The present invention is directed to the manufacture of a capacitive sensor element produced micromechanically in a monolithic design and a micromechanical device having such a sensor element, having at least one first electrode and one second electrode, a diaphragm and a cavity.
Capacitive surface micromechanical (SMM) pressure sensors are known in various embodiments. In contrast with piezoresistive sensors, capacitive sensors have the advantage that they are capable of analyzing the measuring capacitances contained therein using virtually no power. This is due mainly to the fact that they avoid the use of stress detectors in the form of piezoresistors through which high currents would otherwise flow. Furthermore, capacitive pressure sensors offer the advantage that they are largely independent of temperature.
For many applications, it is desirable to have capacitive pressure sensors (or other capacitive sensor elements) which may be designed to be monolithically integrated as part of an IC manufacturing process, e.g., a CMOS process.
Capacitive pressure sensors usually have a cavity bordered by two electrodes, one electrode being formed by an elastic, electrically conducting diaphragm and the other electrode being formed by a capacitor plate opposite the electrically conducting diaphragm. A pressure difference between the pressure prevailing in the cavity and the outside pressure results in bending of the diaphragm and thus a change in the distance between the electrically conducting diaphragm and the capacitor plate opposite this diaphragm. The outside pressure acting on the capacitive pressure sensor is determined from the change in capacitance associated with this in the capacitor formed from the electrically conducting diaphragm and the capacitor plate. Such a typical capacitive pressure sensor is known from European Patent Publication No. EP 0 714 017, in which the cavity between two electrodes is manufactured by sacrificial layer etching.
German Patent Publication No. DE 101 21 394 describes a capacitive pressure sensor having a second electrode which largely surrounds the first electrode and is at the same electric potential. This achieves the result that the electric field, i.e., the measuring field, prevailing between the (third) diaphragm electrode and the first electrode of the capacitive pressure sensor is largely shielded with respect to electric interference fields that may surround a micromechanical pressure sensor. This largely suppresses any influence on the capacitance to be detected as a measure of the pressure detected.
German Patent Publication No. DE 40 041 79 A1 describes an integrable capacitive pressure sensor in which a first electrode in a semiconductor substrate and a second electrode are created by deposition and doping of a polycrystalline semiconductor layer. A spacer layer is applied, defining the subsequent pressure sensor cavity. This spacer layer is removed by an etching operation at a subsequent point in time.
The present invention describes a manufacturing method for creating a micromechanical sensor element that may be produced in a monolithically integrable design and has capacitive detection of a physical quantity. In addition to the manufacturing method, a micromechanical device containing such a sensor element, e.g., a pressure sensor or an acceleration sensor, is also described. According to the present invention, the manufacturing method includes various method steps, at least one first electrode being produced in or on the semiconductor substrate.
In addition, a first layer is applied to the first electrode, the first layer in particular also covering parts of the semiconductor substrate or an insulation layer which is beneath the first electrode and extends laterally beyond the first electrode. A first sacrificial layer is then applied, which has a first sacrificial material and is produced on the semiconductor substrate at least partially above the first electrode. A second layer is then applied to the first sacrificial layer, a first through hole being created therein, thereby creating access to the first sacrificial layer. A second electrode is applied to the second layer. The first through hole is sealed using a second sacrificial material, forming a second sacrificial layer, preferably on the second layer. The diaphragm layer is then applied to the second electrode and at least to a portion of the second layer adjacent to the second electrode. The second sacrificial layer may also be covered. A second through hole is then created in the diaphragm layer, permitting access to the second sacrificial layer. The second and first sacrificial materials may be dissolved through the second through hole and following that through the first through hole. This is preferably accomplished by a plasmaless etching process. Next a third layer is applied to the diaphragm layer, sealing at least the second through hole and thus creating a cavity in the area of the first sacrificial layer between the first and second electrodes.
The significant advantage in comparison with the known related art is the separation of the mechanical function of the diaphragm from the electric function of the upper capacitive electrode. In addition, the upper capacitive electrode may be formed by a thin conductive film which may be deposited at moderate temperatures and structured independently of the diaphragm layer. The etching process may be terminated in a controlled manner through the use of the two sacrificial layers. Furthermore, dry plasmaless sacrificial layer etching prevents etching residues from being left behind.
It is also advantageous to apply an insulating layer to the semiconductor substrate before creating the first electrode.
This prevents leakage currents that could falsify the test signal from occurring on the first electrode during the measurement operation. Such leakage currents may occur at a pn-type junction, for example, when an n-type electrode is produced in a p-type substrate. Furthermore, in the case of a first electrode insulated from the substrate, it may be at any potential without regard for interaction with the substrate.
In a refinement of the present invention, the first electrode may contain an n-type or p-type conducting doped semiconductor or polysilicon. In addition, at least the first or second layer may also contain an oxide, nitride or TEOS. Although Si or SiGe may be provided for the first sacrificial material, SiGe or polysilicon is provided for the second sacrificial material. In addition, the second electrode may also contain Si, SiGe or polysilicon, while the diaphragm layer preferably contains nitride, oxide or a dielectric material. Finally, the third layer may contain nitride.
The first layer advantageously has a layer thickness of 40 nm to 250 nm, the first sacrificial layer has a layer thickness of 0.3 μm to 1 μm, the second layer has a layer thickness of 50 nm to 250 nm and the diaphragm layer has a layer thickness of 100 nm to 1000 nm. On the whole, a layer stack having minimal topography may be produced by using these thin layers. For example, layer stacks thinner than 1.7 μm and having a topography of <0.5 μm are conceivable.
To seal the second through hole, the layer thickness of the third layer should be greater than the layer thickness of the second sacrificial layer. Enough material may thus be provided to seal the second through hole.
To achieve the most planar and uniform possible diaphragm layer, the layer thickness of the second sacrificial layer may be selected as a function of the layer thickness of the second electrode. Both layers may be applied in the same thickness here in particular.
The micromechanical sensor element is advantageously manufactured as part of a standard IC process (e.g., a CMOS process). Circuit parts that are used for contacting the sensor element and for detecting and/or analyzing the sensor signals of the sensor element may be produced on the sensor element. As a classical micromechnical process, sacrificial layer etching may under some circumstances be shifted to the end of the process (before passivation). Therefore, no cavity would have to be processed in the CMOS line because the operations of sacrificial layer etching, passivation and, if necessary, opening the passivation for contacting the sensor element may be performed by the micromechanical process. Furthermore, there would not be any movable part in the CMOS processing line, so the risk due to particles is reduced.
The manufacturing method proposed here allows production of a capacitive sensor element having a reduced parasitic capacitance by at least one order of magnitude in comparison with known sensor elements. This permits a high signal-to-noise ratio, thus also requiring less area for the sensor element. Furthermore, the reduced parasitic capacitance results in reduced current consumption for the analytical circuits. One possibility of further reducing the parasitic capacitances is to increase the insulation distance between the two electrodes. In addition to selecting a thicker first sacrificial layer, this may also be accomplished by applying a fourth insulating layer between the first and second layers, and in particular this fourth layer may be situated only partially between the first and second electrodes. However, it is particularly advantageous if the fourth layer is applied next to the first sacrificial layer and has a layer thickness comparable to that of the latter. Therefore, the third layer may be produced without a pronounced step at least in the area of the first and/or second electrodes.
In a special embodiment of the present invention, the plasmaless etching process for dissolving the first and second sacrificial layers is performed with a fluorinated etching material such as ClF3 and/or XeF2. By using a plasmaless etching process, the two sacrificial layers may be dissolved away after producing circuit elements by a CMOS process. Heat damage to thin printed conductors within such circuit elements may thus be avoided. Such etching processes may typically be used at temperatures between −20° C. and 60° C.
In general, the layers of the sensor elements described here may be produced using standard equipment. The layer tension of the diaphragm may be adjusted by using an RTA process (rapid thermal annealing process) if necessary.
In addition to the sensor element, a reference measuring element may be produced on the semiconductor substrate, advantageously also by the method of the main claim described here. According to the present invention, in the first sacrificial layer of the reference element, at least one third through hole which permits access to the first layer is produced in the first sacrificial layer of the reference element to form support points for the diaphragm. In a refinement of the present invention, this at least one third through hole may then be filled with the material of the second electrode and/or with the material of the diaphragm layer. After dissolving out the first and second sacrificial layers, a cavity is formed beneath the diaphragm, which stands on posts in comparison with the sensor element. Movement of the diaphragm may thus be reduced, if not prevented entirely. The residual movement of the diaphragm of course depends on how many through holes and/or support points/posts are produced and how they are distributed spatially in the interspace between the two electrodes.
Shielding of the measuring electrode(s) against external interference fields may be achieved by an additional conductive layer that forms a third electrode over the entire sensor element (Faraday cage). Such a third electrode may include, for example, an additional polysilicon layer or a metal layer. In combination with the CMOS process, the layer may also include a CMOS metal level. To avoid possible temperature effects, the shielding electrode may be structured like a mesh grating, for example. However, a shielding effect may also be achieved by keeping the second (upper) electrode at ground potential.
In another embodiment of the present invention, a mass element having a defined seismic mass in particular is applied to the diaphragm and/or a passivation layer adjacent to the diaphragm above the first and second electrode. The mass element may be produced by a local deposition method, a dispensing method, a screen printing method or a known micromechanical structuring method.
With such a mass element on the diaphragm, an acceleration sensor may be produced in a simple design using a capacitive sensor element. The sensitivity may be adjusted easily through the choice of mass and also through the triggering and analysis of the two electrodes, e.g., by an offset adjustment in initializing the sensor element. By using multiple diaphragm cells having mass elements of different weights, it is also possible to cover a greater bandwidth of possible acceleration values. Each diaphragm cell advantageously includes two electrodes, a cavity between the electrodes and a diaphragm, a supporting device being provided in the cavity to prevent the diaphragm from breaking when there is excessive sagging.
Such an acceleration sensor eliminates the need for expensive capping of otherwise conventional acceleration sensors to protect them before sawing, separation and/or assembly. Simple adjustment of the sensitivity is also possible through a defined choice of mass, and multi-channel elements may also be produced easily, as shown here.
In general, by combining CMOS processes and micromechanical method steps to produce the sensor element according to the present invention, the layers and levels may be coordinated mutually and thus used jointly. This yields a more efficient and therefore less expensive manufacturing operation.
The capacitive sensor elements according to the present invention may also advantageously be used at high temperatures by using polysilicon electrodes separated by oxide layers from the substrate and from other layers. This has advantages, for example, when used as tire pressure sensors because a low power consumption is also required, and as combustion chamber pressure sensors.
a through k show method steps for producing the capacitive sensor element according to the present invention.
a and b show insertion of an additional insulation layer.
a and b show a reference element having supporting posts.
a through c show an acceleration sensor.
a and b show a change in the clamping of the diaphragm.
a through h show an alternative process sequence for producing a capacitive sensor element according to the present invention.
a through k illustrate a possible manufacturing process for a monolithically integrated capacitive sensor element according to the present invention using micromechanical method steps. According to
b shows first layer 115 having a thickness of 40 nm to 250 nm applied to the entire circuit. The first layer is deposited at temperatures <900° C. and serves to protect first electrode 110 and/or regions 104 and/or 105 from attack by ClF3, XeF2 or the like. First layer 115 is preferably made of oxide or nitride, but is preferably a TEOS layer applied to the surface at 400° C. with ozone support in a preferred thickness of 100 nm. When using thermal oxide (e.g., thick gate oxide) for first layer 115, 40 nm (or less) is sufficient. In addition to insulating first electrode 110, the main use of first layer 115 is to protect against the subsequent plasmaless etching, e.g., by ClF3. Therefore, one requirement of first layer 115 is that it must be tight and resistant to the etching materials used in this process.
As shown in
d shows the production of second layer 130, which is deposited over the entire surface of first sacrificial layer 125 and the remaining surface of the substrate. Second layer 130 is preferably between 50 nm and 250 nm thick and is deposited at temperatures below 900° C. A layer resistant to the subsequent plasmaless etching process is to be produced using this second layer 130 of nitride or oxide. Another option is to form second layer 130 from a 100-nm-thick ozone-supported TEOS layer. Such TEOS:O3 layers generally have dense surfaces and a resistance to ClF3 etching. In addition, such layers have very good edge coverage and also have the property of very efficiently smoothing out surface roughness, partially compensating for the roughness of first sacrificial layer 125. It is also advantageous, although not obligatory, if the layer tension of second layer 130 is low and/or second layer 130 has a low tensile stress. If a difference in thermal expansion coefficients between second layer 130 and diaphragm layer 140 yet to be applied results in an unwanted drift in temperature sensitivity and/or in the sensor offset, the second layer may be made of the same material as diaphragm layer 140 (e.g., both may be made of LPCVD nitride).
To obtain access to first sacrificial layer 125 for the subsequent etching process, first through hole 155 is created in second layer 130, e.g., by a suitable dry etching method in another method step (see
In the next method step (see
When using polysilicon or poly SiGe as the material for second electrode 135, a poly sheet may be produced at the same time with the electrode layer in the area of first through hole 155 and may then later be used as the etching access for the subsequent plasmaless etching process. In general, second sacrificial layer 170 of a second sacrificial material is produced, filling both first through hole 155 and also covering a portion of second layer 130 situated next to first through hole 155. Therefore, an offset etching access 175 having access to first sacrificial layer 125 may be produced with a second through hole 160 (see
As shown in
In sacrificial layer etching using ClF3 or XeF2, all exposed polysilicon layers are etched very rapidly (see
Since Al is not etched by ClF3, the sacrificial layer etching process may also be performed after deposition and structuring of the last metal level in the CMOS process. In this exemplary embodiment, at first no cavity is created that would otherwise have to be protected during CMOS wiring. This eliminates the risk of mechanical damage due to process handling and/or ultrasonic cleaning. In this exemplary embodiment, the cavity is created and sealed at the end of the CMOS process by the last passivation step, which seals etching access 175.
In general, according to
After sealing cavity 120, the wiring levels in the CMOS process are further created. As one approach,
With the present exemplary embodiment of the present invention, parasitic capacitances may be reduced in comparison with the known approaches in the manufacture of capacitive sensor elements. This is due, among other things, to the fact that only a very narrow printed conductor 185 leads away from the diaphragm and the upper electrode is not connected over the full extent of a very broad support via the outer connecting regions in the substrate, as is the case with the known capacitive sensors, because the electrode also forms the bearing diaphragm construction with the known sensors. In addition, the insulation distance, made up of layers 115 and 130, may be selected to be much larger with the present capacitive sensor element. In addition, another insulation layer 300 (see
In another exemplary embodiment, a reference element may also be created in addition to the capacitive sensor element already described. For the design of a reference element with the help of which the offset of the sensor may be determined, for example, through holes to first layer 115 are created within first sacrificial layer 125. Non-positively connected but electrically insulated supports 400 and/or 410 may be formed beneath the pressure diaphragm with these through holes, mechanically connecting the diaphragm to the substrate. Cavity 420 supported by supports, i.e., posts, is thus created by sacrificial layer etching. As shown in
Another exemplary embodiment is depicted in
The design according to
A further improvement, i.e., stabilization, of the detection of measured values by the capacitive sensor element described here is achievable by using shielding. Such shielding makes it possible to reduce the effect on the test signal due to external interference fields, external objects, dirt or other layers during the manufacturing process. To this end, the external electrode, i.e., second electrode 640 of the sensor element, may be at ground potential, e.g., by connecting it electrically to the substrate wafer or by low-resistance clamping. This shields the lower electrode, i.e., first electrode 620, from external interference fields (Faraday cage). Measuring capacitor 675 formed by the two electrodes may then be analyzed, e.g., by applying a charge to lower electrode 620 and then converting this charge into a voltage signal by a charge amplifier (switched capacitor circuit). This output voltage is proportional to the capacitance of measuring capacitor 675. Due to the shielding effect, the sensor chip is independent of external interference fields as well as external objects which have different dielectric values or are conductive. Such objects may include, for example, dirt, additional layers in the process or the sensor housing. A shielded capacitor is also insensitive to external proximity or media coming in contact with the sensor, because these influences are unable to affect the field of the measuring capacitor.
Another possibility of achieving shielding is to apply an additional conductive layer over the entire pressure measuring capacitor. Such a layer may be, for example, another polysilicon layer or a metal. In conjunction with the CMOS process, the layer may be one of the CMOS metal levels. To prevent possible temperature effects, the shielded electrode may be structured like a mesh grating, for example.
The function of the capacitive sensor element depends to a great extent on the different thermal expansion coefficients of the various layers of the diaphragm and the clamping of the diaphragm. Layer stress causes bulging of the diaphragm, which is superimposed on the actual test signal. If materials of approximately the same thickness are used for the diaphragm, the layer stress has a particularly great effect (bimetal effect). The diaphragm enclosure also has a great influence on sensor function. The same effects as described for the diaphragm also occur in the area of the clamping of the diaphragm. If the geometry of the enclosure changes as a function of temperature, then force and torque along the attachment also change. This results in interfering deflection of the diaphragm as a function of temperature. Although this may be mostly compensated in the analyzer circuit, this is complicated in the case of high-temperature effects and is associated with additional costs.
b illustrates an exemplary embodiment in which the negative effect of the clamping of the diaphragm is reduced. The diaphragm is defined by the greater thickness mainly due to polysilicon. The layers above and below polysilicon layer 640 are approximately symmetrical in structure so the stress is compensated. The diaphragm in
An alternative possibility of removing the various oxide and nitride layers over the diaphragm is for BPSG (not shown) to be deposited instead of nitride over second upper electrode 640. BPSG is the next insulation layer deposited in the CMOS process. If the first metal (e.g., 685) is not etched away on the diaphragm, it may be used as an etching stop in conclusion in etching the oxide and nitride layers. The metal is then removed and the passivation is deposited. As another embodiment, the polysilicon diaphragm according to
In another exemplary embodiment, the micromechanical capacitive sensor element according to the present invention as illustrated in
Mass element 570 having a defined mass may be applied after completion of the integrated capacitive diaphragm sensor. Local deposition methods may be used for this such as those known in the inkjet printing method from DE 103 15 963 A1. It is also conceivable to use dispensing methods in which tiny quantities of lacquers may be applied in a controlled manner. In addition, however, known screen printing methods may also be used. Deposition may be performed in the tempering step in which the applied substance is hardened. Simple dyes, lacquers, polymers, suspensions or similar materials processable in a controlled manner may be used as the substance for mass element 570.
Alternatively, a layer may also be applied over the entire area and may be structured by a known (micromechanical) masking method in a subsequent step so that a defined mass element 570 remains standing over dielectric diaphragm 540.
c illustrates the distribution of mass elements 570 and 580 having different masses over a plurality, of diaphragm cells. The sensitivity of the inertial sensor may be determined by the lateral dimension and the distribution of the mass of the capacitive sensor diaphragm. In this way, low-g to high-g applications may be covered with sufficient accuracy. A high overload withstand capability is achieved due to the diaphragm form of the spring. Transverse accelerations in the x and y directions (in plane with the chip) have a slight effect on the sensor signal. A high overload protection may additionally be achieved by the fact that the diaphragm may be contacted in the event of an overload, so the center of the diaphragm is supported.
Another exemplary embodiment is illustrated in
The basis for the process flow to be described in conjunction with
The starting point for the process is a (semiconductor) substrate 700 onto which an approximately 700 nm thick structured LOCOS layer 710 is deposited for thermal and electric insulation, as illustrated in
Alternatively, etching access 765 could also be opened first, sacrificial layer etching performed using ClF3 and the etching access sealed again. Only then could access 870 to the diaphragm be exposed.
Another possibility of opening, i.e., exposing, the etching access and diaphragm is not to remove the metal layers of which wiring elements 790, 835, 840 and 845 are formed in the pressure gauge area in the previous CMOS process but to remove the SiO2 passivation layers in a countermove (comparable to a via contact). The metal stack above the pressure gauge could then be etched by a wet chemical method in a highly selective process with respect to SiN. Etching of the sacrificial layer and sealing of the etching access then proceed as already described.
Number | Date | Country | Kind |
---|---|---|---|
10 2004 061 796.1 | Dec 2004 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2005/055755 | 11/4/2005 | WO | 00 | 3/6/2009 |