The present disclosure relates to a micromachined mirror assembly, and more particularly to, a micromachined mirror assembly used in a scanner for light detection and ranging (LiDAR).
LiDAR systems have been widely used in autonomous driving and producing high-definition maps. For example, LiDAR systems measure distance to a target by illuminating the target with pulsed laser light and measuring the reflected pulses with a sensor. Differences in laser return times and wavelengths can then be used to make digital three-dimensional (3-D) representations of the target. The laser light used for LiDAR scan may be ultraviolet, visible, or near infrared. Because using a narrow laser beam as the incident light from the scanner can map physical features with very high resolution, a LiDAR system is particularly suitable for applications such as high-definition map surveys.
The scanner of a LiDAR system includes a mirror that can be moved (e.g., rotated) by an actuator to reflect (and steer) incident laser beams from a laser source towards a pre-determined angle. The mirror can be a single, or an array of micromachined mirror assembly(s) made by semiconductor materials using microelectromechanical system (MEMS) technologies. However, since LIDAR systems (including the micromachined mirror assembly) are typically used in an environment in which the temperature variation is significant, the thermal expansion and contraction of the materials forming the micromachined mirror assembly due to the temperature variation can cause the change of curvature of the micromachined mirror assembly, which in turn affects the performance of the LiDAR scanner, e.g., by causing beam divergence.
Embodiments of the disclosure address the above problems by an improved micromachined mirror assembly in a scanner for LiDAR.
Embodiments of the disclosure provide a micromachined mirror assembly. The micromachined mirror assembly includes a micro mirror having a first thermal expansion coefficient, a reflective layer having a second thermal expansion coefficient, and a compensation layer having a third thermal expansion coefficient. The reflective layer is disposed on a top surface of the micro mirror and is reflective to incident light of the micromachined mirror assembly. The compensation layer is disposed on the reflective layer and is transparent to the incident light of the micromachined mirror assembly. The first thermal expansion coefficient is between the second thermal expansion coefficient and the third thermal expansion coefficient.
Embodiments of the disclosure also provide another micromachined mirror assembly. The micromachined mirror assembly includes a micro mirror having a first thermal expansion coefficient and at least two coating layers stacked on a top surface of the micro mirror and having a second thermal expansion coefficient and a third thermal expansion coefficient, respectively. The first thermal expansion coefficient is between the second thermal expansion coefficient and the third thermal expansion coefficient.
Embodiments of the disclosure also provide a scanner for LiDAR. The scanner includes a micromachined mirror assembly configured to reflect an incident laser beam and an optical compensation module configured to compensate a beam divergence of the reflected laser beam from the micromachined mirror assembly based on a curvature of the micromachined mirror assembly. The micromachined mirror assembly includes a micro mirror having a first thermal expansion coefficient and at least two coating layers stacked on a top surface of the micro mirror and having a second thermal expansion coefficient and a third thermal expansion coefficient, respectively. The first thermal expansion coefficient is between the second thermal expansion coefficient and the third thermal expansion coefficient.
It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the invention, as claimed.
Reference will now be made in detail to the exemplary embodiments, examples of which are illustrated in the accompanying drawings. Wherever possible, the same reference numbers will be used throughout the drawings to refer to the same or like parts.
As illustrated in
Consistent with some embodiments, LiDAR system 102 and sensor 110 may be configured to capture data as vehicle 100 moves along a trajectory. For example, a transmitter of LiDAR system 102 is configured to scan the surrounding and acquire point clouds. LiDAR system 102 measures distance to a target by illuminating the target with pulsed laser beam and measuring the reflected pulses with a receiver. The laser beam used for LiDAR system 102 may be ultraviolet, visible, or near infrared. In some embodiments of the present disclosure, LiDAR system 102 may capture point clouds. As vehicle 100 moves along the trajectory, LiDAR system 102 may continuously capture data. Each set of scene data captured at a certain time range is known as a data frame.
As part of LiDAR system 102, transmitter 202 can sequentially emit a stream of pulsed laser beams in different directions within its scan angle, as illustrated in
In some embodiments of the present disclosure, laser source 206 is a pulsed laser diode (PLD). A PLD may be a semiconductor device similar to a light-emitting diode (LED) in which the laser beam is created at the diode's junction. In some embodiments of the present disclosure, a PLD includes a PIN diode in which the active region is in the intrinsic (I) region, and the carriers (electrons and holes) are pumped into the active region from the N and P regions, respectively. Depending on the semiconductor materials, the wavelength of incident laser beam 207 provided by a PLD may be smaller than 1,100 nm, such as 405 nm between 445 nm and 465 nm, between 510 nm and 525 nm, 532 nm, 635 nm, between 650 nm and 660 nm, 670 nm, 760 nm, 785 nm, 808 nm, or 848 nm.
Scanner 210 may be configured to emit a laser beam 209 to an object 212 in a first direction. Object 212 may be made of a wide range of materials including, for example, non-metallic objects, rocks, rain, chemical compounds, aerosols, clouds and even single molecules. The wavelength of laser beam 209 emitted may vary based on the composition of object 212. At each time point during the scan, scanner 210 may emit it laser beam 209 to object 212 in a direction within the scan angle by rotating the micromachined mirror assembly as the incident angle of incident laser beam 207 may be fixed. In some embodiments of the present disclosure, scanner 210 may also include optical components (e.g., lenses, mirrors) that can focus pulsed laser light into a narrow laser beam to increase the scan resolution and range of object 212.
As part of LiDAR system 102, receiver 204 may be configured to detect a returned laser beam 211 returned from object 212 in a different direction. Receiver 204 can collect laser beams returned from object 212 and output electrical signal reflecting the intensity of the returned laser beams. Upon contact, laser light can be reflected by object 212 via backscattering, such as Rayleigh scattering, Mie scattering, Raman scattering, and fluorescence. As illustrated in
Photodetector 216 may be configured to detect returned laser beam 211 returned from object 212. Photodetector 216 may convert the laser light (e.g., returned laser beam 211) collected by lens 214 into an electrical signal 218 (e.g., a current or a voltage signal). The current is generated when photons are absorbed in the photodiode. In some embodiments of the present disclosure, photodetector 216 may include avalanche photodiode (APD), such as a single photon avalanche diode (SPAD), a SPAD array, or a silicon photo multiplier (SiPM).
Although scanner 210 is described as part of transmitter 202, it is understood that in some embodiments, scanner 210 can be part of receiver 204, e.g., before photodetector 216 in the light path. The inclusion of scanner 210 in receiver can ensure photodetector 216 to only capture light, e.g., returned laser beam 211 from desired directions, thereby avoiding the interference from other light sources, such as the sun and/or other LiDAR systems. By increasing the aperture of mirror assembly in scanner 210 in receiver 204, the sensitivity of photodetector 216 can be increased as well.
As described above, the incident angle of incident laser beam 207 may be fixed relative to scanner 210, and the scanning of laser beam 209 may be achieved by rotating a single or an array of micromachined mirror assembly in scanner 210.
In some embodiments, reflective layer 306 is made of a metal that is reflective to incident laser beam 308. During the fabrication of reflective layer 306, stress may be built up in reflective layer 306, which can cause the curvature change of micromachined mirror assembly 300, i.e., making reflective layer 306 curved as shown in
As shown in
As shown in
In some embodiments, micro mirror 402 has a first thickness t1, a first thermal expansion coefficient α1, and a first Young's modulus E1; first coating layer 406 has a second thickness t2, a second thermal expansion coefficient α2, and a second Young's modulus E2; second coating layer 408 has a third thickness t3, a third thermal expansion coefficient α3, and a third Young's modulus E3. In some embodiments, the first thickness t1 is greater than the second thickness t2 and the third thickness t3. Under such condition, the curvature change of micromachined mirror assembly 400 due to temperature variation can be reduced when the first thermal expansion coefficient α1 is between the second and third thermal expansion coefficients α2 and α3. For example, depending on the values of the second and third thermal expansion coefficients α2 and α3, the first thermal expansion coefficient α1 can be greater than the second thermal expansion coefficient α2 and smaller than the third thermal expansion coefficient α3 (α2<α1<α3) or can be greater than the third thermal expansion coefficient α3 and smaller than the second thermal expansion coefficient (α3<α1<α2), according to some embodiments. In some embodiments, the curvature change of micromachined mirror assembly 400 due to temperature variation can be avoided when the following condition is met:
That is, a difference between the first and second thermal expansion coefficients α1 and α2 times the second Young's modulus E2 equals to a difference between the first and third thermal expansion coefficients α1 and α3 times the third Young's modulus E3. It is understood that although the above mention condition can be used to avoid the curvature change of micromachined mirror assembly 400 due to temperature variation when the first thickness t1 is greater than the second thickness t2 and the third thickness t3, when the first thickness t1 is not greater than the second thickness t2 or the third thickness t3, the curvature change of micromachined mirror assembly 400 due to temperature variation still may be reduced or even avoided under different conditions.
Micromachined mirror assembly 500 may also include a reflective layer 504 disposed on the top surface of micro mirror 502. In some embodiments, the thermal expansion coefficient of reflective layer 504 is greater than the thermal expansion coefficient of micro mirror 502. Reflective layer 504 is reflective to the incident light, such as an incident laser beam, of micromachined mirror assembly 500, according to some embodiments. That is, reflective layer 504 can reflect at least part of the incident light. In some embodiments, reflective layer 504 is made of a metal including, but not limited to, gold, aluminum, platinum, chromium, or silver. In some embodiments, reflective layer 504 is made of one or more dielectrics, such as multiple layers of alternating dielectric layers (also known as Bragg mirror). The thickness of reflective layer 504 may be between 10 nm and 5000 nm. Depending on the adhesion between the materials of micro mirror 502 and reflective layer 504, in some embodiments, a thin adhesion layer, such as a titanium layer, a chromium layer, or a tungsten layer, is formed between micro mirror 502 and reflective layer 504 to improve adhesion therebetween. The thickness of the adhesion layer may be between 0.5 nm and 100 nm.
Micromachined mirror assembly 500 may further include a compensation layer 506 disposed on reflective layer 504. In some embodiments, the thermal expansion coefficient of compensation layer 506 is smaller than the thermal expansion coefficient of micro mirror 502. Compensation layer 506 is transparent to the incident light, such as the incident laser beam, of micromachined mirror assembly 500, according to some embodiments. When compensation layer 506 is transparent to incident light at a wavelength, the incident light at the wavelength can pass through compensation layer 506 covering reflective layer 504 and reflected by reflective layer 504. In some embodiments, compensation layer 506 is made of a dielectric including, but not limited to, silicon oxide. The thickness of compensation layer 506 may be between 1 nm and 5000 nm. Depending on the adhesion between the materials of reflective layer 504 and compensation layer 506, in some embodiments, a thin adhesion layer is formed between reflective layer 504 and compensation layer 506 to improve adhesion therebetween.
In some embodiments, micro mirror 502 is made of silicon having a thermal expansion coefficient of about 3×10−6/° C., reflective layer 504 is made of gold having a thermal expansion coefficient of about 16×10−6/° C., and compensation layer 506 is made of silicon oxide having a thermal expansion coefficient of about 0.5×10−6/° C.
Micromachined mirror assembly 508 also further includes a compensation layer 510 disposed on the top surface of micro mirror 502. In some embodiments, the thermal expansion coefficient of compensation layer 510 is smaller than the thermal expansion coefficient of micro mirror 502. Compensation layer 510 is transparent to the incident light, such as the incident laser beam, of micromachined mirror assembly 508, according to some embodiments. In some embodiments, compensation layer 510 is made of a dielectric including, but not limited to, silicon oxide. However, as compensation layer 510 is disposed under a reflective layer 512, compensation layer 510 may not be transparent to the incident light. The thickness of compensation layer 510 may be between 1 nm and 5000 nm. Depending on the adhesion between the materials of compensation layer 510 and micro mirror 502, in some embodiments, a thin adhesion layer is formed between compensation layer 510 and micro mirror 502 to improve adhesion therebetween. The thickness of the adhesion layer may be between 0.5 nm and 100 nm.
Micromachined mirror assembly 508 may further include reflective layer 512 disposed on compensation layer 510. In some embodiments, the thermal expansion coefficient of reflective layer 512 is greater than the thermal expansion coefficient of micro mirror 502. Reflective layer 512 is reflective to the incident light, such as an incident laser beam, of micromachined mirror assembly 508, according to some embodiments. That is, reflective layer 512 can reflect at least part of the incident light. In some embodiments, reflective layer 512 is made of a metal including, but not limited to, gold, aluminum, platinum, chromium, or silver. In some embodiments, reflective layer 512 is made of one or more dielectrics, such as multiple layers of alternating dielectric layers (also known as Bragg mirror). The thickness of reflective layer 512 may be between 10 nm and 5000 nm. Depending on the adhesion between the materials of compensation layer 510 and reflective layer 512, in some embodiments, a thin adhesion layer, such as a titanium layer, a chromium layer, or a tungsten layer, is formed between compensation layer 510 and reflective layer 512 to improve adhesion therebetween.
In some embodiments, micro mirror 502 is made of silicon having a thermal expansion coefficient of about 3×10−6/° C., compensation layer 510 is made of silicon oxide having a thermal expansion coefficient of about 0.5×10−6/° C., and reflective layer 512 is made of aluminum having a thermal expansion coefficient of about 24×10−6/° C.
As described above, coating layers may introduce stress to a micromachined mirror assembly, which can make the micromachined mirror assembly curved. In some embodiments, each of the multiple coating layers (e.g., reflective layers 504 and 512 and compensation layers 506 and 510) may be a stress-free layer at a room temperature to maintain the flatness of the micromachined mirror assembly. For example, the coating parameters (e.g., the deposition temperature, rate, etc.) may be tuned, or a post-deposition thermal treatment (e.g., rapid thermal annealing “RTA”) may be performed, to reduce or even remove the internal stress of a coating layer introduced by the fabrication process.
In some embodiments, the micromachined mirror assembly may be curved, and the beam divergency caused by the curved micromachined mirror assembly may be compensated by optical elements. For example,
As a result, optical compensation module 604 may be configured to compensate the beam divergence of the reflected laser beam from micromachined mirror assembly 602 based on the curvature of micromachined mirror assembly 602. Based on the temperature-indifferent curvature of micromachined mirror assembly 602, optical compensation module 604 may include a set of optical elements (e.g., lenses and mirrors) arranged in a way that the beam divergence of the reflected laser beam from micromachined mirror assembly 602 can be compensated or eliminated entirely. In other words, the combination of optical compensation module 604 and curved micromachined mirror assembly 602 functions essentially the same as a flat micromachined mirror assembly with multiple stress-free coating layers described above.
In step S702, a micro mirror having a first thermal expansion coefficient may be formed. The micro mirror may be made of silicon. In some embodiments, one or more microfabrication processes used by MEMS technologies are used for forming the micro mirror including, but not limited to, photolithography, development, dry etching, wet etching, lift-off, deposition, chemical mechanical polishing (CMP), ion implantation, etc.
In step S704, a reflective layer having a second thermal expansion coefficient greater than the first thermal expansion coefficient may be formed on the top surface of the micro mirror. In some embodiments, an adhesion layer, such as a titanium layer or a tantalum layer, may be formed first on the top surface of the micro mirror using one or more deposition processes, such as chemical vapor deposition (CVD), physical vapor deposition (PVD), atomic layer deposition (ALD), spin-coating, spray-coating, any other suitable process, or any combination thereof. In some embodiments, the reflective layer is made of a metal, such as gold or aluminum. The reflective layer may be formed directly on the top surface of the micro mirror or on the adhesion layer using one or more deposition processes, such as CVD, PVD, ALD, electroplating, electrodeless plating, spin-coating, spray-coating, any other suitable process, or any combination thereof. In some embodiments, the deposition parameters, such as the temperature and rate, can be controlled to adjust or even remove the stress of the reflective layer. The thickness of the reflective layer can be controlled by the deposition parameters, such as the temperature, duration, rate, and cycles as well.
In step S706, a compensation layer having a third thermal expansion coefficient smaller than the first thermal expansion coefficient may be formed on the reflective layer. In some embodiments, an adhesion layer, such as a titanium layer or a tantalum layer, may be formed first on the reflective layer using one or more deposition processes, such as CVD, PVD, ALD, spin-coating, spray-coating, any other suitable process, or any combination thereof. In some embodiments, the compensation layer is made of a dielectric, such as silicon oxide. The compensation layer may be formed directly on the top surface of the reflective layer or on the adhesion layer using one or more deposition processes, such as CVD, PVD, ALD, electroplating, electrodeless plating, spin-coating, spray-coating, any other suitable process, or any combination thereof. In some embodiments, the deposition parameters, such as the temperature and rate, can be controlled to adjust or even remove the stress of the compensation layer. The thickness of the compensation layer can be controlled by the deposition parameters, such as the temperature, duration, rate, and cycles as well.
Step S702 of method 701 is the same as step S702 of method 700 and the description of the step is not repeated.
In step S708, a compensation layer having a third thermal expansion coefficient smaller than the first thermal expansion coefficient may be formed on the top surface of the micro mirror. In some embodiments, an adhesion layer, such as a titanium layer or a tantalum layer, may be formed first on the top surface of the micro mirror using one or more deposition processes, such as CVD, PVD, ALD, spin-coating, spray-coating, any other suitable process, or any combination thereof. In some embodiments, the compensation layer is made of a dielectric, such as silicon oxide. The compensation layer may be formed directly on the top surface of the micro mirror or on the adhesion layer using one or more deposition processes, such as CVD, PVD, ALD, electroplating, electrodeless plating, spin-coating, spray-coating, any other suitable process, or any combination thereof. In some embodiments, the deposition parameters, such as the temperature and rate, can be controlled to adjust or even remove the stress of the compensation layer. The thickness of the compensation layer can be controlled by the deposition parameters, such as the temperature, duration, rate, and cycles as well.
In step S710, a reflective layer having a second thermal expansion coefficient greater than the first thermal expansion coefficient may be formed on the compensation layer. In some embodiments, an adhesion layer, such as a titanium layer or a tantalum layer, may be formed first on the compensation layer using one or more deposition processes, such as CVD, PVD, ALD, spin-coating, spray-coating, any other suitable process, or any combination thereof. In some embodiments, the reflective layer is made of a metal, such as gold or aluminum. The reflective layer may be formed directly on the top surface of the compensation layer or on the adhesion layer using one or more deposition processes, such as CVD, PVD, ALD, electroplating, electrodeless plating, spin-coating, spray-coating, any other suitable process, or any combination thereof. In some embodiments, the deposition parameters, such as the temperature and rate, can be controlled to adjust or even remove the stress of the reflective layer. The thickness of the reflective layer can be controlled by the deposition parameters, such as the temperature, duration, rate, and cycles as well.
It will be apparent to those skilled in the art that various modifications and variations can be made to the disclosed system and related methods. Other embodiments will be apparent to those skilled in the art from consideration of the specification and practice of the disclosed system and related methods.
It is intended that the specification and examples be considered as exemplary only, with a true scope being indicated by the following claims and their equivalents.
This application is a Division of U.S. patent application Ser. No. 16/228,819, filed Dec. 21, 2018, the entire contents of which are expressly incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
Parent | 16228819 | Dec 2018 | US |
Child | 17683707 | US |