Embodiments of the present invention refers to a micromechanical sound transducer with at least one bending actuator (in general: bending transducer) and a miniaturized slit as well as to a miniaturized sound transducer having a cascaded bending transducer. Additional embodiments concern corresponding manufacturing methods.
Although MEMS are used in almost all areas, miniaturized sound transducers are still manufactured using precision engineering. These so-called “micro-speakers” are based on an electrodynamic driving systems wherein a membrane is deflected by a moving coil that moves in a permanent magnetic field. A significant disadvantage of these conventional electrodynamic sound transducers is their low efficiency and the resulting high power consumption of often times more than one watt. In addition, such sound transducers do not comprise any position sensor systems, so that the movement of the membrane is unregulated and large distortions occur at higher sound pressure levels. Further disadvantages are large series deviations as well as large height dimensions of often times more than 3 mm.
Due to ultra-precise manufacturing methods as well as energy-efficient driving principles, MEMS have the potential to overcome these disadvantages and to enable a new generation of sound transducers. However, it still is a fundamental problem that the sound pressure levels of MEMS sound transducers are too low. The primary reason for this is the difficulty to generate sufficiently large stroke movements with dimensions that are as small as possible. A further complicating factor is that in order to prevent an acoustic short circuit, a membrane is needed which has a negative effect on the overall deflection due to its additional spring stiffness. The latter may be minimized by using very soft and three-dimensionally shaped membranes (e.g. having a torus), which, however, may currently not be manufactured using MEMS technology and may therefore only be integrated in a complex and costly hybrid manner.
Publications and patent specifications concern MEMS sound transducers of different implementations, which has not resulted in market-ready products due to, inter alia, the above-mentioned problems. These concepts are based on closed membranes that are set in vibration and that generate sound. For example, [Hou13. US2013/156253A1] describes an electrodynamic MEMS sound transducer using the hybrid integration of a polyimide membrane and a permanent magnet ring. [Yi09, Dej12, U.S. Pat. Nos. 7,003,125, 8,280,079, US2013/0294636A1] illustrates the concept of piezoelectric MEMS sound transducers. Here, piezoelectric materials such as PZT, AlN or ZnO are directly applied onto silicon-based sound transducer membranes, however, which do not allow for sufficiently large deflections due to their low elasticity. [US 20110051985A1] illustrates a further piezoelectric MEMS sound transducer having a plate-shaped body that is deflected out of the plane in a piston-shaped manner via a membrane or several actuators. [Gla13, U.S. Pat. No. 7,089,069, US20100316242A1] describe digital MEMS sound transducers on the basis of arrays having electrostatically-driven membranes, however, which are capable to generate sufficiently high sound pressures only at high frequencies. Thus, there is a need for an improved approach.
According to an embodiment, a micromechanical sound transducer for emitting sound, being set up in a substrate, may have: a first bending transducer that extends along a plane of the substrate and has a free end or a free side and is configured to be excited to vibrate vertically in order to emit or receive a sound; and a diaphragm element extending vertically to the first bending transducer, the diaphragm element being separated from the free end or the free side of the first bending transducer via a slit; wherein the slit is smaller than 5% or smaller than 1% or smaller than 0.1% or smaller than 0.01% of the surface area of the first bending transducer and wherein, upon a deflection, the slit is smaller than 10%, 5%, 1%, 0.1% or 0.01% of the surface area of the first bending transducer.
According to another embodiment, a micromechanical sound transducer set up in a substrate may have: a first bending transducer that extends along a plane of the substrate and has a free end or a free side and is configured to be excited to vibrate vertically in order to emit or receive a sound; and a diaphragm element extending vertically to the first bending transducer, the diaphragm element being separated from the free end or the free side of the first bending transducer via a slit; wherein the micromechanical sound transducer has a lid that is placed onto the substrate in the area of the first bending transducer so that at least the first bending transducer and the diaphragm element are covered by the lid or the first substrate, and wherein the lid forms the diaphragm element.
Another embodiment may have a method for manufacturing a micromechanical sound transducer set up in a substrate, the micromechanical sound transducer having a first bending transducer extending along a plane of the substrate, and a diaphragm element extending vertically to the first bending transducer, wherein the method may have the following steps: structuring a layer in order to form the first bending transducer so that it has a free end or a free side and is configured to be excited to vibrate vertically in order to emit or receive sound; and realizing the vertical diaphragm element so that it extends beyond the layer of the first bending transducer and is separated from the free end of the first bending transducer via a slit; wherein the slit is smaller than 5% or smaller than 1% or smaller than 0.1% or smaller than 0.01% of the surface area of the first bending transducer and wherein, upon a deflection, the slit is smaller than 10%, 5%, 1%, 0.1% or 0.01% of the surface area of the first bending transducer.
Another embodiment may have a method for manufacturing a micromechanical sound transducer set up in a substrate, the micromechanical sound transducer having a first bending transducer extending along a plane of the substrate, and a diaphragm element extending vertically to the first bending transducer, wherein the method may have: structuring a layer in order to form the first bending transducer so that it has a free end or a free side and is configured to be excited to vibrate vertically in order to emit or receive sound; and realizing the vertical diaphragm element so that it extends beyond the layer of the first bending transducer and is separated from the free end of the first bending transducer via a slit; wherein the micromechanical sound transducer has a lid that is placed onto the substrate in the area of the first bending transducer so that at least the first bending transducer and the diaphragm element are covered by the lid or the first substrate, and wherein the lid forms the diaphragm element.
Another embodiment may have a micromechanical sound transducer with a first bending transducer, wherein the micromechanical sound transducer may have a free end or a free side and be configured to be excited to vibrate vertically in order to emit or receive sound; wherein the first bending transducer has a first and a second bending element connected in series in order to form the first bending transducer, wherein the first bending element may be driven with a first control signal and the second bending element may be driven with a second control signal; wherein the first bending element has a clamped-in end and a free end, and the second element grips with its clamped-in end the free end of the first bending element and forms with its free end the free end of the first and/or the second bending transducer, and wherein the first bending element is connected to the second bending element via a flexible element or a connection element.
Another embodiment may have a method for manufacturing an inventive micromechanical sound transducer, the micromechanical sound transducer having a first bending transducer, wherein the method may have the following steps: providing in a mutual plane a first layer that at least forms the first bending transducer with a first and a second bending element each so that the first bending transducer has a free end; and connecting the respective first bending element to the second bending element of the respective first bending transducer.
Embodiments of the present invention provide a micromechanical sound transducer (e.g. set up in a substrate) with a first bending transducer, or bending actuator, and a second bending transducer, or bending actuator. The first bending actuator comprises a free end and, e.g., at least one or two free sides and is configured to be excited, e.g. by an audio signal, to vibrate vertically and to emit (or receive) sound. The second bending actuator also comprises a free end and is arranged opposite to the first bending actuator such that the first and the second bending actuator are located, or suspended, in a mutual plane. Furthermore, the arrangement is implemented such that a slit (e.g. in the micrometer range) separating the two bending actuators is formed between the first and the second bending actuator. The second bending actuator is excited to vibrate in-phase with the first bending actuator, which results in the slit essentially remaining constant across the entire deflection of the bending actuators.
Embodiments for this aspect of the invention are based on the finding that by using several separated bending transducers, or actuators, that are separated by a minimum (separation) slit, with the identical deflection of the two transducers, or actuators, out of the plane, it may be achieved that the slit remains approximately constantly small (in the micrometer range) between the two actuators so that there are high viscosity losses present in the slit that consequently prevent an acoustic short circuit between the rear volume and the front volume (of the bending actuator). Compared to existing MEMS systems that mostly are based on closed membranes, the present concept allows for a significant increase in performance. The primary reason is that, due to the decoupling of the actuator, no energy has to be used for deforming additional mechanical membrane elements, which allows for significantly higher deflections and forces. In addition, nonlinearities only occur at significantly larger movement amplitudes. While conventional systems sometimes need complexly shaped membranes and magnets that may so far not be realized in MEMS technology, but may only be integrated in a hybrid manner with large efforts, the present concept may be realized with known silicon technology methods. This provides significant advantages with respect to manufacturing processes and costs. Since, for reasons of concept and material, the vibrating mass is small, systems with extraordinary broad frequency ranges and at the same time large movement amplitudes may be realized.
A further aspect provides a micromechanical sound transducer with a first bending transducer, or bending actuator, (configured to be excited to vertically vibrate) and a diaphragm element extending vertically (i.e. out of the plate of the substrate and therefore also out of the extension plane of the bending transducer) to the first bending transducer, or bending actuator. The diaphragm element is separated by a slit (gap) from the free end of the first bending actuator.
The finding of this aspect is that, due to the diaphragm element, it may be achieved (due to the vibration) that the distance between the diaphragm element and the free end of the actuator approximately remains constant across the entire movement range of the transducer, or actuator. This achieves the same effect as above, i.e. an acoustic short circuit may be prevented due to the high viscosity losses at the free end (and possibly also at the free sides) or in the slit. As a result, the same advantages arise, in particular with respect to the efficiency of the sound transducer, the broadband characteristics and the manufacturing costs.
An embodiment refers to a manufacturing method of such an actuator with a diaphragm element. This method includes the following steps: structuring a layer in order to form the first bending actuator, and manufacturing or depositing the vertical diaphragm element so that it extends beyond the layer of the first bending actuator. The term vertical is to be understood as perpendicular (perpendicular to the substrate plane) or generally angular with respect to the substrate (angular range 75°-105°).
Regarding the variation with the at least two bending actuators, it is to be noted that, according to an embodiment, the first and the second bending actuator are bending actuators of the same type. For example, there may be planar, rectangular, trapezoid-shaped or general polygonal bending actuators. According to a further embodiment, these bending actuators may each have a triangular shape or a circular-segment shape. The triangular or circular-segment shape is often used in micromechanical sound transducers that include more than two bending actuators. Thus, according to a further embodiment, the micromechanical sound transducer includes one or several further bending actuators, e.g. three or four bending actuators.
As described above, driving the bending actuator simultaneously, or in-phase, or providing the diaphragm element makes it possible that, assuming a slit that (in an idle state) is smaller than 10% or even smaller than 5%, 2.5%, 1%, 0.1% or 0.01% of the surface area of the first bending actuator, the slit remains small across the entire movement range, i.e. even when deflected it comprises at most 15% or even only 10% (or 1% or 0.1% or 0.01%) of the surface area of the first bending actuator. Regarding the variation having the diaphragm element, it is to be noted that the height of the diaphragm element is dimensioned such that it amounts to at least 30% or 50% or advantageously 90% or even 100% or more of the maximum deflection of the first bending actuator in linear operation (i.e. a linear mechano-elastic range), or of the maximum elastic deflection of the first bending transducer (generally 5-100%). Alternatively, the height may be defined depending on the slit width (at least 0.5 times, 1 time, 3 times, or 5 times the slit width) or depending on the thickness of the bending transducer (at least 0.1 times, 0.5 times, 1 time, 3 times or 5 times the thickness). These dimensioning rules for the two variations allow for the above-described functionality/prevention of acoustic short circuits across the entire deflection range and therefore across the entire sound level range.
According to a further embodiment, a diaphragm element may not only be arranged opposite to the free end, but it may also be arranged, e.g., at the sides around the bending actuator that are not clamped in. In particular, this makes sense if the bending actuator is a bending actuator clamped in on one side.
According to an embodiment, the diaphragm element may comprise a varying geometry (e.g. a geometry that is curved/tiled towards the actuator) in its cross section so that the slit mostly has a constant cross section along the actuator movement. According to embodiments, the diaphragm may form a mechanical stop to prevent a mechanical overload.
A further embodiment provides a micromechanical sound transducer that includes a controller which drives the second bending actuator such that it is excited to vibrate in-phase with the first bending actuator. In addition, according to a further embodiment, it may be advantageous to provide a sensor system that senses the vibration and/or position of the first and/or second bending actuator to allow the controller to drive the two bending actuators in-phase. In contrast to conventional systems that mostly do not have a sensor system and that only sense the deflection of the drive (not only the membrane), in this principle, the actual position of the sound-generating element may be easily determined by means of a well-integrable sensor system. This is very advantageous and allows for a significantly more precise and reliable detection. This forms the basis for a regulated excitation (closed-loop) which may electronically compensate for external influences, aging effects and nonlinearities.
According to an embodiment, the bending actuators may also comprise a so-called “cascade connection (cascading)”. That is, the first and/or second bending actuator each includes at least one first and second bending element. These elements are connected in series. According to embodiments, “connected in series” means that the first and the second bending element comprise a clamped-in end and a free end, and the second bending element grips with its clamped-in end the free end of the first bending actuator and forms with its free end the free end of the overall bending actuator. In this case, the connection between the two bending elements may be formed by a flexible element, for example. Optionally, the micromechanical sound transducer may comprise an additional frame that, e.g., is provided in an area of transition between the first and the second bending element. It serves for stiffening and for mode-decoupling. Regarding the two bending elements, it is to be noted that, according to an embodiment, they may be driven with different control signals so that, e.g., the inside bending element, or the inside bending elements, is used for higher frequencies, whereas the outside bending elements are driven to vibrate in a lower frequency range.
A further aspect provides a micromechanical sound transducer with at least one, advantageously two, bending actuators, wherein each bending actuator includes a first and a second bending element that are connected in series. According to a further embodiment, such bending actuators may comprise a flexible connection instead of a separation slit.
Embodiments of this aspect of the invention are based on the finding that by using a serial connection of several bending elements of a bending actuator, it may be achieved that different bending actuators are responsible for different frequency ranges. Thus, e.g., the inside bending actuator may be configured for a high frequency range, whereas the one further on the outside may be operated for a low frequency range. In contrast to conventional membrane approaches, the concept described herein enables a cascade connection with several individually drivable actuator stages. In addition, due to the frequency-separated control in combination with the piezoelectric drives, significant increases in the energy efficiency may be achieved. The high-quality mode-decoupling provides advantages in the reproduction quality. For example, the realization of particularly space-efficient multi-way sound transducers is a further advantage.
Even in this embodiment of the bending actuator with the cascade connection, the further developments described above may also be applied according to additional embodiments. Here, in particular, the features with respect to the exact implementation of the cascade connection, e.g. the connection element or the frame, are to be mentioned. In addition, the sub-aspects with respect to the planar, rectangular, trapezoid-shaped or triangular (generally polygonal) bending actuator geometry for cascaded sound transducer configurations are relevant.
A further embodiment refers to a method for manufacturing a micromechanical sound transducer with cascaded bending actuators. The method includes the following steps: providing a first layer that forms the first (and the second) bending actuator with the first and the second bending element (respectively), and connecting the first and the second bending element (respectively).
According to an embodiment, it would be conceivable to interleave actuators within each other and/or to design them in different sizes, e.g., in order to cover different frequency ranges.
Embodiments of the present invention will be detailed subsequently referring to the appended drawings, in which:
Before embodiments of the present invention are subsequently described in more detail based on the drawings, it is to be noted that elements and structures with the same effect are provided with the same reference numerals so that their description is may be applied to each other and may be interchanged with each other.
The two actuators 10 and 12 are arranged opposite to each other so that a slit 14, for example of 5 μm, 25 μm or 50 μm (generally in the range between 1 μm and 90 μm, advantageously smaller than 50 μm or smaller than 20 μm), is present between the two. This slit 14, which separates the two bending actuators 12 and 14 clamped in on one side, may be referred to as decoupling slit. The decoupling slit 14 varies only minimally across the entire deflection range of the actuators 10 and 12, e.g. by a factor of 1, 1.5 or 4 (generally in the range of 0.5-5), i.e. variations smaller than +500%, +300%, +100% or +75% or smaller than +50% of the slit width (in the idle state), in order to be able to omit an additional sealing, as will be explained in the following.
Advantageously, the actuators 10 and 12 are driven in a piezoelectric manner. For example, each of these actuators 10 and 12 may comprise a layer structure and, beside the piezoelectric active layers, may comprise one or several passive functional layers. Alternatively, electrostatic, thermal or magnetic driving principles are possible. If a voltage is applied to the actuator 12, it deforms itself, or in the piezoelectric case, the piezoelectric material of the actuators 10 and 12 deforms itself and causes the actuators 10 and 12 to bend out of the plane. This bending results in a displacement of air. With a cyclical control signal, the respective actuator 10 and 12 is excited to vibrate in order to emit (or in the case of a microphone: to receive) a sound signal. The actuators 10 and 12, or the corresponding drive signal, are configured such that respectively neighboring actuator edges, or the free ends, of the actuators 10 and 12 experience an approximately identical deflection out of the plane E1. The free ends are indicated with the reference numerals 10f and 12f. Since the actuators 10 and 12, or the free ends 10f and 12f, move in parallel to each other, they are in-phase. Thus, the deflection of the actuators 10 and 12 is referred to as being in-phase.
As a consequence, a continuous deflection profile that is only interrupted by narrow decoupling slits 14 is formed in the total structure of all actuators 10 and 12 in the driven state. Since the slit width of the decoupling slits is in the micrometer range, high viscosity losses are achieved at the slit sidewalls 10w and 12w so that the airflow passing through is strongly throttled. Thus, the dynamic pressure equalization between the front side and the rear side of the actuators 10 and 12 may not take place fast enough so that an acoustical short circuit is reduced regardless of the actuator frequency. This means that, in the considered acoustic frequency range, an actuator structure with a narrow slit behaves like a closed membrane with respect to fluidics.
Even in the deflected state (cf. B), the diaphragm element 22 makes it possible to keep the width of the provided decoupling slits 14′ to be approximately the same. Thus, in this configuration with the neighboring edges, there are no significant openings due the deflection, as is illustrated in
According to embodiments, the side surface of the diaphragm element 22 or the diaphragm element 22 may be adapted to the movement of the actuator 10 in the deflection range B. In practice, a concave shape would be conceivable.
The structure 1 of
As explained above, according to an embodiment, a piezoelectric material may be used.
All piezoelectric actuators shown in
According to an alternative embodiment, a thermal drive that may comprise a multi-layer structure analogously to the piezoelectric actuators may be used. Fundamentally, the structure of a thermal drive then corresponds to the structure as described with respect to
Different actuator arrangements including at least two opposite actuators (cf.
According to embodiments, the individual actuators 10′ to 13′ may be further subdivided, as is indicated by means of the dotted lines. When subdivided, the clamping is obviously no longer done along the hypotenuse, but along one of the legs, while the decoupling slits extend along the hypotenuse and along the other leg.
Regardless as to whether there are four or eight actuators, the triangular implementation allows for neighboring free ends (separated by the respective slit 14) to experience as equal a deflection as possible.
All embodiments of
In addition, it is to be noted at this point that the separations slits 14 advantageously extend along the symmetry lines, as is shown based on the embodiments of
With respect to
As is illustrated here, the outer stages 10a* and 12a* are clamped in, that is via the regions 10e* and 12e*. The opposite end of the actuators 10a* and 12a*, respectively, is referred to as free end. The inner stages 10i* and 12i* are coupled to this free end by means of optional connection elements 17. They are coupled such that the coupling is done via an end of the inner actuator elements 10i*, or 12i*, i.e. such that the opposite ends of the inner actuators 10i*, or 12i*, serve as free ends. In other words, the actuator 10*, or 12*, is structured such that the inner stage 10i* (or 12i*) is connected in series opposite to the outer stage 10a* (12a*).
As is illustrated here, a decoupling slit 14* is formed between the free ends of the elements 10i* and 12i*. It is formed for all embodiments like the decoupling slit described in connection with the above embodiments (cf.
According to optional embodiments, the individual cascaded stages may be located on a frame 19. In this embodiment, the frame 19 is arranged such that the clamped-in ends of the inner stages 10i* and 12i* are located on the same frame 19. However, in general, the frame 19 is advantageously arranged such that it is in the area of the connection points (cf. connection elements 17). The frame makes it possible to suppress parasitic vibration modes as well as undesired mechanical deformations.
Even if the above embodiments assume to provide two actuators 10* and 12* each having an inner and outer actuator stage with the actuator elements 10a*, 10i*, 12a*, 12i*, it is to be noted that further embodiments provide a micromechanical sound transducer with only one actuator (e.g. the actuator 10*) having the first stage 10a* and the second 10i* accordingly arranged in series. For example, this actuator may freely vibrate opposite to a fixed end so that a slit is formed therebetween, or may be flexibly connected to a fixed end. According to a further embodiment, a diaphragm, as exemplarily described in
With respect to
Based on the circular segment-shaped micromechanical sound transducer,
According to embodiments, all embodiments of
As is explained in connection with
After having described the structure of the sound transducer, subsequently, its function will be described: in the driven state, the actuators of the outer stage deflect the inner stage out of the plane, wherein the actuators of the inner stage perform a further deflection. This results in a deflected structure that acoustically behaves like a closed membrane due to the high viscosity losses in the decoupling slits.
Alternatively, the cascaded overall structure may also comprise three or more stages. Optionally, the different stages may be controlled with identical or different drive signals. In the case of different drive signals, the stages may be operated in different frequency ranges, and, for example, may form a multi-way sound transducer with a particularly low space requirement.
At this point, it is to be noted that the concept of the flow diaphragms described with respect to
With respect to the above embodiments, it is to be noted that the variations described in
As can be seen based on
In contrast to
As can be seen based on
With reference to
By using diaphragm elements 22s arranged laterally, the embodiment of
Although the micromechanical sound transducer 1 of
According to further embodiments, the actuators described individually above may be provided with sensors. The sensors make it possible to determine the actual deflection of the actuators. These sensors are typically connected to the controller of the actuators so that the control signal for the individual actuators is regulated in a feedback loop such that the individual actuators vibrate in-phase. The sensors may also be used to detect non-linearities and to distort the signal in the control such that non-linearities may be compensated, or reduced.
The background for this is that, since the actuators simultaneously form the sound-generating element, aging effects and non-linearities may be directly measured and possibly electrically compensated during operation. This is a large advantage in contrast to conventional membrane-based systems that either have no sensor systems or only allow for the behavior to be detected at the drives but not at the sound-generating membrane element.
Advantageously, the position detection is done via the piezoelectric effect. For this, one or several areas of the piezoelectric layer on the actuators may be provided with separate sensor electrodes via which a voltage signal, or charge signal, approximately proportional to the deflection may be sensed. In addition, several piezoelectric layers may be realized, wherein at least one layer is partially used for the position detection. A combination of different piezoelectric materials that are either arranged above or next to each other (e.g. PZT for actuators, AlN for sensors) is also possible.
As an alternative to piezoelectric sensor elements, the integration of thin film expansion measurement strips (or strain gauges) or additional electrodes for a capacitive position detection is also possible. If the actuator structures are made of silicone, piezoresistive silicone resistors may also be directly integrated.
All of the above-mentioned aspects have in common the creation of a concept for generating large sound pressures that is membrane-less and fully compatible to MEMS manufacturing processes. The optional cascade connection enables the realization of integrated multi-way sound transducers. According to further developments with integrated position sensors, the controller may be configured such that the emitted sound comprises a minimal distortion.
In the subsequent table, possible materials for the individual functional elements may be found.
The following dimensions are possible:
For example, such transducers may be operated with a first normal mode of 10 Hz to 300 kHz. For example, the excitation frequency is selected statically up to 300 kHz.
The actuator structures described may be used in fields in which sound is to be generated in a frequency range between 10 Hz and 300 kHz with component volumes that are small as possible (<10 cm3). Above all, this applies primarily to miniaturized sound transducers for wearables, smartphones, tablets, laptops, headphones, hearing aids and ultrasonic transducers. Other applications where fluids are displaced (e.g. flow-mechanical and aerodynamic drive and guidance structures, inkjets) may also be considered.
Embodiments provide a miniaturized apparatus for displacing gases and liquids with at least one bending actuator that may be deflected out of the plane, characterized in that the apparatus includes narrow opening slits with a flow resistance of such a magnitude that the apparatus approximately behaves in the acoustic and ultrasound frequency range (20 Hz to 300 kHz) like a closed membrane with respect to fluidics.
According to further embodiments, the apparatus may include: decoupling slits in the actuator materials, whose total length is at most 5% of the total actuator surface area and that have a mean length-to-width ratio of over 10. According to embodiments, the apparatus may additionally be configured such that openings created in the deflected state are smaller than 10% of the total actuator surface area so that, even without a closed membrane, a high fluidic separation between the front side and the rear side may be achieved.
According a further embodiment, the apparatus may comprise two or more opposite separated actuators.
According to a further embodiment, the actuators may be driven in a piezoelectric manner, electrostatically, thermally, electromagnetically or by means of a combination of several concepts. According to an additional embodiment, it would also be conceivable for the apparatus to be configured with two or more actuator stages coupled via connection elements.
According to a further embodiment, it would also be conceivable for the apparatus to comprise two or more actuator stages that are driven with separated signals and therefore form a two-way or multi-way sound transducer.
With reference to the embodiment of
According to a further embodiment, the apparatus has a frame structure for stiffening and mode-decoupling.
In the above embodiments, the actuators have particularly be described as being actuators that are clamped in on one side. At this point, it is to be noted that two-sided clampings (cf.
Further embodiments provide an apparatus having flow diaphragms in order to reduce the cross sections of openings between the front side and rear side in the deflected state. According to a further embodiment, the apparatus may comprise sensor elements for position detection and regulation.
According to additional embodiments, the apparatus may be configured for the generation of sound or ultrasound in air (gaseous medium), i.e. in a range of 20 Hz to 300 kHz. Further application fields are the generation and control of air flow, i.e. for cooling.
Subsequently, a possible manufacturing method of the above sound transducers is described with reference to
In the first step illustrated in
The substrate 48 may be a SOI wafer (Silicone on Insulator) including a SI substrate. Then, SiO2 layers 50p with insulators 50pi indicated in
In a next step, which is illustrated in
In order to manufacture the product of
In order to manufacture a product as is described with reference to
After applying the diaphragm elements 75, as described above with respect to the embodiment of
MEMS technologies may be adopted in the manufacturing steps described above so that the above-described product may be manufactured with conventional manufacturing methods.
Although some aspects have been described in connection with an apparatus, it is noted that these aspects also represent a description of the corresponding method so that a block or a component of an apparatus is also to be understood as a corresponding method step or as a feature of a method step. Analogously thereto, aspects that were described in connection with a or as a method step are also a description of a corresponding block or a detail or a feature of a corresponding apparatus.
Subsequently, based on the basic embodiment of
According to further embodiments, it would also be conceivable to provide more than the three illustrated segments 22a*, 22b* and 22c*.
In the above and subsequent embodiments, it is to be noted that the middle position does not necessarily have to correspond to the idle state, but may also be shifted upwards or downwards in any way (electrically or mechanically biased).
This embodiment of the diaphragm structure 22** with the slanted inner side has the advantage that a slit expansion may be decreased, or compensated, at larger amplitudes. From a manufacturing perspective, the slanting may be realized by adapting the lacquer profile or the etching process.
Further embodiments are described with respect to
In this embodiment, it is to be noted that in all above embodiments, or their descriptions, it is essentially assumed that the sound is emitted out of the substrate. Obviously, according to embodiments, it is also conceivable that the sound is led out through the substrate, or through a cavity of the substrate.
At this point, it is to be noted that
Subsequently, different actuator geometries that are enhanced compared to the geometries of
In embodiments, it is to be noted that the actuator geometries may be combined in any way (e.g.
By combining different actuators, e.g., multi-way systems may be realized, as is shown based on
For example,
In the above embodiments, it was particularly assumed to provide a sound transducer for the emission of sound (loudspeaker), which is why the term “bending actuator” was used. Obviously, this principle may also be reversed so that the sound transducer according to an embodiment forms a microphone, wherein the bending transducer (cf. bending actuator) is configured to be excited, e.g. by air, in order to (e.g. vertically) vibrate to output an electrical signal (generally to detect the acoustical waves of the surroundings). A further embodiment creates a device that includes a loudspeaker and a microphone on the basis of the above-described concepts. Here, the two devices may be formed on the same substrate which is also of advantage from a manufacturing perspective.
While this invention has been described in terms of several embodiments, there are alterations, permutations, and equivalents which fall within the scope of this invention. It should also be noted that there are many alternative ways of implementing the methods and compositions of the present invention. It is therefore intended that the following appended claims be interpreted as including all such alterations, permutations and equivalents as fall within the true spirit and scope of the present invention.
Number | Date | Country | Kind |
---|---|---|---|
10 2017 208 911.3 | May 2017 | DE | national |
This application is a continuation of copending International Application No. PCT/EP2018/063961, filed May 28, 2018, which is incorporated herein by reference in its entirety, and additionally claims priority from German Applications No. DE 10 2017 208 911.3, filed May 26, 2017, which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
7003125 | Yi et al. | Feb 2006 | B2 |
7089069 | Gabriel et al. | Aug 2006 | B2 |
8280079 | Chung et al. | Oct 2012 | B2 |
9212045 | Schmid et al. | Dec 2015 | B1 |
20020018334 | Hill et al. | Feb 2002 | A1 |
20060107744 | Li et al. | May 2006 | A1 |
20060196272 | Sugiura et al. | Sep 2006 | A1 |
20070058825 | Suzuki et al. | Mar 2007 | A1 |
20100254547 | Grosh et al. | Oct 2010 | A1 |
20100296681 | Albach et al. | Nov 2010 | A1 |
20100316242 | Cohen et al. | Dec 2010 | A1 |
20110051985 | Hwang et al. | Mar 2011 | A1 |
20110235829 | Yang et al. | Sep 2011 | A1 |
20120053393 | Kaltenbacher et al. | Mar 2012 | A1 |
20130156253 | Lemarquand et al. | Jun 2013 | A1 |
20130294636 | Cassett et al. | Nov 2013 | A1 |
20140000378 | Shimoyama | Jan 2014 | A1 |
20140207435 | Koehler et al. | Jul 2014 | A1 |
20150362394 | Shimoyama et al. | Dec 2015 | A1 |
20170022046 | Buck et al. | Jan 2017 | A1 |
20180179048 | Schenk et al. | Jun 2018 | A1 |
20190141453 | Kim | May 2019 | A1 |
20190281393 | Grosh et al. | Sep 2019 | A1 |
Number | Date | Country |
---|---|---|
101841756 | Sep 2010 | CN |
104540776 | Apr 2015 | CN |
102006005048 | Sep 2006 | DE |
102010009453 | Sep 2011 | DE |
102015213757 | Feb 2016 | DE |
102015210919 | Dec 2016 | DE |
102015213771 | Jan 2017 | DE |
2254353 | Nov 2010 | EP |
2362686 | Aug 2011 | EP |
2692153 | Dec 2016 | EP |
2014515214 | Jun 2014 | JP |
5674167 | Jan 2015 | JP |
20050059075 | Jun 2005 | KR |
2013002847 | Jan 2013 | WO |
2016202790 | Dec 2016 | WO |
Entry |
---|
Dejaeger, R., et al., “Development and Characterization of a Piezoelectrically Actuated MEMS Digital Loudspeaker”, SciVerse ScienceDirect; Procedia Engineering vol. 47; Sep. 9-12, 2012, pp. 184-187, Sep. 2012. |
Glacer, Christoph , et al., “Reversible acoustical transducers in MEMS technology”, Spain, Barcelona; Apr. 16-18, 2013; 4 pages;, Apr. 2013. |
Houdouin, Alexandre , et al., “Acoustic vs electric power response of a high-performance MEMS microspeaker”, IEEE Sensors Nov. 2014; 5 pages;, Nov. 2014. |
Yi, Seunghwan , et al., “Performance of packaged piezoelectric microspeakers depending on the material properties”, Proc. MEMS 2009, 765-768;, 2009. |
Number | Date | Country | |
---|---|---|---|
20200100033 A1 | Mar 2020 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/EP2018/063961 | May 2018 | US |
Child | 16693016 | US |