1. Field of Invention
This invention relates generally to inertial sensors and, more particularly, to an angular rate sensor, or gyroscope, which is relatively immune to external vibration and acceleration.
2. Related Art
Angular rate sensors, or gyroscopes, typically rely on the detection of sinusoidal Coriolis responses with extremely small amplitudes in the sense mode and are susceptible to extraneous responses due to external vibration. Heretofore, some attempts have been made to minimize the effects of vibration through the use of systems such as tuning fork architectures that are designed to cancel common-mode inputs. However, most anti-phase systems can not completely cancel out the mechanical response due to vibration, primarily because of mechanical imbalances, e.g. imbalances in mass and/or stiffness, and electrical imbalances between the components of the anti-phase systems.
It is, in general, an object of the invention to provide a new and improved rate sensor, or gyroscope, which is relatively immune to external vibration and acceleration.
Another object of the invention is to provide a rate sensor, or gyroscope, of the above character which overcomes the limitations and disadvantages of rate sensors, or gyroscopes, heretofore provided.
These and other objects are achieved in accordance with the invention by providing a micromachined gyroscope having a pair of masses disposed generally in a plane and driven for out-of-plane torsional oscillation about a pair of drive axes in the plane, an input axis perpendicular to the drive axes, sense axes perpendicular to the drive axes and the input axis, means mounting the masses for in-plane torsional movement about the sense axes in response to Coriolis forces produced by rotation of the masses about the input axis, a link connecting the two masses together for movement of equal amplitude and opposite phase both about the drive axes and about the sense axes, transducers having input electrodes constrained for linear in-plane movement relative to stationary electrodes, and link beams interconnecting the masses and the input electrodes so that torsional movement of the masses about the sense axes produces changes in capacitance between the input electrodes and the stationary electrodes.
As illustrated in
The midpoints of the adjacent sides of the masses are connected together by a rigid coupling link 26 which permits anti-phase rotation of the two masses about the drive and sense axes while preventing in-phase rotation about those axes. The two masses are thus constrained so that the movement of the two masses both about drive axes and about sense axes is precisely equal in magnitude and opposite in phase. Thus, even in the presence of mechanical imbalances, the two masses are strictly constrained to oscillate in an anti-phase manner and with the exact same amplitude in both the drive mode and the sense mode.
Torsional movement of the masses about sense axes 23, 24 is monitored by transducers 31-34. Each of the transducers has a plurality of spaced apart, parallel input electrodes or plates 36 and a corresponding number of stationary electrodes or plates 37. The input plates are mounted on a shuttle 38 having a peripheral frame 39, with the input plates extending toward each other from opposite sides of the frame in a direction parallel to the x-axis. The stationary plates are mounted on an anchor or stator 41 within the frame and interleaved with the input plates.
The shuttles are suspended from anchors 42 by linear flexures or beams 43 which extend in a direction parallel to the plates and are flexible only in a direction perpendicular to the plates. In the embodiment illustrated, the beams extend in a direction parallel to the x-axis, and the shuttles are constrained for linear in-plane movement in a direction parallel to the y-axis, with motion in all other directions being suppressed.
The transducers are mounted in openings 44 in the masses, with transducers 31, 32 on opposite sides of proof mass 16 and transducers 33, 34 on opposite sides of proof mass 17. Transducers 31, 33 are positioned on one side of the two masses, and transducers 32, 34 are on the other side. As best seen in
The torsional movement of the proof masses about the sense axes is converted to linear movement of the input plates of the transducers by link beams 46, 47 which interconnect mass 16 and the shuttle frames of transducers 31, 32, and by link beams 48, 49 which interconnect mass 17 and the shuttle frames of transducers 33, 34. The connections to the masses are made on the outer sides of the transducers, i.e. the sides opposite anchors 19, near the outer edges of the masses. With the connections to the masses being made away from the sense axes, the movement of the transducer plates for a given movement about the sense axes is amplified by the radius of connection, i.e. the distance between the sense axes and the points of connection to the masses.
In the drive mode, proof masses 16, 17 are driven to oscillate in an anti-phase manner about drive axes 21, 22, as illustrated in
With rigid coupling link 26 joining the proof masses together, the two masses are strictly constrained to oscillate in anti-phase manner with the exact same amplitude in the drive mode. This ensures that the angular drive momentum is perfectly balanced and that the device does not inject any vibration energy into the substrate. The rigid link also eliminates undesired parasitic resonant modes that could interfere with the drive mode.
In the sense mode, Coriolis forces produced by the combination of the drive oscillations and rotation of the proof masses about the y-axis cause the masses to move torsionally, or rotate, about sense axes 23, 24. Since the drive oscillations of the two masses are in opposite directions, the Coriolis moments induced in the two masses are also in opposite directions, and an anti-phase torsional oscillation mode is excited, as shown in
The torsional sense mode response of each proof mass is converted to a linear motion of the shuttles in the two transducers connected to it. Since the shuttles are on opposite sides of the mass, the motions of the two shuttles are in opposite directions and exactly out of phase with each other, and with the shuttles being connected to the masses at a maximum distance from the sense axes, the sense mode response is mechanically amplified, while maintaining the balanced torsional sense operation.
The rigid link strictly constrains the sense mode response of the two proof masses to be perfectly anti-phase. Thus, the two shuttles on each side of the masses move in opposite directions, out of phase with the shuttles on the other side of the masses, and with exactly the same amplitude.
For example, in
With the transducer plates arranged symmetrically and input plates 36 on the side of stationary plates 37 closer to the x-axis in all four of the transducers, movement of a shuttle away from the x-axis causes the capacitance between the plates to change in one direction, and movement toward the axis causes the capacitance to change in the opposite direction. Thus, the capacitances of transducers 31, 33 change in one direction, and the capacitances of transducers 32, 34 change in the other direction.
Means is provided for detecting a total change in the capacitances of the transducers in accordance with the relationship:
ΔC=(C31+C33)−(C32+C34),
where C31, C32, C33, and C34 are the capacitances of transducers 31, 32, 33, and 34, respectively. As illustrated in
As illustrated in
The device is preferably packaged for operation in vacuum to minimize air damping and thereby enhance the mechanical response amplitude of the gyroscope. Vacuum packaging can be done either at the die level or at the wafer level. In the embodiment illustrated, it is done at the wafer level with a bonding cap or wafer 66. Wafer level packaging has many advantages, especially from a cost standpoint, since a large number of devices can be vacuum packaged at the same time. The bonding cap has cavities 67 etched into it, and it can be bonded to the device wafer by any suitable wafer bonding method that provides a hermetic seal. If desired, the electrical connections can be routed outside the cavity through the cap layer, rather than the substrate, using through-wafer vias. The outer ends of the vias can be solder bumped to provide a ball grid array package or connected to bonding pads similar to pads 64 for wirebonding.
The embodiment of
This embodiment also differs in that the input plates 36 of transducers 31, 32 are positioned above the stationary plates 37, and the input plates of transducers 33, 34 are positioned below the stationary plates. Thus, movement of the shuttles in a downward direction produces an increase in the capacitance of transducers 31, 32 and a decrease in the capacitance of transducers 33, 34. Likewise, upward movement of the shuttles decreases the capacitance of transducers 31, 32 and increases the capacitance of capacitors 33, 34.
Operation of the embodiment of
The embodiment of
As in the other embodiments, the oscillation of the two masses in the drive mode is precisely out of phase and equal in amplitude, as illustrated in
The invention has a number of important features and advantages. It provides a balanced torsional mechanical system, which minimizes the mechanical response to external acceleration inputs, while converting the torsional sense motion into anti-phase linear translation to amplify Coriolis response and cancel out common-mode response.
It is apparent from the foregoing that a new and improved angular rate sensor, or gyroscope, has been provided. While only certain presently preferred embodiments have been described in detail, as will be apparent to those familiar with the art, certain changes and modifications can be made without departing from the scope of the invention as defined by the following claims.