The present invention is directed to sanitaryware that consumes minimal water volume yet achieves optimal hygiene standards. More particularly, the present invention is directed to a urinal having an oscillating water delivery means that substantially improves sanitation along a urinal wall without increasing water volume. In this configuration, the present invention urinal achieves optimum water conservation in concert with enhanced urinal cleanliness.
The excessive consumption of potable water remains a dilemma for water agencies, commercial building owners, homeowners, residents and sanitaryware manufacturers. An increasing global population has negatively affected the amount and quality of suitable water. Effluents in water supplies and increasing air pollutants have drastically altered fresh water supplies. The propensity for drought in previously fertile geographies has reinforced global concern over responsible water consumption. The drive for optimum water conservation strategies, however, typically yields to the overriding need to sustain a healthy population through the enactment and enforcement of plumbing codes and the installation of sanitary plumbing fixtures that are compliant therewith.
In an effort to execute water conservation strategies, many sanitaryware manufacturers have introduced a variety of low water and water-free urinals. Waterless urinals are available that often employ replaceable cartridges. The cartridges have means for entry and discharge and a sealant layer that prevents malodorous emissions from the drainage system yet allows flow of urine therethrough. Conventional waterless designs, however, do not scour a back wall surface and do not provide a water trap seal as required by plumbing codes in the United States and other jurisdictions. In addition, omission of the water trap seal in waterless fixtures necessarily omits replenishment of the trap seal after each use, thereby requiring frequent maintenance of the fixtures to maintain satisfactory cleanliness (such as the addition of a liquid medium to provide a seal between the liquid waste and the room, and periodic cartridge replacement). Examples of such devices are disclosed in U.S. Pat. Nos. 6,053,197, 6,425,411, 5,711,037 and US Patent Application Nos. 2002/0069913 and 2002/0038474.
In addition, many conventional low-water urinals have strategically designed bowls and trapways that restrict elimination of water from the bowl during flushing (see, for example, U.S. Pat. Nos. 4,310,934 and 5,386,596). Such designs, however, still use an inordinate amount of water to complete a flush cycle, especially in consideration of contemporary water conservation efforts. Other well-known conventional designs use a manifold with integral holes at the top of the urinal to distribute water around the inside top perimeter. The manifold comprises an additional chinaware piece in the construction of the urinal, thereby increasing manufacturability efforts and costs. Such manifolds do not produce a uniform distribution and typically are not pressurized; such devices employ a “gravity fed” technique that and trickles down the sides of the urinal at low velocity along a uniform path. Such configurations exhibit disadvantageous hygiene limitations by omitting fluid coverage over the entirety of the urinal's waste receiving surface.
Other manufacturers have used sensor means to release water at predetermined intervals, thereby providing a dual or multi-flush urinal for maintenance of sanitary conditions with minimal water consumption. For instance, U.S. Pat. No. 6,862,754 to DeMarco (“DeMarco”) discloses a dual-phase flush urinal comprising a chinaware piece in combination with a valve means (DeMarco is owned by American Standard International Inc., co-owner of the present application, and is incorporated by reference herein). The valve means is in electrical communication with a sensor that detects the presence of a user and has first and second fluid discharge ports, wherein the first fluid discharge port is in fluid communication with a bowl portion defined in the chinaware. Upon detection of the user, the sensor transmits a first signal to the valve means to initiate a first water exchange phase of the flush cycle. The first fluid discharge port provides water along an elongate channel to remove waste from the bowl portion. After a preprogrammed delay, the sensor transmits a second signal to the valve means to initiate a subsequent, time-delayed wall-scouring phase of the flush cycle. The second fluid discharge port provides water through a urinal spreader to ensure rinsing of the back surface subsequent to actuation of the jet. The valve means operates according to a desired preprogrammed schedule to ensure delivery of adequate water to the urinal jet and expulsion of waste from the urinal to an exterior sewage system.
It is therefore desirable to provide a urinal that substantially reduces consumption of portable water without comprising sanitation. Such a urinal uses minimal water amounts to achieve an effective, repeatable flush and thereby maintain optimal fixture cleanliness.
It is an advantage of the present invention to provide an improved urinal that consumes substantially less water than conventional flush urinals.
It is also an advantage of the present invention to provide a urinal that overcomes the deficiencies of waterless urinals by providing a code-compliant fixture that scours itself with water to ensure cleanliness and odor-free operation.
It is still further an advantage of the present invention to provide a urinal having the aforementioned advantages that can assume the appearance and proportions of conventional urinals for simple installation and maintenance in existing sanitary facilities.
In accordance with these and other advantages, the present invention is directed to a microflush urinal that employs an oscillating water delivery means for scouring back and side walls of a urinal and moving residue therefrom. The urinal of the present invention includes a piece of chinaware that is in fluid communication with each of a pre-existing water supply and a waste removal conduit. A valve means is provided in electrical communication with each of a sensor means and a fluid manifold for delivery of incoming fluid to a nozzle means. The water delivery means is desirably a nozzle means selected from one of a plurality of fluidic nozzles. The nozzle means delivers pressurized water through a water ingress defined in a rear wall of the chinaware. This nozzle oscillates the water back and forth to provide full cleaning coverage on the rear wall of the urinal.
The present invention urinal dispenses about or below ¼ gallon of water with every flush, as compared with about ½ gallon to 1 gallon per flush consumed by conventional urinals.
The present invention can assume the aesthetic appearance and size of conventional urinals so that the invention is readily installed in existing commercial or residential bathrooms. The present invention can therefore also coexist alongside conventional urinals or completely replace such urinals without changing the number of urinals or the layout of the entire bathroom.
Various other advantages and features of the present invention will become readily apparent from the following detailed description, and the inventive features will be particularly evident from the appended claims.
Now referring to the figures, wherein like numerals identify like elements, and particularly referring to
Urinal 10 includes a rear wall 12 having a mounting surface 12a for mounting of the urinal to a support structure such as a wall (see
Urinal 10 further includes two coextensive sidewalls 14 that protrude outwardly from urinal surface 12b. Each sidewall 14 has a generally curvilinear inner surface 14a that faces a like inner surface 14a spaced therefrom. Urinal surface 14 and inner surfaces 14a together delineate an interior waste capture region 16. Sidewalls 14 extend along the length of rear wall 12 from upper extent 12b′ and terminate at floor portion 18. Floor portion 18 has an outer surface 18a and an inner surface 18b defining a fluid well 20 therewithin. Fluid escapes through a drain 26 disposed at fluid well 20 for evacuation through the waste conduit. A strainer device (not shown) is electively disposed in or adjacent drain 26 to retain larger effluents and thereby prevent occlusion of the waste conduit.
To achieve sufficient water delivery through ingress 32, urinal 10 desirably employs a nozzle means 40 housed in a containment region 42 of upper extent 12b′ (see
A sensor means 50 is provided in electrical communication with nozzle means 40 to effect predictable and repeatable activation of the nozzle means. Sensor means 50 is desirably an infrared sensor that is well known in the art for touchless operation of fixtures and fittings, although sensor means 50 may alternatively comprise radar, laser or other detection means that are amenable to practice of the present invention. Any number of sensors may be used, including the sensor configuration disclosed by US Patent Publication No. 2005/0119764 for a suite of configurable products (assigned to Celec Conception Electronique En Abrege Celec and incorporated by reference herein).
Upon detection of a user, sensor means 50 initiates a flush cycle by generating and transmitting a first signal to the valve means (not shown). Sensor means 50 may generate this signal after a predetermined temporal duration, upon detecting a user within a predetermined distance of urinal 10, upon absence of a user after a predetermined time or any other parameter consistent with flushing the urinal after each use. It is understood that an installer or maintenance professional advantageously programs sensor means 50 to activate the valve means in accordance with predetermined parameters that accommodate the demands of the installation. For installations where anticipated demand will be consistently high (for example, an airport), the valve means can be programmed to activate at consistent time intervals or after a predetermined number of users. For installations where anticipated demand is stable and is limited to certain hours of the day (for example, an office restroom), the valve means can be programmed to activate every other hour during the period of demand and further programmed to refrain from flushing during night hours when no demand is expected.
Upon receipt of the sensor-generated signal, the valve means discharges water via manifold 44 to nozzle means 40 that is in fluid communication with urinal surface 12b. Water travels from nozzle means 40 through ingress 32. The oscillating spray generated by nozzle means 40 ensures fluid delivery along rear wall 12 to sidewalls 14 and along the extent of urinal surface 12b so as to fully cleanse waste from the entire surface area thereof. Water travels along sidewalls 14 to drain 26 for egress from the urinal, thereby removing urine and water and obviating the need to replenish a trap seal as required by conventional urinal designs.
The present invention employs principles of fluid dynamics and mechanical design to overcome the deficiencies of conventional low-water and waterless urinals. The nozzle of the present inventive urinal evenly distributes water along the urinal's inside urinal surface. A single nozzle with an oscillating jet can be incorporated into the urinal with the following advantages:
The combination of effective water application and surface area design reduces the urinal's water consumption without sacrificing odor reduction and a clean appearance. The water exchange function fully discharges the liquid waste of each user after every cycle and presents the next user with clean water. Therefore, urinals configured as described herein provide for satisfactory urinal cleanliness with minimal water usage.
Various changes to the foregoing described and shown structures are now evident to those skilled in the art. The matter set forth in the foregoing description and accompanying drawings is therefore offered by way of illustration only and not as a limitation.
This application claims the benefit of priority of co-owned U.S. Ser. No. 60/792,122, filed Apr. 14, 2006.
Number | Name | Date | Kind |
---|---|---|---|
4309781 | Lissau | Jan 1982 | A |
4692951 | Taki et al. | Sep 1987 | A |
4805247 | Laverty, Jr. | Feb 1989 | A |
5313673 | Saadi et al. | May 1994 | A |
5398348 | Tashiro et al. | Mar 1995 | A |
5845845 | Merke et al. | Dec 1998 | A |
6186409 | Srinath et al. | Feb 2001 | B1 |
6253782 | Raghu | Jul 2001 | B1 |
6862754 | DeMarco | Mar 2005 | B1 |
6978951 | Raghu | Dec 2005 | B1 |
20010019086 | Srinath et al. | Sep 2001 | A1 |
20050087633 | Gopalan | Apr 2005 | A1 |
Entry |
---|
Suzanne Gannon, “For the High-End Bathroom, Something Unexpected”, New York Times, Jan. 25, 2007. |
Kohler Bardon Touchless Urinal Spec Sheet, www.us.kohler.com/onlinecatalog/detail.jsp?prod—num=4915, website registered in 1994. |
Duravit Architec Utronic Electronic Urinal Spec Sheet, www.plumbersurplus.com/Prod/Duravit-Architec-Utronic-Electronic-Urinal, website registered in 1999. |
Villeroy & Boch Collection Subway Siphonic Urinal product sheet, www.villeroy-boch.com, website registered in 1997. |
Number | Date | Country | |
---|---|---|---|
20080216222 A1 | Sep 2008 | US |
Number | Date | Country | |
---|---|---|---|
60792122 | Apr 2006 | US |