discussed herein may be performed in a different order and/or concurrently with each other. Furthermore, if desired, one or more of the above-described functions may be optional or may be combined. Although various aspects of some of the embodiments are set out in the independent claims, other aspects of some of the embodiments may comprise other combinations of features from the described embodiments and/or the dependent claims with the features of the independent claims, and not solely the combinations explicitly set out in the claims. It is also noted herein that while the above describes example embodiments, these descriptions should not be viewed in a limiting sense. Rather, there are several variations and modifications that may be made without departing from the scope of the some of the embodiments as defined in the appended claims. Other embodiments may be within the scope of the following claims. The term “based on” includes “based on at least.” The use of the phase “such as” means “such as for example” unless otherwise indicated.
Number | Name | Date | Kind |
---|---|---|---|
7189359 | Yuan et al. | Mar 2007 | B2 |
7454988 | Tan | Nov 2008 | B2 |
7477123 | Beerling | Jan 2009 | B2 |
7735945 | Sliwa, Jr. et al. | Jun 2010 | B1 |
7898096 | Krupenkin | Mar 2011 | B1 |
8045318 | Choi et al. | Oct 2011 | B2 |
8053914 | Krupenkin | Nov 2011 | B1 |
8742649 | Krupenkin | Jun 2014 | B2 |
9024462 | Thramann | May 2015 | B2 |
9203291 | Krupenkin | Dec 2015 | B2 |
20090297406 | Okino | Dec 2009 | A1 |
20120037400 | Fields et al. | Feb 2012 | A1 |
20130138359 | Armstrong et al. | May 2013 | A1 |
20140069783 | Rofougaran | Mar 2014 | A1 |
Number | Date | Country |
---|---|---|
2143948 | Jan 2010 | EP |
2706541 | Mar 2014 | EP |
WO-03026798 | Apr 2003 | WO |
WO-2010042637 | Apr 2010 | WO |
WO-2013041983 | Mar 2013 | WO |
WO-2013053039 | Apr 2013 | WO |
Entry |
---|
Abhari et al., “A Comprehensive Study of Micropumps Technologies,” Table 1, Classification of Micropumps. J. Electrochem. Sci., 7:9767 (2012). |
Blankenbach et al., “Novel highly reflective and bistable electrowetting displays,” J. Soc. Inf. Display 16(2):237-244 (2008). |
Dulger et al., “A 1.3-V 5-mW fully integrated tunable bandpass filter at 2.1 GHz in 0.35-?m CMOS,” IEEE Journal of Solid-State Circuits, 38(6):918-925 (2003). |
“Electrowetting Displays by adt,” copyright 2011. <http://www.adt-gmbh.com/enttechnoloqvtasics-patent-background.html> Last Accessed Mar. 23, 2016. 1 page. |
Hayes et al. “Video-speed electronic paper based on electrowetting” Nature 425:383-385 (2003). |
Lee et al. “Electrowetting and electrowetting-on-dielectric for microscale liquid handling”. Sensors and Actuators A 95, 2002, pp. 259-268. |
Mugele, et al, “Electrowetting: from basics to applications,” Journal of Physics: Condensed Matter 17(28):R705-R774 (2005). |
Ning et al., “A tunable magnetic inductor,” IEEE Transactions on Magnetics 42(5):1585-1590 (2006). |
Rais-Zadeh et al., “An Integrated 800-MHz Coupled-Resonator Tunable Bandpass Filter in Silver With a Constant Bandwidth,” Journal of Microelectromechan., 18(4):942-949 (2009). |
Yue et al. “On-chip spiral inductors with patterened ground shields for Si-based RF ICs,” IEEE Journal of Solid-State Circuits 33(5):743-747 (1998). |
Number | Date | Country | |
---|---|---|---|
20160020017 A1 | Jan 2016 | US |