Information
-
Patent Grant
-
6433657
-
Patent Number
6,433,657
-
Date Filed
Wednesday, May 2, 200123 years ago
-
Date Issued
Tuesday, August 13, 200222 years ago
-
Inventors
-
Original Assignees
-
Examiners
- Pascal; Robert
- Takaoka; Dean
Agents
-
CPC
-
US Classifications
Field of Search
US
- 333 262
- 333 105
- 333 197
- 200 181
- 335 185
- 361 207
-
International Classifications
-
Abstract
A switch includes at least two distributed constant lines (2a, 2b) disposed close to each other, a movable element (11) arranged above the distributed constant lines so as to oppose these distributed constant lines and connecting the distributed constant lines to each other in a high-frequency manner upon contacting the distributed constant lines, and a driving means (13) for displacing the movable element by an electrostatic force to bring the movable element into contact with the distributed constant lines. The movable element has a projection (52a, 52b) formed by notching at least one end of an edge of the movable element which is located on at least one distributed constant line side. In this projection, a width (a) serving as a length in a direction parallel to the widthwise direction of the distributed constant lines is smaller than a width (W) of each of the distributed constant lines.
Description
TECHNICAL FIELD
The present invention relates to a micromachine switch used in a milliwave band to microwave band.
BACKGROUND ART
Switch devices such as a PIN diode switch, HEMT switch, micromachine switch, and the like are used in a milliwave band to microwave band. Of these switches, the micromachine switch is characterized in that the loss is smaller than that of the other devices, and a compact high-integrated switch can be easily realized.
FIG. 13
is a perspective view showing the structure of a conventional micromachine switch.
FIG. 14
is a plan view of the micromachine switch shown in FIG.
13
.
A micromachine switch
101
is constructed by a switch movable element
111
, support means
112
, and switch electrode
113
. The micromachine switch
101
is formed on a dielectric substrate
103
together with two RF microstrip lines
102
a
and
102
b
. A GND plate
104
is disposed on the lower surface of the dielectric substrate
103
.
The microstrip lines
102
a
and
102
b
are closely disposed apart from each other at a gap G. The switch electrode
113
is disposed between the microstrip lines
102
a
and
102
b
on the dielectric substrate
103
. The switch electrode
113
is formed to have a height lower than that of each of the microstrip lines
102
a
and
102
b.
The switch movable element
111
is arranged above the switch electrode
113
. A capacitor structure is formed by the switch electrode
113
and switch movable element
111
.
As shown in
FIG. 14
, since a length L of the switch movable element
111
is larger than the gap G, two ends of the switch movable element
111
oppose the end portions of the microstrip lines
102
a
and
102
b
, respectively. The switch movable element
111
is formed to have a width equal to the width W of each of the microstrip lines
102
a
and
102
b.
The switch movable element
111
is cantilevered on the support means
112
fixed on the dielectric substrate
103
.
As shown in
FIG. 13
, the switch movable element
111
is generally arranged above the microstrip lines
102
a
and
102
b
. With this structure, since the switch movable element
111
is not in contact with the microstrip lines
102
a
and
102
b
, the micromachine switch
101
is in an OFF state. At this time, a little high-frequency energy is transmitted from the microstrip line
102
a
to the microstrip line
102
b.
When, however, a control voltage is applied to he switch electrode
113
, the switch movable element
111
is pulled down by an electrostatic force. When the switch movable element
111
is brought into contact with the microstrip lines
102
a
and
102
b
, the switch movable element
111
is set in an ON state. At this time, the high-frequency energy from the microstrip line
102
a
is transmitted to the microstrip line
102
b
through the switch movable element
111
.
As described above, the two ends of the switch movable element
111
oppose the microstrip lines
102
a
and
102
b
, respectively. Accordingly, the capacitor structures are also formed between the switch movable element
111
and the microstrip lines
102
a
and
102
b.
This makes the capacitive coupling between the switch movable element
111
and microstrip lines
102
a
and
102
b
so that the high-frequency energy from the microstrip line
102
a
leaks out into the microstrip line
102
b
even if the micromachine switch
101
is in the OFF state. That is, in the conventional micromachine switch
101
, an OFF isolation characteristic is poor.
In the microwave switching circuit, for example, the isolation of approximately 15 dB or more is required.
The present invention has been made to solve the above problem, and has as its object to improve the OFF isolation characteristic of the micromachine switch.
DISCLOSURE OF INVENTION
In order to achieve the above object, the present invention comprises at least two distributed constant lines disposed close to each other, a movable element arranged above the distributed constant lines so as to oppose the distributed constant lines and connecting the distributed constant lines to each other in a high-frequency manner upon contacting the distributed constant lines, and driving means for displacing the movable element by an electrostatic force to bring the movable element into contact with the distributed constant lines, wherein the movable element includes a projection formed by notching at least one end of an edge of the movable element which is located on at least one distributed constant line side, and a width of the projection serving as a length in a direction parallel to the widthwise direction of the distributed constant lines is smaller than a width of each of the distributed constant lines. That is, at least one end of the movable element is notched to form the projection having the width (the length in the direction parallel to the widthwise direction of the distributed constant lines) smaller than that of the distributed constant line, and the projection is made to oppose the distributed constant line. This decreases the opposing area between the movable element and the distributed constant line, thereby reducing the capacitive coupling of them. Therefore, the OFF isolation characteristic of the micromachine switch can be improved. In addition, since the width of the movable element on the gap between the distributed constant lines becomes larger as compared to the case in which a movable element having the rectangular shape and the width smaller than that of the distributed constant line is used, the present invention can obtain ON reflection characteristic better than that in the above case.
In the present invention, at least one distributed constant line opposing the projection of the movable element does not oppose a movable element main body serving as a portion of the movable element expect for the projection. That is, only the projection of the movable element opposes the distributed constant line. Accordingly, the width of the movable element opposing the distributed constant line is smaller than that of the distributed constant line as a whole. Thus, an OFF isolation characteristic similar to that in the case in which the movable element having the rectangular shape and the width smaller than that of the distributed constant line is used can be realized, and an ON reflection characteristic better than that in that case can be obtained.
In the present invention, at least one distributed constant line opposing the projection of the movable element also opposes a part of a movable element main body serving as a portion of said movable element expect for the projection. That is, the projection of the movable element and the part of the movable element main body oppose the distributed constant line. Thus, the opposing area between the movable element and the distributed constant line is increased as compared to the above invention, and, an OFF isolation characteristic can be improved as compared to the prior art.
In this case, the movable element main body of the movable element is formed to have a width equal to the width of the distributed constant line. Thus, there is almost no discontinuous portion between the distributed constant line and movable element, and an ON reflection characteristic better than that in the above invention can be obtained.
In the present invention, the projection of the movable element has a rectangular shape. When the rectangular projection is formed by notching two ends of the movable element, the opposing area between the movable element and the distributed constant line is a predetermined area even if the positioning error occurs in the longitudinal direction of the movable element.
In the present invention, the width of the projection of the movable element near the movable element main body serving as a portion of the movable element expect for the projection is made larger than that away from the movable element main body.
Since the width of the projection of the movable element near the movable element main body serving as a portion of the movable element expect for the projection is made larger than that away from the movable element main body, the strength of the projection increases.
Also, the present invention comprises at least two distributed constant lines disposed close to each other, a movable element arranged above the distributed constant lines so as to oppose the distributed constant lines and connecting the distributed constant lines to each other in a high-frequency manner upon contacting the distributed constant lines, and driving means for displacing the movable element by an electrostatic force to bring the movable element into contact with the distributed constant lines, wherein at least one distributed constant line includes a projection formed by notching at least one end of an edge of at least one distributed constant line on the movable element side, and a width of the projection is smaller than a length, serving as a width of the movable element, in a direction parallel to the widthwise direction of the distributed constant lines. That is, at least one end of the distributed constant line is notched to form the projection having the width (the length in the direction parallel to the widthwise direction of the distributed constant lines) smaller than that of the movable element, and the projection is made to oppose the movable element. This decreases the opposing area between the movable element and the distributed constant line, thereby reducing the capacitive coupling of them. Therefore, the OFF isolation characteristic of the micromachine switch can be improved. In addition, a good ON reflection characteristic can be obtained as compared to the case in which a movable element having the rectangular shape and the width smaller than that of the distributed constant line is used.
In the present invention, the movable element does not oppose a distributed constant line main body serving as a portion, expect for the projection, of at least one distributed constant line having the projection. That is, only the projection of the distributed constant line opposes the movable element. Accordingly, an OFF isolation characteristic similar to that in the case in which the movable element having the rectangular shape and the width smaller than that of the distributed constant line is used can be realized, and an ON reflection characteristic better than that in that case can be obtained.
In the present invention, the movable element also opposes a part of a distributed constant line main body serving as a portion, expect for the projection, of at least one distributed constant line having the projection. That is, the projection of the distributed constant line and the part of the distributed constant line main body oppose the movable element. Thus, an OFF isolation characteristic can be improved as compared to the above invention.
In this case, the movable element may be formed to have a width equal to the width of each of the distributed constant line main bodies. Thus, an ON reflection characteristic better than that in the above invention can be obtained.
In the present invention, the projection of at least one distributed constant line has a rectangular shape. Thus, even if the positioning error occurs in the longitudinal direction of the movable element, the opposing area between the movable element and the distributed constant line is a predetermined area.
In addition, the present invention comprises at least two distributed constant lines disposed close to each other, a movable element arranged above the distributed constant lines so as to oppose the distributed constant lines and connecting the distributed constant lines to each other in a high-frequency manner upon contacting the distributed constant lines, and driving means for displacing the movable element by an electrostatic force to bring the movable element into contact with the distributed constant lines, wherein at least one distributed constant line includes a first projection formed by notching at least one end of an edge of at least one distributed constant line on the movable element side, and the movable element includes a second projection so formed as to oppose the first projection of at least one distributed constant line by notching at least one end of an edge of the movable element. With this structure, an OFF isolation characteristic of the micromachine switch can be improved. In addition, a good ON reflection characteristic can be obtained as compared to the case in which a movable element having the rectangular shape and the width smaller than that of the distributed constant line is used.
In the present invention, at least an entire lower surface of the movable element is made of a conductor.
In the present invention, the movable element is made of a conductive member and an insulating thin film formed on an entire lower surface of the conductive member.
In the present invention, the driving means comprises an electrode which is disposed apart between the distributed constant lines so as to oppose the movable element and to which a driving voltage is selectively applied.
In the present invention, the invention further comprises support means for supporting the movable element, the driving means is made of an upper electrode attached to the support means and a lower electrode disposed under the upper electrode and opposing the upper electrode, and a driving voltage is selectively applied to at least one of the upper and lower electrodes.
BRIEF DESCRIPTION OF DRAWINGS
FIG. 1
is a perspective view showing the structure of a micromachine switch according to the first embodiment of the present invention;
FIG. 2
is a plan view of the micromachine switch shown in
FIG. 1
;
FIGS. 3A and 3B
are sectional views taken along the line III-III′ of the micromachine switch shown in
FIG. 2
;
FIG. 4
is a plan view showing the main part of a micromachine switch according to the second embodiment of the present invention;
FIG. 5
is a plan view showing another shape of the switch movable element shown in
FIG. 4
;
FIG. 6
is a plan view showing still another shape of the switch movable element shown in
FIG. 4
;
FIG. 7
is a plan view showing the main part of micromachine switch according to the third embodiment of the present invention;
FIG. 8
is a plan view showing the main part of micromachine switch according to the fourth embodiment of the present invention;
FIG. 9
is a plan view showing the main part of a micromachine switch according to the fifth embodiment of the present invention;
FIG. 10
is a plan view showing the main part of a micromachine switch according to the sixth embodiment of the present invention;
FIG. 11
is a sectional view showing the section of a micromachine switch having another arrangement;
FIGS. 12A and 12B
show sectional views of the sections of the switch movable elements;
FIG. 13
is a perspective view showing the structure of the conventional switch movable element; and
FIG. 14
is a plan view of the micromachine switch shown in FIG.
13
.
BEST MODE OF CARRYING OUT THE INVENTION
A micromachine switch according to embodiments of the present invention will be described in detail below with reference to the accompanying drawings. A micromachine switch to be described here is a microswitch suitable for integration by a semiconductor element manufacturing process.
In a microstrip line (distributed constant line), the length of the microstrip line in a longitudinal direction is defined as a “length”, and the length of the microstrip line in a widthwise direction perpendicular to the longitudinal direction is defined as a “width”. In a movable element, the length in a direction parallel to the longitudinal direction of the microstrip line is defined as “length”, and the length in a direction parallel to the widthwise direction of the microstrip line is defined as a “width”.
First Embodiment
FIG. 1
is a perspective view showing the structure of a micromachine switch according to the first embodiment of the present invention.
FIG. 2
is a plan view of the micromachine switch shown in FIG.
1
.
As shown in
FIG. 1
, a micromachine switch
1
is constructed by a switch movable element
11
, support means
12
, and switch electrode (driving means)
13
. The micromachine switch
1
is formed on a dielectric substrate
3
together with two RF microstrip lines (distributed constant lines)
2
a
and
2
b
. A GND plate
4
is disposed on the lower surface of the dielectric substrate
3
.
The microstrip lines
2
a
and
2
b
are closely disposed apart from each other at a gap G. The width of each of both microstrip lines
2
a
and
2
b
is W.
The switch electrode
13
is disposed apart between the microstrip lines
2
a
and
2
b
on the dielectric substrate
3
. The switch electrode
13
is formed to have a height lower than that of each of the microstrip lines
2
a
and
2
b
. A driving voltage is selectively applied to the switch electrode
13
on the basis of an electrical signal.
The switch movable element
11
is arranged above the switch electrode
13
. The switch movable element
11
is made of a conductive member. A capacitor structure is therefore formed by the switch electrode
13
and switch movable element
11
opposing each other.
On the other hand, the support means
12
for supporting the switch movable element
11
is constructed by a post portion
12
a
and arm portion
12
b
. The post portion
12
a
is fixed on the dielectric substrate
3
apart from the gap G between the microstrip lines
2
a
and
2
b
by a predetermined distance. The arm portion
12
b
extends from one end of the upper surface of the post portion
12
a
to the gap G. The support means
12
is made of a dielectric, semiconductor, or conductor.
The switch movable element
11
is fixed on a distal end of the arm portion
12
b
of the support means
12
.
As shown in
FIG. 2
, the switch movable element
11
has a rectangular shape as a whole, and a length L of the switch movable element
11
is larger than the gap G. With this structure, distal end portions
11
a
′ and
11
b
′ of the switch movable element
11
oppose parts of distal end portions
2
a
′ and
2
b
′ of the microstrip lines
2
a
and
2
b
, respectively.
The distal end portions
11
a
′ and
11
b
′ of the switch movable element
11
are defined as portions each extending by a length (L−G)/2 from a corresponding one of the two ends of the switch movable element
11
. The distal end portions
2
a
′ and
2
b
′ of the microstrip lines
2
a
and
2
b
are defined as portions each extending by a length (L−G)/2 from a corresponding one of opposing ends of the microstrip lines
2
a
and
2
b.
Distal end portions
14
a
′ and
14
b
′,
15
a
′ and
15
b
′, and
16
a
′ and
16
b
of switch movable elements
14
,
15
, and
16
, and microstrip lines
6
a
and
6
b
and
7
a
and
7
b
of the distal end portions
6
a
′ and
6
b
′ and
7
a
′ and
7
b
′ (to be described later) have the same arrangement as described above.
A width a of the switch movable element
11
is smaller than the width W of each of the microstrip lines
2
a
and
2
b
. The area of each of the distal end portions
11
a
′ and
11
b
′ of the switch movable element
11
is therefore smaller than that of each of the distal end portions
2
a
′ and
2
b
′ of the microstrip lines
2
a
and
2
b.
An operation of the micromachine switch
1
shown in
FIG. 1
will be described next.
FIGS. 3
a
and
3
b
are sectional view taken along the line III-III′ of the micromachine switch
1
shown in
FIG. 2
, in which FIG.
3
(
a
) shows the OFF state of the micromachine switch
1
, and FIG.
3
(
b
) shows the ON state.
As shown in FIG.
3
(
a
), the switch movable element
11
is generally positioned at a portion apart from the microstrip lines
2
a
and
2
b
by a height h. In this case, the height h is approximately several μm.
If, therefore, no driving voltage is applied to the switch electrode
13
, the switch movable element
11
is not in contact with the microstrip lines
2
a
and
2
b.
However, the switch movable element
11
has the portions opposing the microstrip lines
2
a
and
2
b
. Since the capacitor structure is. formed at these portions, the microstrip lines
2
a
and
2
b
are coupled to each other through the switch movable element
11
.
A capacitance between the switch movable element
11
and the microstrip lines
2
a
and
2
b
is proportional to the opposing area between the switch movable element
11
and microstrip lines
2
a
and
2
b
. In the conventional micromachine switch
101
shown in
FIG. 13
, the width of the switch movable element
111
is equal to the width W of each of the microstrip lines
102
a
and
102
b
. Therefore, the opposing area between the switch movable element
111
and the microstrip lines
102
a
and
102
b
becomes (L−G)×W.
In contrast to this, in the micromachine switch
1
shown in
FIG. 1
, the width a of the switch movable element
11
is smaller than the width W of each of the microstrip lines
2
a
and
2
b
. The width of the opposing portion between the switch movable element
11
and microstrip lines
2
a
and
2
b
is thus made small, and the opposite area becomes (L−G)×a.
In this manner, since the switch movable element
11
is formed to have the width a smaller than the width W of each of the microstrip lines
2
a
and
2
b
, thereby decreasing the opposing area and the capacitance formed between the switch movable element
11
and microstrip lines
2
a
and
2
b
. Since this weakens the coupling between the microstrip lines
2
a
and
2
b
, energy leakage can be suppressed in the OFF state of the micromachine switch
1
.
The OFF isolation characteristics of the micromachine switch
1
according to the present invention shown in FIG.
1
and the conventional micromachine switch
101
shown in
FIG. 13
will be described here.
Table 1 shows the calculation results of OFF isolation characteristics, which are obtained when predetermined parameters are set. More specifically, the thickness of each of the dielectric substrates
3
and
103
is H=200 μm; relative dielectric constant of each of the dielectric substrates
3
and
103
, ∈r=4.6; the width, W=370 μm; the gap, G=200 μm; the height of each of the switch movable elements
11
and
111
, h=5 μm; the length of each of the switch movable elements
11
and
111
, L=260 μm; and a frequency of a high-frequency energy, 30 GHz. The width a of each of the switch movable elements
11
and
111
is shown in Table 1.
TABLE 1
|
|
Switch Movable
Isolation
|
Element
Parameter
Characteristic
|
|
111
a = 370 μm
12 dB
|
11
a = 300 μm
13 dB
|
a = 200 μm
15 dB
|
a = 100 μm
18 dB
|
|
Assuming that letting Ein be an input energy from the microstrip line
2
a
or
102
a
to the switch movable element
11
or
111
, and Eout be an output energy output from the switch movable element
11
or
111
to the microstrip line
2
a
or
102
a
. In this case, the isolation characteristic is obtained by equation {circle around (1)}.
(Isolation characteristic)=−10 log(Eout/Ein) {circle around (1)}
As is obvious from equation {circle around (1)}, an increase in isolation characteristic value can implement a high degree of isolation. As shown in Table 1, a decrease in width a of each of the switch movable elements
11
and
25
111
increases the isolation characteristic value. Therefore, an OFF isolation characteristic can be improved by using the micromachine switch
1
of the present invention as shown in FIG.
1
.
The micromachine switch
1
shown in
FIG. 1
is used for a microwave switching circuit, phase shifter, variable filter, or the like. For example, a microwave switching circuit requires an isolation of approximately 15 dB or more. If, therefore, the micromachine switch
1
shown in
FIG. 1
is applied to the microwave switching circuit, the width a of the switch movable element
11
is set to 200 μm or less, thereby obtaining a good switching characteristic.
Note that, the required isolation changes depending on microwave or milliwave circuits to which the micromachine switch
1
is applied. Even if, therefore, the width a of the switch movable element
11
is 200 μm or more, the effect is obtained in some cases.
On the other hand, assume that a positive voltage is applied to the switch electrode
13
as a control voltage. In this case, positive charges appear on the surface of the switch electrode
13
. Also, negative charges appear on the surface of the switch movable element
11
opposing the switch electrode
13
by electrostatic induction. An attraction force is generated by the electrostatic force between the positive charges of the switch electrode
13
and the negative charges of the switch movable element
11
.
As shown in FIG.
3
(
b
), this attraction force pulls down the switch movable element
11
toward the switch electrode
13
. When the switch movable element
11
is brought into contact with the microstrip lines
2
a
and
2
b
, the micromachine switch
1
is turned on. At this time, the high-frequency energy is transmitted from the microstrip line
2
a
to the microstrip line
2
b
through the switch movable element
11
.
Second Embodiment
FIG. 4
is a plan view showing the major part of a micromachine switch according to the second embodiment of the present invention. In
FIG. 4
, the same reference numerals as in
FIG. 2
denote the same parts, and a detailed description thereof will be omitted. A switch movable element
14
shown in
FIG. 4
is cantilevered on a support means
12
, similar to the switch movable element
11
shown in
FIG. 2. A
switch electrode
13
is disposed at a gap G between microstrip lines
2
a
and
2
b
. In
FIG. 4
, however, the description of the support means
12
and switch electrode
13
is omitted.
This also applies to
FIGS. 5
to
9
(to be described later).
A micromachine switch
1
shown in
FIG. 4
uses the switch movable element
14
shown in
FIG. 4
in place of the switch movable element
11
shown in FIG.
1
.
The two ends of an edge of the switch movable element
14
on the microstrip line
2
a
side are notched to form a projection (second projection)
52
a
. Similarly, the two ends of the edge of the switch movable element
14
on the microstrip line
2
b
side are notched to form a projection (second projection)
52
b.
In this case, a portion of the switch movable element
14
except the projections
52
a
and
52
b
is defined as a movable element main body
51
. More specifically, the movable element main body
51
is a portion of the switch movable element
14
having a width b. Similarly, a portion of a switch movable element
15
except for projections
54
a
and
54
b
is defined as a movable element main body
53
. More specifically, the movable element main body
53
is a portion of the switch movable element
15
having a width b.
Each of the projections
52
a
and
52
b
has a rectangular shape. A width a of each of the projections
52
a
and
52
b
is smaller than the width W of each of the microstrip lines
2
a
and
2
b.
Since a length c of the movable element main body
51
is a smaller than the gap G between the microstrip lines
2
a
and
2
b
, the movable element main body
51
is not included in distal end portions
14
a
′ and
14
b
′ of the switch movable element
14
. That is, the movable element main body
51
does not oppose the microstrip lines
2
a
and
2
b.
Similar to the micromachine switch
1
shown in
FIG. 1
, the opposing area between the switch movable element
14
and the microstrip lines
2
a
and
2
b
thus becomes (L−G)×a. That is, the isolation characteristic equal to that obtained by the micromachine switch
1
shown in
FIG. 1
can be obtained by the micromachine switch
1
shown in FIG.
4
.
Since the impedance of a line is related to the surface area of the line, a decrease in width of the line increases the impedance. For this reason, if the width of the whole switch movable element
11
decreases, like the micromachine switch
1
shown in
FIG. 1
, the characteristic impedance on the gap G increases in the ON state of the micromachine switch
1
.
High-frequency energy reflection occurs at a discontinuous portion in the line. An increase in characteristic impedance on the gap G results in impedance mismatching. Thus, the reflection increases in the ON state of the micromachine switch
1
.
In contrast to this, in the switch movable element
14
shown in
FIG. 4
, the width b of the movable element main body
51
is larger than the width a of each of the projections
52
a
and
52
b
respectively opposing the microstrip lines
2
a
and
2
b
. More specifically, the width b of the movable element main body
51
is closer to the width W of each of the microstrip lines
2
a
and
2
b
than the width a of each of the projections
52
a
and
52
b
. Accordingly, the impedance mismatching in the switch movable element
14
is reduced, thereby suppressing the reflection of the high-frequency energy in the ON state.
The OFF isolation characteristics and ON reflection characteristics of the micromachine switches
1
shown in
FIGS. 1 and 4
will be described.
Table 2 shows the calculation results of OFF isolation characteristics and ON reflection characteristics, which are obtained when predetermined parameters are set. Parameters except for a, b, and c are the same as those shown in Table 1.
TABLE 2
|
|
Switch
|
Movable
Isolation
Reflection
|
Element
Parameter
Characteristic
Characteristic
|
|
11
a = 200 μm
15 dB
−23 dB
|
a = 150 μm
17 dB
−20 dB
|
a = 100 μm
18 dB
−17 dB
|
14
a = 100 μm
18 dB
−21 dB
|
b = 200 μm
|
c = 180 μm
|
|
Letting Ein be the input energy input from the microstrip line
2
a
or
102
a
to the switch movable element
11
or
14
, and Ere be the reflection energy from switch movable element
11
or
14
to the microstrip line
2
a
or
102
a
, the reflection characteristic is obtained by equation {circle around (2)}.
(Reflection characteristic)=10 log(Ere/Ein) {circle around (2)}
As is obvious in equation {circle around (2)}, a decrease in reflection characteristic value reduces the energy loss.
In Table 2, the switch movable element
14
is compared with the switch movable element
11
when a=100 μm. The isolation characteristic values of the elements
14
and
11
are equal as 18 dB. However, the value of the reflection characteristic of the switch movable element
14
is smaller than that of the switch movable element
11
. In this manner, the energy loss can be improved in the ON state by using the switch movable element
14
shown in FIG.
4
.
Note that, the sizes L, a, b, and c of the switch movable element
14
are set based on the sizes W and G of the microstrip lines
2
a
and
2
b
, thereby selecting appropriate isolation and reflection characteristics.
FIGS. 5 and 6
are plan views each showing another shape of the switch movable element
14
shown in FIG.
4
.
As shown in
FIG. 5
, the switch movable element
14
may be obtained by notching one end of an edge of the switch movable element
14
on each of the microstrip lines
2
a
and
2
b
. In the switch movable element
14
shown in
FIG. 5
, the opposing area between the switch movable element
14
and the microstrip lines
2
a
and
2
b
increases as compared to that of the switch movable element
14
shown in FIG.
4
. However, an OFF isolation characteristic better than that of the conventional micromachine switch
1
shown in
FIG. 13
can be obtained.
In addition, the shape of each of the projections
52
a
and
52
b
of the switch movable element
14
is not limited to the rectangular shape. For example, as shown in
FIG. 6
, each of the projections (second projections)
52
a
and
52
b
may have a trapezoidal shape. The width of each of the projections
51
a
and
52
b
near the movable element main body
51
is made larger than that away from the movable element main body
51
. This can increase the strength of the switch movable element
14
.
Note that, the width b of the movable element main body
51
of the switch movable element
14
shown in
FIGS. 4
to
6
is smaller than the W of each of the microstrip lines
2
a
and
2
b
. However, the width b of the movable element main body
51
may be made large within the range in which no reflection characteristic greatly degrades.
Third Embodiment
FIG. 7
is a plan view showing the main part of a micromachine switch according to the third embodiment of the present invention. A switch movable element
15
shown in
FIG. 7
is different from the switch movable element
14
in
FIG. 4
in that a length c of a movable element main body
53
is larger than a gap G, and a width b of the movable element main body
53
is equal to a width W of each of microstrip lines
2
a
and
2
b
. In
FIG. 7
, reference numerals
54
a
and
54
b
denote projections (second projections).
Since the length c of the movable element main body
53
is larger than the gap G, the portions of the movable element main body
53
are included in distal end portions
15
a
′ and
15
b
′ of the switch movable element
15
. That is, the portions of the movable element main body
53
oppose the microstrip lines
2
a
and
2
b
, respectively.
Thus, the opposing area between the switch movable element
15
in FIG.
7
and microstrip lines
2
a
and
2
b
becomes larger than that shown in FIG.
4
. By using the switch movable element
15
in
FIG. 7
, therefore, an OFF isolation characteristic becomes worse than that by using the switch movable element
11
or
14
in
FIG. 1
or
4
. Even if so, the isolation characteristic better than that in the prior art can be obtained.
Since, however, the length c of the movable element main body
53
is larger than the gap G, the notched portions of the switch movable element
15
are not present on the gap G. In addition, the width b of the movable element main body
53
is equal to the width W of each of the microstrip lines
2
a
and
2
b.
With this arrangement, the discontinuous portion of the micromachine switch
1
in the ON state shown in
FIG. 7
is only a portion where the switch movable element
15
is in contact with the microstrip lines
2
a
and
2
b
. By using the switch movable element
15
in
FIG. 7
, therefore, an ON reflection characteristic can be improved better than that in the switch movable element shown in FIG.
4
.
The width b of the movable element main body
53
is equal to the width W of each of the microstrip lines
2
a
and
2
b
. The effect can be obtained even if the width b is completely equal to the width W.
The switch movable element
15
may be obtained by notching one end of an edge of the switch movable element
15
on each of the microstrip lines
2
a
and
2
b.
In addition, each of projections
54
a
and
54
b
of the switch movable element
15
is not limited to have the rectangular shape and, for example, may have a trapezoidal shape.
Fourth Embodiment
FIG. 8
is a plan view showing the main part of a micromachine switch according to the fourth embodiment of the present invention.
As shown in
FIG. 8
, a switch movable element
16
has a rectangular shape. On the other hand, in a microstrip line
6
a
, the two ends of an edge of the microstrip line
6
a
on the switch movable element
16
side are notched to form a projection (first projection)
62
a
. Similarly, in a microstrip line
6
b
, the two ends of the edge of the microstrip line
6
b
on the switch movable element
16
side are notched to form a projection (first projection)
62
b.
In this case, portions of the microstrip lines
6
a
and
6
b
except for the projections
62
a
and
62
b
are defined as line main bodies
61
a
and
62
b
, respectively. More specifically, the line main bodies
61
a
and
61
b
are portions of the microstrip lines
6
a
and
6
b
each having a width W. Similarly, portions of microstrip lines
7
a
and
7
b
except for projections
72
a
and
72
b
are defined as line main bodies
71
a
and
71
b
, respectively. More specifically, the line main bodies
71
a
and
71
b
are portions of the microstrip lines
7
a
and
7
b
each having the width W.
Each of the projections
62
a
and
62
b
has a rectangular shape. A width d of each of the projections
62
a
and
62
b
is smaller than a width e of the switch movable element
16
.
A distance D between the line main bodies
61
a
and
61
b
of the microstrip lines
6
a
and
6
b
is larger than a length L of the switch movable element
16
. With this structure, the line main bodies
61
a
and
61
b
are not included in distal end portions
6
a
′ and
6
b
′ of the microstrip lines
6
a
and
6
b
, respectively. That is, the line main bodies
61
a
and
61
b
do not oppose the switch movable element
16
.
In this manner, in a micromachine switch
1
shown in
FIG. 8
, the projections
62
a
and
62
b
are formed in the microstrip lines
6
a
and
6
b
, respectively, in place of forming the projections
52
a
and
52
b
in the switch movable element
14
in the micromachine switch
1
shown in FIG.
4
. Other parts in this embodiment are the same as those in the micromachine switch
1
shown in FIG.
4
.
Therefore, for example, each of the projections
62
a
and
62
b
of the microstrip lines
6
a
and
6
b
can be formed by notching one end of an edge of a corresponding one of the microstrip lines
6
a
and
6
b
on the switch movable element
16
side. In addition, each of projections
54
a
and
54
b
is not limited to have the rectangular shape and, for example, may have a trapezoidal shape.
Even if the micromachine switch
1
is formed in such a manner, the effect similar to that of the micromachine switch
1
shown in
FIG. 4
can be obtained.
Fifth Embodiment
FIG. 9
is a plan view showing the main part of a micromachine switch according to the fifth embodiment of the present invention. The micromachine switch shown in
FIG. 9
is different from the micromachine switch
1
shown in
FIG. 8
in the following points.
First, a distance D between line main bodies
71
a
and
71
b
of microstrip lines
7
a
and
7
b
is smaller than a length L of a switch movable element
16
. With this structure, the line main bodies
71
a
and
71
b
are included in distal end portions
7
a
′ and
7
b
′ of the microstrip lines
7
a
and
7
b
, respectively. That is, the line main bodies
71
a
and
71
b
oppose the switch movable element
16
.
In addition, a width e of the switch movable element
16
is equal to a width W of each of the microstrip lines
7
a
and
7
b
. Other parts in this embodiment are the same as those in the micromachine switch
1
shown in FIG.
8
. In
FIG. 9
, reference numerals
72
a
and
72
b
denote projections (first projections).
Even if a micromachine switch
1
is disposed in such a manner, the effect similar to that of the micromachine switch
1
shown in
FIG. 7
can be obtained.
Note that, the width e of the switch movable element
16
is equal to the width W of each of the microstrip lines
7
a
and
7
b
. The effect can be obtained even if the width e is not completely equal to the width W.
Sixth Embodiment
FIG. 10
is a plan view showing the main part of a micromachine switch according to the sixth embodiment of the present invention. The micromachine switch shown in
FIG. 10
is formed by combining the switch movable element
14
shown in
FIG. 4
with the microstrip lines
6
a
and
6
b
shown in FIG.
8
.
In this manner, even if both switch movable element
14
and microstrip lines
6
a
and
6
b
are notched, the opposing area between the switch movable element
14
and microstrip lines
6
a
and
6
b
can be decreased, thereby improving the OFF isolation characteristic of a micromachine switch
1
.
Note that, a width a of each of the projections
52
a
and
52
b
of the switch movable element
14
may be equal to or different from a width d of each of projections
62
a
and
62
b
of the microstrip lines
6
a
and
6
b.
In addition, each of the switch movable elements
14
and
15
shown in
FIGS. 5
to
7
may be used in place of the switch movable element
14
shown in
FIG. 4
, and the microstrip lines
7
a
and
7
b
shown in
FIG. 9
may be used in place of the microstrip lines
6
a
and
6
b
shown in FIG.
8
.
As described above, the embodiments of the present invention have been described by using the micromachine switch
1
having the arrangement in which a switch electrode
13
is disposed on a gap G. The present invention is, however, applied to a micromachine switch
8
having the sectional shape shown in FIG.
11
.
That is, the micromachine switch
8
shown in
FIG. 11
has an upper electrode
13
a
and lower electrode
13
b
as switch electrodes (driving means). The lower electrode
13
b
is formed on a dielectric substrate
3
, below an arm portion
12
b
of a support means, and is not sandwiched between microstrip lines
2
a
and
2
b
(or
6
a
and
6
b
or
7
a
and
7
b
). The upper electrode
13
a
is tightly formed on the upper surface of the arm portion
12
b
. The upper and lower electrodes
13
a
and
13
b
sandwich the arm portion
12
b
therebetween and oppose each other. The arm portion
12
b
is made of an insulating member.
A driving voltage is selectively applied to at least one of the upper and lower electrodes
13
a
and
13
b
. The arm portion
12
b
is pulled down by an electrostatic force, and a switch movable element
11
(or
14
,
15
, or
16
) is brought into contact with the microstrip lines
2
a
and
2
b
(or
6
a
and
6
b
or
7
a
and
7
b
).
Even if the present invention is applied to this micromachine switch
8
, the effect described above can be obtained.
In any one of the switch movable elements
14
and
15
in the
FIGS. 4
to
7
, the two sides of the switch movable element
14
or
15
are notched to form projections
52
a
and
52
b
or
54
a
and
54
b
. However, even if the projection
52
a
or
52
b
is formed on only one side of the switch movable element
14
, or even if the projection
54
a
or
54
b
is formed on only one side of the switch movable element
15
, the effect can be obtained.
This also applies to the microstrip lines
6
a
and
6
b
and
7
a
and
7
b
in
FIGS. 8 and 9
. More specifically, even if the projection
62
a
or
62
b
is formed in only one of the microstrip lines
6
a
and
6
b
, or even if the projection
72
a
or
72
b
is formed in only one of the microstrip lines
7
a
and
7
b
, the effect can be obtained.
In addition, each of the micromachine switches
1
and
8
shown in
FIGS. 1
to
11
connects/disconnects two microstrip lines
2
a
and
2
b
(or
6
a
and
6
b
or
7
a
and
7
b
) to/from each other. However, the present invention is also applied to each of the micromachine switch
1
and
8
connecting/disconnecting three or more microstrip lines to/from each other.
In describing the embodiments of the present invention, the microstrip lines
2
a
and
2
b
(or
6
a
and
6
b
or
7
a
and
7
b
) are used as distributed constant lines. Even if, however, coplanar lines, triplet lines, or slot lines are used as the distributed constant lines, the same effect can be obtained.
The micromachine switch
1
or
8
shown in
FIGS. 1
to
11
may be an ohmic connection type micromachine switch or capacitive connection type micromachine switch.
In an ohmic connection type micromachine switch
1
or
8
, the whole switch movable elements
11
and
14
to
16
may be made of conductive members. As shown in FIG.
12
(
a
), each of the switch movable elements
11
and
14
to
16
may be constructed by a member
81
of a semiconductor or insulator, and a conductive film
82
formed on the entire lower surface of the member
81
(i.e., the surface opposite to the microstrip lines
2
a
and
2
b
or the like). That is, in the switch movable elements
11
and
14
to
16
, at least the entire lower surface of each of the switch movable elements
11
and
14
to
16
may be made of a conductor.
In addition, as shown in FIG.
12
(
b
), a capacitive connection type micromachine switch
1
or
8
is constructed by a conductive member
83
and insulating thin film
84
formed on the lower surface of the conductive member
83
(i.e., the surface opposing the microstrip lines
2
a
and
2
b
or the like).
Industrial Applicability
A micromachine switch according to the present invention is suitable for a switch device for high-frequency circuits such as a phase shifter and frequency variable filter used in a milliwave band to microwave band.
Claims
- 1. A micromachine switch characterized by comprising:at least two distributed constant lines disposed close to each other; a movable element arranged above said distributed constant lines so as to oppose said distributed constant lines and connecting said distributed constant lines to each other in a high-frequency manner upon contacting said distributed constant lines; and driving means for displacing said movable element by an electrostatic force to bring said movable element into contact with said distributed constant lines, wherein said movable element includes a projection formed by notching at least one end of an edge of said movable element which is located on at least one distributed constant line side, and a width of the projection serving as a length in a direction parallel to the widthwise direction of said distributed constant lines is smaller than that of each of said distributed constant lines.
- 2. A micromachine switch according to claim 1, characterized in thatsaid at least one distributed constant line opposing the projection of said movable element does not oppose a movable element main-body serving as a portion of said movable element except for the projection.
- 3. A micromachine switch according to claim 1, characterized in thatat least an entire lower surface of said movable element is made of a conductor.
- 4. A micromachine switch according to claim 1, characterized in thatsaid movable element is made of a conductive member, and an insulating thin film formed on an entire lower surface of the conductive member.
- 5. A micromachine switch according to claim 1, characterized in thatthe projection of said movable element has a rectangular shape.
- 6. A micromachine switch according to claim 1, characterized in thata width of the projection of said movable element near the movable element main body serving as a portion of said movable element except for the projection is made larger than that away from the movable element main body.
- 7. A micromachine switch according to claim 1, characterized in thatsaid driving means comprises an electrode which is disposed apart between said distributed constant lines so as to opposite to said movable element and to which a driving voltage is selectively applied.
- 8. A micromachine switch according to claim 1, characterized in thatsaid switch further comprises support means for supporting said movable element, said driving means is made of an upper electrode attached to said support means, and a lower electrode disposed under the upper electrode and opposing the upper electrode, and a driving voltage is selectively applied to at least one of the upper and lower electrodes.
- 9. A micromachine switch according to claim 1, characterized in thatsaid at least one distributed constant line opposing the projection of said movable element also opposes a part of a movable element main body serving as a portion of said movable element except for the projection.
- 10. A micromachine switch according to claim 9, characterized in thata width of the movable element main body of said movable element is equal to the width of each of said distributed constant lines.
- 11. A micromachine switch characterized by comprising:at least two distributed constant lines disposed close to each other; a movable element arranged above said distributed constant lines so as to oppose said distributed constant lines and connecting said distributed constant lines to each other in a high-frequency manner upon contacting said distributed constant lines; and driving means for displacing said movable element by an electrostatic force to bring said movable element into contact with said distributed constant lines, wherein at least one distributed constant line includes a projection formed by notching at least one end of an edge of said at least one distributed constant line on the movable element side, and a width of the projection is smaller than a length, serving as a width of said movable element, in a direction parallel to the widthwise direction of said distributed constant lines.
- 12. A micromachine switch according to claim 11, characterized in thatsaid movable element does not oppose a distributed constant line main body serving as a portion, except for the projection, of said at least one distributed constant line having the projection.
- 13. A micromachine switch according to claim 11, characterized in thatthe projection of said at least one distributed constant line has a rectangular shape.
- 14. A micromachine switch according to claim 11, characterized in thatat least an entire lower surface of said movable element is made of a conductor.
- 15. A micromachine switch according to claim 11, characterized in thatsaid driving means comprises an electrode which is disposed apart between said distributed constant lines so as to opposite to said movable element and to which a driving voltage is selectively applied.
- 16. A micromachine switch according to claim 11, characterized in thatsaid movable element is made of a conductive member, and an insulating thin film formed on an entire lower surface of the conductive member.
- 17. A micromachine switch according to claim 11, characterized in thatsaid switch further comprises support means for supporting said movable element, said driving means is made of an upper electrode attached to said support means, and a lower electrode disposed under the upper electrode and opposing the upper electrode, and a driving voltage is selectively applied to at least one of the upper and lower electrodes.
- 18. A micromachine switch according to claim 11, characterized in thatsaid movable element also opposes a part of a distributed constant line main body serving as a portion, except for the projection, of said at least one distributed constant line having the projection.
- 19. A micromachine switch according to claim 18, characterized in thata width of the movable element is equal to the width of each of the distributed constant line main bodies of said distributed constant lines.
- 20. A micromachine switch characterized by comprising:at least two distributed constant lines disposed close to each other; a movable element arranged above said distributed constant lines so as to oppose said distributed constant lines and connecting said distributed constant lines to each other in a high-frequency manner upon contacting said distributed constant lines; and driving means for displacing said movable element by an electrostatic force to bring said movable element into contact with said distributed constant lines, wherein at least one distributed constant line includes a first projection formed by notching at least one end of an edge of said at least one distributed constant line on the movable element side, and said movable element has a second projection so formed as to oppose the first projection of said at least one distributed constant line by notching at least one end of an edge of said movable element.
Priority Claims (1)
Number |
Date |
Country |
Kind |
10-313017 |
Nov 1998 |
JP |
|
PCT Information
Filing Document |
Filing Date |
Country |
Kind |
PCT/JP99/06113 |
|
WO |
00 |
Publishing Document |
Publishing Date |
Country |
Kind |
WO00/26933 |
5/11/2000 |
WO |
A |
US Referenced Citations (4)
Number |
Name |
Date |
Kind |
5121089 |
Larson |
Jun 1992 |
A |
5619061 |
Goldsmith et al. |
Apr 1997 |
A |
6072686 |
Yarbrough |
Jun 2000 |
A |
6094116 |
Tai et al. |
Jul 2000 |
A |
Foreign Referenced Citations (5)
Number |
Date |
Country |
2-100224 |
Apr 1990 |
JP |
3-53731 |
May 1991 |
JP |
4-133226 |
May 1992 |
JP |
4-370622 |
Dec 1992 |
JP |
5-2976 |
Jan 1993 |
JP |