Micromixing cap assembly

Information

  • Patent Grant
  • 9534787
  • Patent Number
    9,534,787
  • Date Filed
    Tuesday, March 12, 2013
    11 years ago
  • Date Issued
    Tuesday, January 3, 2017
    7 years ago
Abstract
A system includes a combustor cap assembly for a multi-tube fuel nozzle. The combustor cap assembly includes a support structure defining an interior volume configured to receive an air flow, a plurality of mixing tubes disposed within the interior volume, wherein each of the plurality of mixing tubes comprises a respective fuel injector and is individually removable from the combustor cap assembly, an air distributor disposed within the interior volume and configured to distribute the air flow received by the interior volume to each of the plurality of mixing tubes, and a combustor cap removably coupled to the support structure.
Description
BACKGROUND

The subject matter disclosed herein relates generally to turbine combustors, and, more particularly to a cap for the turbine combustors.


A gas turbine engine combusts a mixture of fuel and air to generate hot combustion gases, which in turn drive one or more turbine stages. In particular, the hot combustion gases force turbine blades to rotate, thereby driving a shaft to rotate one or more loads, e.g., an electrical generator. The gas turbine engine includes a fuel nozzle assembly, e.g., with multiple fuel nozzles, to inject fuel and air into a combustor. The design and construction of the fuel nozzle assembly can significantly affect the mixing and combustion of fuel and air, which in turn can impact exhaust emissions (e.g., nitrogen oxides, carbon monoxide, etc.) and power output of the gas turbine engine. Furthermore, the design and construction of the fuel nozzle assembly can significantly affect the time, cost, and complexity of installation, removal, maintenance, and general servicing. Therefore, it would be desirable to improve the design and construction of the fuel nozzle assembly.


BRIEF DESCRIPTION

Certain embodiments commensurate in scope with the originally claimed invention are summarized below. These embodiments are not intended to limit the scope of the claimed invention, but rather these embodiments are intended only to provide a brief summary of possible forms of the invention. Indeed, the invention may encompass a variety of forms that may be similar to or different from the embodiments set forth below.


In a first embodiment, a system includes a combustor cap assembly for a multi-tube fuel nozzle. The combustor cap assembly includes a support structure defining an interior volume configured to receive an air flow, a plurality of mixing tubes disposed within the interior volume, wherein each of the plurality of mixing tubes comprises a respective fuel injector and is individually removable from the combustor cap assembly, an air distributor disposed within the interior volume and configured to distribute the air flow received by the interior volume to each of the plurality of mixing tubes, and a combustor cap removably coupled to the support structure.


In a second embodiment, a combustor cap assembly for a multi-tube fuel nozzle includes a support structure defining an interior volume configured to receive an air flow, and an air distributor plate. The air distributor plate includes a plurality of apertures, wherein each of the plurality of apertures is configured to receive one of a plurality of mixing tubes, and a plurality of air passages configured to distribute the air flow to the plurality of mixing tubes.


In a third embodiment, a system includes a combustor cap assembly for a multi-tube fuel nozzle. The combustor cap assembly includes a support structure defining an interior volume, wherein the interior volume is configured to receive an air flow; a plurality of mixing tubes disposed within the interior volume, wherein each of the plurality of mixing tubes is configured to receive the air flow from the interior volume, and each of the plurality of mixing tubes is individually removable from the combustor cap assembly; a plurality of fuel injectors, wherein each of the plurality of fuel injectors is at least partially disposed within a respective one of the plurality of mixing tubes and is configured to inject a fuel flow into the respective one of the mixing tubes; an air distributor disposed within the interior volume, wherein the air distributor comprises a plurality of air passages configured to distribute the air flow within the interior volume to the plurality of mixing tubes; and a combustor cap removably coupled to the support structure.





BRIEF DESCRIPTION OF THE DRAWINGS

These and other features, aspects, and advantages of the present invention will become better understood when the following detailed description is read with reference to the accompanying drawings in which like characters represent like parts throughout the drawings, wherein:



FIG. 1 is a block diagram of an embodiment of a gas turbine system;



FIG. 2 is a cross-sectional side view of an embodiment of a portion of a turbine combustor of FIG. 1 coupled to a cap assembly of the turbine combustor;



FIG. 3 is a cross-sectional side view of an embodiment of a portion of the turbine combustor of FIG. 2, illustrating the cap assembly;



FIG. 4 is an exploded cross-sectional side view of an embodiment of the cap assembly of FIG. 3;



FIG. 5 is an axial view of an embodiment of a portion of a distributor plate; and



FIG. 6 is a side view of an embodiment of a portion of a mixing tube extending through an aperture in the distributor plate of FIG. 5.





DETAILED DESCRIPTION

This written description uses examples to disclose the invention, including the best mode, and also to enable any person skilled in the art to practice the invention, including making and using any devices or systems and performing any incorporated methods. The patentable scope of the invention is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if they have structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal languages of the claims.


When introducing elements of various embodiments of the present invention, the articles “a,” “an,” “the,” and “said” are intended to mean that there are one or more of the elements. The terms “comprising,” “including,” and “having” are intended to be inclusive and mean that there may be additional elements other than the listed elements.


The present disclosure is directed to a fuel and air premixing system for a gas turbine combustor. For example, the fuel and air premixing system may include a cap assembly, wherein the cap assembly includes a support structure defining an interior volume configured to receive an air flow, a plurality of mixing tubes, an air distributor, and a removable combustor cap. In some embodiments, the cap may be attached to the combustor with a radial spring, and may condition an inlet air flow to improve the quality of premixing air and fuel in the mixing tubes. The presently described system may provide lower manufacturing costs, easier repair procedures, longer equipment lifetime, and/or lower emissions, for example.


Turning to the drawings, FIG. 1 illustrates a block diagram of an embodiment of a gas turbine system 10. As described in detail below, the disclosed turbine system 10 may employ a cap assembly that includes a removable cap face, a retainer plate, and/or a distributor plate. As shown, the system 10 also includes a compressor 12, a turbine combustor 14, and a turbine 16. The turbine combustor 14 may include one or more mixing tubes 18, e.g., in one or more multi-tube fuel nozzles, configured to receive both fuel 20 and pressurized oxidant 22, such as air, oxygen, oxygen-enriched air, oxygen reduced air, or any combination thereof. Although the following discussion refers to the oxidant as the air 22, any suitable oxidant may be used with the disclosed embodiments. The mixing tubes may be described as micromixing tubes, which may have diameters between approximately 0.5 to 2, 0.75 to 1.75, or 1 to 1.5 centimeters. The mixing tubes 18 may be arranged in one or more bundles of closely spaced tubes, generally in a parallel arrangement relative to one another. In this configuration, each mixing tube 18 is configured to mix (e.g., micromix) on a relatively small scale within each mixing tube 18, which then outputs a fuel-air mixture into the combustion chamber. In certain embodiments, the system 10 may include between 10 and 1000 mixing tubes 18, and the system 10 may use a liquid fuel and/or gas fuel 20, such as natural gas or syngas. Furthermore, the combustor 14 may contain the cap assembly noted above and described in more detail in FIG. 2, which may include a removable cap face, a removable retainer plate, and/or a distributor plate. The cap assembly may condition the flow of the pressurized air 22 to improve the uniformity of the distribution to the mixing tubes 18, and may be removed to allow for inspection, maintenance, and/or removal of the mixing tubes 18 and other components of the combustor 14, including the cap assembly itself.


Compressor blades are included as components of the compressor 12. The blades within the compressor 12 are coupled to a shaft 24, and will rotate as the shaft 24 is driven to rotate by the turbine 16, as described below. The rotation of the blades within the compressor 12 compresses air 32 from an air intake 30 into pressurized air 22. The pressurized air 22 is then fed into the mixing tubes 18 of the turbine combustors 14. The pressurized air 22 and fuel 20 are mixed within the mixing tubes 18 to produce a suitable fuel-air mixture ratio for combustion (e.g., a combustion that causes the fuel to more completely burn) so as not to waste fuel 20 or cause excess emissions.


The turbine combustors 14 ignite and combust the fuel-air mixture, and then pass hot pressurized combustion gasses 34 (e.g., exhaust) into the turbine 16. Turbine blades are coupled to the shaft 24, which is also coupled to several other components throughout the turbine system 10. As the combustion gases 34 flow against and between the turbine blades in the turbine 16, the turbine 16 is driven into rotation, which causes the shaft 24 to rotate. Eventually, the combustion gases 34 exit the turbine system 10 via an exhaust outlet 26. Further, the shaft 24 may be coupled to a load 28, which is powered via rotation of the shaft 24. For example, the load 28 may be any suitable device that may generate power via the rotational output of the turbine system 10, such as an electrical generator, a propeller of an airplane, and so forth. In the following discussion, reference may be made to an axial axis or direction 36, a radial axis or direction 38, and/or a circumferential axis or direction 40 of the turbine system 10.



FIG. 2 is a cross-sectional schematic of an embodiment of the combustor 14 of FIG. 1 having a cap assembly 60. The cap assembly 60 includes a removable cap face 62, a retainer plate 64, and an air distributor plate 66. As shown, the combustor 14 further includes a combustion chamber 68 and a head end 70. A plurality of the mixing tubes 18 are positioned within the head end 70 of the combustor 14. The mixing tubes 18 may generally extend between the cap face 62 and an end cover 72 and may extend in the axial direction 36. In some embodiments, the mixing tubes 18 are suspended in the head end 70 such that the mixing tubes 18 may not be attached to the end cover 72 or the cap face 62. Alternatively, however, the mixing tubes 18 may be coupled to at least one of the cap face 62 and/or the end cover 72, as further described below. In addition, the mixing tubes 18 may pass through the air distributor plate 66, which may provide structural and vibrational damping support to the mixing tubes 18. As such, the distributor plate may have apertures that correspond to mixing tubes 18, such that the mixing tubes 18 may extend through the distribution plate 66. The distribution plate 66 may be removably coupled to a support structure 106, which may be a barrel shaped structure that extends circumferentially about the mixing tubes 18, the retainer plate 64, the air distributor plate 66, and other components of the combustor 14. The end cover 72 may also include a fuel plenum 74 for providing fuel 20 to the mixing tubes 18. The fuel plenum 74 routes fuel to the mixing tubes 18 in the axial direction 36, whereas the mixing tubes 18 receive air in the radial direction 38. The cap face 62 may be removably coupled to the head end 70 of the combustor 14 (e.g., with a radial spring or with fasteners such as bolts) so that it may be detached from the support structure 106. Furthermore, the retainer plate 64 may be coupled to the support structure 106 upstream of the cap face 62. Like the cap face 62, the retainer plate 64 may be removably coupled (e.g., bolted, threaded, etc.) to the support structure 106 such that it may be removed to allow for inspection, maintenance, and/or removal of the mixing tubes 18 and other components of the head end 70. As described in more detail below, the retainer plate 64 may provide additional support for a second end 112 of the mixing tubes 18. As mentioned above, one or more components of the cap assembly 60 may be removed from the support structure 106 in order to enable inspection, maintenance, and/or removal of the components of the cap assembly 60 as well as various components of the combustor 14, including the mixing tubes 18.


As described above, the compressor 12 receives air 32 from the air intake 30, compresses the air 32, and produces the flow of pressurized air 22 for use in the combustion process. As shown by arrow 76, the pressurized air 22 is provided to the head end 70 of the combustor 14 through an air inlet 78, which directs the air laterally or radially 38 inward towards side walls of the mixing tubes 18. More specifically, the pressurized air 22 flows in the direction indicated by arrow 76 from the compressor 12 through an annulus 80 between a liner 82 and a flow sleeve 84 of the combustor 14 to reach the head end 70. The liner 82 is positioned circumferentially about combustion chamber 68, the annulus 80 is positioned circumferentially about liner 82, and the flow sleeve 84 is positioned circumferentially about the annulus 80. Upon reaching the head end 70, the air 22 turns from the axial direction 36 to the radial direction 38 through the inlet 78 toward the mixing tubes 18, as indicated by arrows 76.


The pressurized air 22 passes through the distributor plate 66, enters each of the mixing tubes 18 through one or more openings, and is mixed with the fuel 20 within the plurality of mixing tubes 18. As will be appreciated, the air distributor plate 66 may increase the uniformity of the air 22 passing into the mixing tubes 18. Each mixing tube 18 receives the fuel 20 in the axial direction 36 through an axial end portion of the mixing tube 18, while also receiving the air 22 through a plurality of side openings in the mixing tube 18. Thus, the fuel 20 and the air 22 mix within each individual mixing tube 18. As shown by arrows 86, the fuel-air mixture flows downstream within the mixing tubes 18 into the combustion chamber 68, where the fuel-air mixture is ignited and combusted to form the combustion gases 34 (e.g., exhaust). The combustion gases 34 flow in a direction 88 toward a transition piece 90 of the turbine combustor 14. The combustion gases 34 pass through the transition piece 90, as indicated by arrow 92, toward the turbine 16, where the combustion gases 34 drive the rotation of the blades within the turbine 16.


The cap assembly 60, including the cap face 62, the retainer plate 64, and/or the air distributor plate 66, may be configured to be removed to enable inspection, maintenance, and/or removal of components of the combustor 14, including the mixing tubes 18. In addition, the air distributor plate 66 may improve the uniformity of air 22 flow to the mixing tubes 18, which may increase the efficiency of combustion and reduce emissions (NOx) of the turbine system 10. The cap assembly 60 may therefore extend the life cycle of the combustor 14 and reduce its lifetime costs.



FIG. 3 is a cross-sectional side view of a portion of the plurality of mixing tubes 18 and the cap assembly 60 within the combustor 14. As described above, the cap assembly 60 includes the cap face 62, the retainer plate 64, and the distributor plate 66. The cap face 62 includes a lip 102, which extends in an upstream direction from the outer edge of the cap face 62. This lip 102 is configured to fit over a radial spring 104, located on the support structure 106. The lip 102 and the radial spring 104 are configured to have similar radii (for example, the radius of the lip 102 may be the same or slightly smaller than the radius of the radial spring 104) such that the lip 102 may be fitted over the radial spring 104 to form a compression or spring-biased fit. The radial spring 104 may have a radially outward bias, so that it may compress in order to hold the lip 102 and the cap face 62 in place to block fluid leakage between the lip 102 and the radial spring 104.


As shown, each mixing tube 18 has a passage or chamber 108 extending between a first end 110 (e.g., axial end opening) and a second end 112 (e.g., axial end opening) of the mixing tube 18. In some embodiments, the second end 112 of the mixing tube 18 may extend through the cap face 62, so that the fuel-air mixture may be output from the mixing tube 18 into the combustion chamber 68 through an axial end opening generally located at the second end 112 of the mixing tube 18.


In some embodiments, the end cover 72 may be positioned upstream of, and proximate to, the first end 110 of the mixing tube 18. The end cover 72 may include one or more fuel inlets 114 through which the fuel 20 is provided to one or more fuel plenums 74 (e.g., 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more) within the end cover 72. Furthermore, each fuel plenum 74 may be fluidly connected to one or more fuel injectors 116 (e.g., 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more). As illustrated, each mixing tube 18 includes a respective fuel injector 116, which receives the fuel 20 in the axial direction 36 as indicated by arrows 117. In some embodiments, the end cover 72 may include a single common fuel plenum 74 (e.g., fuel supply chamber) for all of the mixing tubes 18 and associated fuel injectors 116. In other embodiments, the system 10 may include one, two, three, or more fuel plenums 74 that each provides fuel 20 to a subgroup of fuel injectors 116, and ultimately to the mixing tube 18 associated with each fuel injector 116. For example, one fuel plenum 74 may provide fuel to about 5, 10, 50, 100, 500, 1000, or more fuel injectors 116. In some embodiments, the combustor 14 having subgroups of fuel injectors 116 supplied by different fuel plenums 74 may allow one or more subgroups of fuel injectors 116 and corresponding mixing tubes 18 to be run richer or leaner than others, which in turn may allow for more control of the combustion process, for example. Additionally, multiple fuel plenums 74 may enable the use of multiple types of fuel 20 (e.g., at the same time) with the combustor 14.


As shown in FIG. 3, the support structure 106 (e.g., side wall) may circumferentially surround the head end 70 of the combustor 14, and the support structure 106 may generally protect and/or support the mixing tubes 18 and other structures within the head end 70, such as the retainer plate 64 and the distributor plate 66. As described above, in some embodiments, pressurized air 22 may enter the head end 70 through an air inlet 78. More specifically, pressurized air 22 may flow through the air inlet 78 laterally into an air cavity 118 within the head end 70 (e.g., in a generally radial direction 38 as indicated by arrow 122). The air cavity 118 includes the volume of space in between the plurality of mixing tubes 18 and surrounded by the support structure 106 (e.g., outer wall). The pressurized air 22 spreads throughout the air cavity 118 as the pressurized air 22 flows to each of the plurality of mixing tubes 18.


In some embodiments, a flow distributor diffuser 120 (e.g., a baffle, a conduit, or turning vane) may be provided in the combustor 14 to improve distribution of the pressurized air 22 within the head end 70. The diffuser 120 may be an annular flow conditioning diffuser 120 configured to distribute the pressurized air 22 forward, radially 38 inward, and/or externally across the plurality of mixing tubes 18. For example, the diffuser 120 may include a tapered annular wall 121, which gradually angles or curves inwardly toward the cavity 118 and mixing tubes 18 in the radial direction 38. The diffuser 120 also may include an annular internal passage 123, which generally diverges or grows in cross-sectional area toward the cavity 118 and the mixing tubes 18. In some embodiments, the diffuser 120 may diffuse the pressurized air 22 such that the pressurized air 22 is substantially evenly distributed to each mixing tube 18. Furthermore, the perforated air distributor plate 66 may also contribute to the distribution of the pressurized air 22. The air distributor plate 66 may be provided within the cavity 118 of the head end 70, and may generally be positioned between the end cover 72 and the cap face 62. The perforations in the air distribution plate 66 may be of any of a variety of shapes and sizes, and may generally provide additional diffusion and distribution of the pressurized air 22, so as to improve distribution of the pressurized air 22 to the mixing tubes 18. After entering the head end 70 through the air inlet 78, the pressurized air 22 may enter each mixing tube 18 through one or more apertures 111 formed in the mixing tubes 18.


As shown in FIG. 3, in some embodiments, the combustor 14 also has the retainer plate 64 and an impingement plate 128. The retainer plate 64 and the impingement plate 128 may be positioned downstream of the fuel injectors 116 and generally proximate to the cap face 62. The cap face 62, the retainer plate 64, and/or the impingement plate 128 may be removable or separable from the support structure 106, for example. The retainer plate 64 may provide support for the mixing tubes 18, as it may be configured to couple to the downstream end (e.g., the second end 112) of each mixing tube 18. The impingement plate 128 may be positioned substantially adjacent to the cap face 62, and in some embodiments, the impingement plate 128 may be positioned between the retainer plate 64 and the cap face 62. The impingement plate 128 may support the mixing tubes 18, and may additionally or alternatively provide for cooling of the cap face 62 within the combustor 14.


As shown in more detail in FIG. 4, the air distributor plate 66 comprises apertures 142 through which the mixing tubes 18 may extend, as well as air passages 144 around the apertures 142 through which the pressurized air 22 may flow. The air passages 144 may generally provide additional diffusion and distribution of the pressurized air 22 in order to improve the uniformity of the flow of the pressurized air 22 to the mixing tubes 18. For example, the distribution plate 66 may alter the velocity, the pressure, the angle, and/or other qualities of the pressurized air 22 in order to increase the uniformity of the distribution of the air 22 to the mixing tubes 18. As shown, the pressurized air 22 may enter through the diffuser 120 and flow in a direction generally shown by arrow 122 as it flows across the air distributor plate 66 and into/across the mixing tubes 18. The air distributor plate 66 may be perpendicular to the flow of the pressurized air 22 (e.g., may extend along the radial direction 38), or it may be angled across the mixing tubes 18. For example, the air distributor plate 66 may be angled at an angle θ1, as shown by dashed line 124, or the plate 66 may be angled at an angle θ2, as shown by dashed line 126, or at any other suitable angle. The dashed lines 124 and 126 depict the air distributor plate 66 angled with respect to the radial direction 38, but it should be understood that the air distributor plate 66 may be angled along any axis of the air distributor plate 66. In addition, the angles θ1 and θ2 may be any angle, such as approximately 5, 10, 30, 60, or 80 degrees relative to the radial direction 38, or between 5 and 60, 10 to 45, or 30 to 30 degrees The air distributor plate 66 may be attached to the mixing tubes 18, to the support structure 106, or both, with radial springs (e.g., hula seals), bolts, brazing, or any other suitable method of coupling. In this way, the air distributor plate 66 may provide structural or vibrational damping support to the mixing tubes 18 as it distributes the pressurized air 22 to the mixing tubes 18.


After entering the head end 70 through the air inlet 78, the pressurized air 22 may enter each mixing tube 18 and its respective mixing chamber 108 through one or more apertures 111 formed in the mixing tubes 18. The apertures 111 may be configured to have any of a variety of shapes, sizes, and arrangements. For example, the apertures 111 may be generally circular, elliptical, or rectangular in cross-sectional shape. The apertures 111 may further have a diameter or a dimension in the range of from approximately 0.001 centimeters to approximately 1.5 or more centimeters. The apertures 111 may also have a diameter or dimension in the range of from approximately 0.01 to 1.0, 0.05 to 0.5, or 0.1 to 0.25 centimeters. In some embodiments, one or more rows of apertures 111 may be spaced (e.g., evenly) around the circumference of each of the mixing tubes 18. The apertures 111 formed in the mixing tubes 18 may have substantially similar, or common, shapes, sizes, and/or angles, while in other embodiments the apertures 111 may have different shapes, sizes, and/or angles. In general, the apertures 111 may be positioned at any location along the mixing tube 18. However, in certain embodiments, the apertures 111 may be positioned upstream from the position at which the fuel 20 enters the mixing tube 18 through the fuel injector 116. Furthermore, the apertures 111 may be spaced circumferentially around the fuel injector 116, thereby directing the air radially inward toward the fuel injector 116.


As discussed above and as shown in FIG. 3, one fuel injector 116 is provided for each mixing tube 18 of the combustor 14. In other words, one fuel injector 116 is positioned within a portion of each mixing tube 18 in order to deliver fuel 20 into the respective mixing tube 18. In some embodiments, the fuel injector 116 may be generally coaxially positioned within each mixing tube 18 by inserting the fuel injector 116 axially 36 through the first end 110 of each mixing tube 18. Thus, the mixing tubes 18 may have a size, shape, and configuration to enable each mixing tube 18 to receive the corresponding fuel injector 116. The cap assembly 60, including the removable cap face 62, the removable air distributor plate 66, and/or the removable retainer plate 64, may be removable to enable replacement of individual mixing tubes 18, enable the replacement of the cap face 62 without also replacing the support structure 106, and may improve the air distribution to the mixing tubes 18. As such, the cap assembly 60 may increase the robustness of the gas turbine system 10, thereby reducing the lifecycle cost of the system 10.



FIG. 4 illustrates an exploded cross-sectional side view of the cap assembly 60, including the cap face 62, the air distributor plate 66, and the retainer plate 64. As described above with respect to FIG. 3, the cap face 62 may be removably attached to the support structure 106 via the radial seal 104 (e.g., a hula seal) or some other fasteners (e.g., bolts). The lip 102 of the cap face 62 may be configured to slide over the radial seal 104, which may extend around the circumference of the support structure 106. The radial seal 104 may compress radially inward when the lip 102 is fitted over the seal 104. The seal 104 may be configured to block fluid leakage across an interface between the radial seal 104 and the lip 102, and the seal 104 may removably couple the cap face 62 to the support structure 106. The retainer plate 64 may be removably coupled (e.g., bolted, threaded, etc.) to the support structure 106 upstream of the cap face 62, so that it may be removed to enable inspection, maintenance, and/or removal of the mixing tubes 18. The retainer plate 64 may also provide support for the mixing tubes 18, which may be attached to the retainer plate 64 at their downstream ends 112. The air distributor plate 66 may be a single piece or a multi-piece plate configuration, and the plate 66 may be located upstream of both the cap face 62 and the retainer plate 64. Furthermore, the air distributor plate 66 may be located adjacent to or just upstream of the air diffuser 120 and the air inlet 78. The air distributor plate 66 may help distribute the pressurized air 22 before it enters the mixing tubes 18 through the apertures 111.


As noted above, in some embodiments, the air distributor plate 66 may be angled relative to an axis of each of the plurality of mixing tubes 18 or relative to the support structure 106. Furthermore, the air distributor 66 may include a plurality of apertures 142, which the mixing tubes 18 may be configured to extend through. Surrounding these apertures 142 may be a plurality of air passages 144, through which the pressurized air 22 may flow. The air passages 144 may be small perforations around the apertures 142, or they may be larger cutouts extending along or between the apertures 142. The air passages 144 in the air distributor plate 66 may be of any of a variety of shapes and sizes, and may include venturi or contoured shapes which may reduce unwanted pressure drops as the pressurized air 22 flows across the air distributor plate 66. For example, the air passages 144 may be generally circular, elliptical, polygonal, or rectangular in cross-sectional shape, and may extend between or along mixing tubes 18. The air passages 144 may have a diameter or dimension in the range of from approximately 0.001 centimeters to approximately 1.5 or more centimeters. Furthermore, the air passages 144 may have substantially similar shapes, sizes, and arrangements, or they may have a variety of shapes, sizes, and arrangements. The air passages 144 and/or the apertures 142 may be contoured in order to temporarily restrict the pressurized air 22 as it passes through the air passages 144 in order to increase the velocity of the pressurized air 22 as it flows across the air distributor plate 66.


In some embodiments, at least one aperture 142 may include a radial spring 146, which may be configured to secure the mixing tube 18 which passes through it. The radial spring 146 may be engaged to tighten around the mixing tube 18 as it passes through the aperture 142, and it may provide structural support to the mixing tube 18. Additionally, the radial spring 146 may provide vibrational damping support to the mixing tube 18, and may reduce vibrations, oscillations, or other movements experienced by the mixing tubes 18. In other embodiments, another fastener between the mixing tubes 18 and the air distributor plate 66 may be used to provide structural and vibrational damping support to the mixing tubes 18. The structural and vibrational damping support from the radial springs 146 may increase the robustness of the mixing tube 18. As part of the cap assembly 60, the air distributor plate 66 may increase the reliability and operability of the gas turbine system 10, thereby reducing the life cycle costs of the gas turbine system 10.


As shown, the components of the cap assembly 60 (e.g., the cap face 62, the retainer plate 64, and/or the air distributor plate 66) may each be removed from the support structure 106. This removable cap assembly 60 may allow access to the mixing tubes 18, which may then be inspected, maintained, and/or removed individually. Furthermore, the components of the cap assembly 60 may be removed or replaced independently, and may not require the removal or replacement of other components of the turbine system 10, such as the support structure 106. The cap assembly 60 provides a more modular, easily replaceable, and serviceable configuration for the combustor 14. Additionally, the cap assembly 60 may increase the robustness of the combustor 14 by increasing the ease of access to the components of the combustor (e.g., the mixing tubes 18) and improving the pressurized air 22 distribution to the mixing tubes 18 via the air distribution plate 66. More uniform pressurized air 22 distribution may increase the efficiency of the mixing of the fuel 20 and pressurized air 22, which may lower the emissions (NOx) of the gas turbine system 10 (e.g., in hot pressurized combustion gasses 34, or exhaust). By increasing the serviceability, operability, and robustness of the combustor 14, the cap assembly 60 may increase the lifespan of the combustor 14 and reduce its operating and maintenance costs.



FIG. 5 shows a partial axial view of the air distributor plate 66, which illustrates the plurality of apertures 142 and air passages 144. The air distributor plate 66 includes the apertures 142 through which the mixing tubes 18 may extend, as well as the air passages 144 configured to improve the pressurized air 22 distribution to the apertures 111 of the mixing tubes 18. As noted above, the air passages 144 may extend along, between, or around the apertures 142, and may have any of a variety of shapes, sizes, and arrangements. For example, the air passages 144 may generally be rectangular, circular, elliptical, polygonal, or triangular in cross-sectional shape, and the air passages 144 may extend along one, two, three, or more of the apertures 142. Additionally, in certain embodiments, the air passages 144 may be fine perforations, as in a wire mesh. The air passages 144 may have a diameter from approximately 0.0001 centimeters to approximately 1.5 or more centimeters. In some embodiments, the air passages 144 may be distributed evenly around the apertures 142, or the air passages 144 may extend along or between one or multiple apertures 142. The air passages 144 may further be contoured to condition the pressurized air 22 to be better distributed by changing the pressure, angle, direction, or other qualities of the pressurized air 22.


Furthermore, as shown in FIG. 5, some apertures 142 may include a radial spring 146 (e.g., a metal spring, a hula seal, a fabric ring, etc.), which may extend around the inner circumference or dimension of the aperture 142. The radial spring 146 may provide structural support and vibrational damping support to the mixing tube 18, which may pass through the aperture 142. Furthermore, the air passages 144 may be contoured or have shapes that may reduce unwanted pressure drops or may condition the pressurized air 22 flow to reduce aft side wakes. The air distributor plate 66 may cause the pressurized air 22 to distribute more evenly to the mixing tubes 18 and may, in spreading and conditioning the air 22, increase the uniformity of the temperature of the pressurized air 22. This may contribute to a more uniform pressurized air-fuel mixture in each mixing tube 18. By altering the flow of the pressurized air 22, the air distributor plate 66 may improve the quality of the air flow to the mixing tubes 18 and/or increase the uniformity of the temperature of the pressurized air 22 as it distributes to the mixing tubes 18.



FIG. 6 illustrates a partial view of an embodiment of the air distributor plate 66, having a contoured opening (e.g., aperture 142). As shown in FIG. 6, the mixing tube 18 may pass through the aperture 142 in the air distributor plate 66. The aperture 142 may be configured to temporarily narrow in between an entrance 148 to the aperture 142 and an exit 150 from the aperture 142. For example, the aperture 142 may be configured to have a venturi contouring that includes a converging portion, a throat portion, and a diverging portion. The pressurized air 22 may flow as indicated by arrow 152 through the aperture 142. The temporary narrowing of the aperture 142 in between the entrance 148 and the exit 150 of the aperture 142 may reduce the pressure of the pressurized air 22 passing through the aperture 142 and increase the velocity of the pressurized air 22. In other words, as the pressurized air 22 flows through the aperture 142, it may be constricted by a decrease in the cross-sectional radius or dimensions of the aperture 142. It should be understood that the apertures 142 or the air passages 144 may utilize such contouring in order to condition the flow of the pressurized air 22 as it is distributed to the mixing tubes 18. For example, in the embodiment shown in FIG. 6, the pressurized air 22 may flare away from the mixing tube 18 as it flows through the aperture 142, as indicated by arrow 152. Conditioning with venturi or other contours may increase the velocity of the pressurized air 22 or may otherwise condition the pressurized air 22 as it flows through the aperture 142 to improve the pressurized air 22 distribution. In this manner, temperature uniformity of the pressurized air 22 entering the mixing tubes 18, among other things, may be improved. Improving the pressurized air 22 distribution and increasing temperature uniformity may increase the efficiency of fuel 20 and pressurized air 22 mixing, thereby increasing the efficiency and operability of the gas turbine system 10.


As described above, the disclosed embodiments include the combustor cap assembly 60, which may include the cap face 62, the retainer plate 64, and the air distributor plate 66. For example the cap face 62 may be removably coupled to the support structure 106, and the retainer plate 64 and the air distributor plate 66 may be removably coupled to the plurality of mixing tubes 18 in the head end 70 of the combustor 14. Additionally, the air distributor plate 66 may improve the distribution of pressurized air 22 across the mixing tubes 18, and the cap assembly 60 may be configured to be removable, which may enable maintenance, inspection, and/or removal of other components of the combustor 14.


This written description uses examples to disclose the invention, including the best mode, and also to enables any person skilled in the art to practice the invention, including making and using any devices or systems and performing any incorporated methods. The patentable scope of the invention is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if they have structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal languages of the claims.

Claims
  • 1. A system, comprising: A combustor cap assembly for a multi fuel nozzle, comprising: a support structure defining an interior volume configured to receive an air flow;a plurality of mixing tubes disposed within the interior volume, wherein each of the plurality of mixing tubes comprises a respective fuel injector and is individually removable from the combustor cap assembly;an air distributor disposed within the interior volume, wherein the air distributor is configured to distribute the air flow received by the interior volume to each of the plurality of mixing tubes, wherein the air distributor comprises a plate comprising a plurality of air passages; andthe air distributor is disposed at angle within the interior volume relative to an axis of each mixing tube of the plurality of mixing tubes; anda combustor cap face removably coupled to the support structure.
  • 2. The system of claim 1, wherein the combustor cap face is removably coupled to the support structure with a radial spring.
  • 3. The system of claim 1, wherein the air distributor comprises a plurality of apertures, wherein each of the plurality of mixing tubes extends through one of the plurality of apertures, and each of the plurality of mixing tubes is individually removable from the air distributor.
  • 4. The system of claim 3, wherein at least one of the plurality of apertures comprises a radial spring that supports one of the plurality of mixing tubes.
  • 5. The system of claim 3, wherein at least one of the plurality of apertures comprises a venturi contour.
  • 6. The system of claim 3, wherein the air distributor comprises a plate coupled to the support structure.
  • 7. The system of claim 1, comprising a retainer plate disposed within the interior volume and removably coupled to the support structure, wherein the retainer plate is configured to at least partially support the plurality of mixing tubes.
  • 8. The system of claim 1, wherein the air distributor comprises a wire mesh.
  • 9. The system of claim 1, wherein the support structure is disposed within a combustion liner.
  • 10. A combustor cap assembly for a multi-tube fuel nozzle, comprising: a support structure defining an interior volume configured to receive an air flow; andan air distributor plate, comprising: a plurality of apertures, wherein each of the plurality of apertures is configured to receive one of a plurality of mixing tubes; anda plurality of air passages configured to distribute the air flow to the plurality of mixing tubes, wherein the air distributor plate is disposed at an angle within the interior volume relative to an axis of each of the plurality of mixing tubes.
  • 11. The combustor cap assembly of claim 10, wherein each of the plurality of air passages has a common size and shape.
  • 12. The combustor cap assembly of claim 10, wherein at least one of the plurality of air passages extends along at least three of the plurality of apertures.
  • 13. The combustor cap assembly of claim 10, wherein the air distributor plate comprises a multi-piece configuration.
  • 14. The combustor cap assembly of claim 10, wherein at least one of the plurality of air passages comprises a contour configured to reduce a pressure drop across the air distributor plate.
  • 15. A system, comprising: a combustor cap assembly for a multi-tube fuel nozzle, comprising: a support structure defining an interior volume, wherein the interior volume is configured to receive an air flow;a plurality of mixing tubes disposed within the interior volume, wherein each of the plurality of mixing tubes is configured to receive the air flow from the interior volume, and each of the plurality of mixing tubes is individually removable from the combustor cap assembly;a plurality of fuel injectors, wherein each of the plurality of fuel injectors is at least partially disposed within a respective one of the plurality of mixing tubes and is configured to inject a fuel flow into the respective one of the mixing tubes;an air distributor disposed within the interior volume, wherein the air distributor comprises a plurality of air passages configured to distribute the air flow within the interior volume to the plurality of mixing tubes, and the air distributor comprises a plate disposed at an angle within the interior volume relative to an axis of each mixing tube of the plurality of mixing tubes; anda combustor cap face removably coupled to the support structure.
  • 16. The system of claim 15, wherein the plurality of mixing tubes is at least partially supported within the interior volume by the air distributor, and each of the plurality of mixing tubes is individually removable from the air distributor.
  • 17. The system of claim 15, wherien the combustor cap face is coupled to the support structure with a radial spring.
US Referenced Citations (172)
Number Name Date Kind
1855165 Barker Apr 1932 A
2564042 Walker Aug 1951 A
3581492 Norgren et al. Jun 1971 A
3751911 De Tartaglia Aug 1973 A
4100733 Striebel et al. Jul 1978 A
4408461 Bruhwiler et al. Oct 1983 A
4587809 Ohmori et al. May 1986 A
4763481 Cannon Aug 1988 A
4796429 Verdouw Jan 1989 A
5121597 Urushidani et al. Jun 1992 A
5161366 Beebe Nov 1992 A
5235814 Leonard Aug 1993 A
5274991 Fitts Jan 1994 A
5361586 McWhirter et al. Nov 1994 A
5410884 Fukue et al. May 1995 A
5415000 Mumford et al. May 1995 A
5515680 Fujimura et al. May 1996 A
5611196 Wilson Mar 1997 A
5675971 Angel et al. Oct 1997 A
5778676 Joshi et al. Jul 1998 A
5816049 Joshi Oct 1998 A
5822992 Dean Oct 1998 A
5901555 Mandai et al. May 1999 A
5927076 Pillsbury Jul 1999 A
5943866 Lovett et al. Aug 1999 A
6016658 Willis et al. Jan 2000 A
6026645 Stokes et al. Feb 2000 A
6038861 Amos et al. Mar 2000 A
6092363 Ryan Jul 2000 A
6164055 Lovett et al. Dec 2000 A
6334309 Dean et al. Jan 2002 B1
6351948 Goeddeke Mar 2002 B1
6360776 McCormick et al. Mar 2002 B1
6363724 Bechtel et al. Apr 2002 B1
6438959 Dean et al. Aug 2002 B1
6438961 Tuthill et al. Aug 2002 B2
6530222 Stuttaford et al. Mar 2003 B2
6532742 Scarinci et al. Mar 2003 B2
6705087 Ohri et al. Mar 2004 B1
6832483 Moriya et al. Dec 2004 B2
6880340 Saitoh Apr 2005 B2
6928823 Inoue et al. Aug 2005 B2
6983600 Dinu et al. Jan 2006 B1
7007478 Dinu Mar 2006 B2
7007486 Sprouse et al. Mar 2006 B2
7021562 Mansour et al. Apr 2006 B2
7134287 Belsom et al. Nov 2006 B2
7171813 Tanaka et al. Feb 2007 B2
7181916 Ziminsky et al. Feb 2007 B2
7469544 Farhangi Dec 2008 B2
7578130 Kraemer et al. Aug 2009 B1
7617682 Bruck Nov 2009 B2
7841182 Martin Nov 2010 B2
7900456 Mao Mar 2011 B2
8042339 Lacy et al. Oct 2011 B2
8065880 Ishizaka et al. Nov 2011 B2
8079218 Widener Dec 2011 B2
8104291 Myers et al. Jan 2012 B2
8122721 Johnson et al. Feb 2012 B2
8205452 Boardman et al. Jun 2012 B2
8234871 Davis, Jr. et al. Aug 2012 B2
8234872 Berry et al. Aug 2012 B2
8240151 Pelletier et al. Aug 2012 B2
8266912 Berry et al. Sep 2012 B2
8276385 Zuo et al. Oct 2012 B2
8322143 Uhm et al. Dec 2012 B2
8327642 Uhm et al. Dec 2012 B2
8408004 Davis, Jr. et al. Apr 2013 B2
8424311 York et al. Apr 2013 B2
8474265 Jain et al. Jul 2013 B2
8484978 Bailey et al. Jul 2013 B2
8505304 Myers et al. Aug 2013 B2
8522555 Berry et al. Sep 2013 B2
8528334 Dutta et al. Sep 2013 B2
8528839 Bailey et al. Sep 2013 B2
8572979 Smith et al. Nov 2013 B2
8616002 Kraemer et al. Dec 2013 B2
8701419 Hughes Apr 2014 B2
8789372 Johnson et al. Jul 2014 B2
8800289 Johnson et al. Aug 2014 B2
8850821 Khan et al. Oct 2014 B2
8899049 Krull et al. Dec 2014 B2
8904797 Berry et al. Dec 2014 B2
8919127 Melton et al. Dec 2014 B2
8938978 Bailey et al. Jan 2015 B2
8966909 Crothers et al. Mar 2015 B2
9032704 Crothers et al. May 2015 B2
9151502 Crothers et al. Oct 2015 B2
9163839 Westmoreland et al. Oct 2015 B2
9200571 Bailey et al. Dec 2015 B2
9255711 Crothers et al. Feb 2016 B2
20020014078 Mandai et al. Feb 2002 A1
20020119412 Loving Aug 2002 A1
20020128790 Woodmansee Sep 2002 A1
20020192615 Moriya et al. Dec 2002 A1
20030014975 Nishida et al. Jan 2003 A1
20030037549 Mandai et al. Feb 2003 A1
20030089801 Saitoh et al. May 2003 A1
20040006990 Stuttaford et al. Jan 2004 A1
20040006991 Stuttaford et al. Jan 2004 A1
20040006992 Stuttaford et al. Jan 2004 A1
20040006993 Stuttaford et al. Jan 2004 A1
20040060297 Koenig et al. Apr 2004 A1
20040142294 Niass et al. Jul 2004 A1
20040163392 Nishida et al. Aug 2004 A1
20050268617 Amond, III et al. Dec 2005 A1
20070289305 Oda et al. Dec 2007 A1
20080053097 Han et al. Mar 2008 A1
20080078179 Cai Apr 2008 A1
20080163627 ELKady et al. Jul 2008 A1
20090188255 Green Jul 2009 A1
20090223225 Kraemer et al. Sep 2009 A1
20090241547 Luts et al. Oct 2009 A1
20090280443 Carroni et al. Nov 2009 A1
20100064691 Laster et al. Mar 2010 A1
20100089065 Tuthill Apr 2010 A1
20100192579 Boardman et al. Aug 2010 A1
20100192583 Cano Wolff et al. Aug 2010 A1
20100192586 Terada et al. Aug 2010 A1
20100205970 Hessler et al. Aug 2010 A1
20100218501 York et al. Sep 2010 A1
20100236247 Davis, Jr. et al. Sep 2010 A1
20100236252 Huth Sep 2010 A1
20100242493 Cihlar Sep 2010 A1
20100263384 Chila Oct 2010 A1
20110016866 Boardman et al. Jan 2011 A1
20110094235 Mulherin Apr 2011 A1
20110113783 Boardman et al. May 2011 A1
20110197591 Valeev et al. Aug 2011 A1
20110209481 Simmons Sep 2011 A1
20110314823 Smith et al. Dec 2011 A1
20120047902 Tuthill Mar 2012 A1
20120055167 Johnson et al. Mar 2012 A1
20120073302 Myers et al. Mar 2012 A1
20120180487 Uhm et al. Jul 2012 A1
20120180488 Bailey et al. Jul 2012 A1
20120227371 Johnson et al. Sep 2012 A1
20120297785 Melton et al. Nov 2012 A1
20120324896 Kim et al. Dec 2012 A1
20130025285 Stewart et al. Jan 2013 A1
20130067920 Fox et al. Mar 2013 A1
20130074503 Rohrssen et al. Mar 2013 A1
20130086912 Berry Apr 2013 A1
20130104554 Bode et al. May 2013 A1
20130125549 Bailey et al. May 2013 A1
20130180256 Stoia Jul 2013 A1
20130232977 Siddagangaiah et al. Sep 2013 A1
20130232979 Singh Sep 2013 A1
20130299602 Hughes et al. Nov 2013 A1
20140033718 Manoharan et al. Feb 2014 A1
20140033722 Abdel-Hafez et al. Feb 2014 A1
20140260259 Ginesin et al. Sep 2014 A1
20140260267 Melton et al. Sep 2014 A1
20140260268 Westmoreland et al. Sep 2014 A1
20140260271 Keener et al. Sep 2014 A1
20140260276 Westmoreland et al. Sep 2014 A1
20140260299 Boardman et al. Sep 2014 A1
20140260300 Chila et al. Sep 2014 A1
20140260315 Westmoreland et al. Sep 2014 A1
20140283522 Boardman et al. Sep 2014 A1
20140338338 Chila et al. Nov 2014 A1
20140338339 Westmoreland et al. Nov 2014 A1
20140338340 Melton et al. Nov 2014 A1
20140338344 Stewart et al. Nov 2014 A1
20140338354 Stewart et al. Nov 2014 A1
20140338355 Stewart et al. Nov 2014 A1
20140338356 Keener et al. Nov 2014 A1
20140367495 Monaghan et al. Dec 2014 A1
20150000285 Deiss et al. Jan 2015 A1
20150059353 Asai et al. Mar 2015 A1
20150165568 Means et al. Jun 2015 A1
20160060154 Cowles et al. Mar 2016 A1
Non-Patent Literature Citations (11)
Entry
U.S. Appl. No. 13/797,848, filed Mar. 12, 2013, Boardman et al.
U.S. Appl. No. 13/797,859, filed Mar. 12, 2013, Boardman et al.
U.S. Appl. No. 13/797,883, filed Mar. 12, 2013, Melton et al.
U.S. Appl. No. 13/797,896, filed Mar. 12, 2013, Westmoreland et al.
U.S. Appl. No. 13/797,912, filed Mar. 12, 2013, Chila et al.
U.S. Appl. No. 13/797,961, filed Mar. 12, 2013, Westmoreland et al.
U.S. Appl. No. 13/797,986, filed Mar. 12, 2013, Chila et al.
U.S. Appl. No. 13/798,012, filed Mar. 12, 2013, Melton et al.
U.S. Appl. No. 13/798,027, filed Mar. 12, 2013, Westmoreland et al.
U.S. Appl. No. 13/400,248, filed Feb. 20, 2012, Westmoreland et al.
U.S. Appl. No. 13/705,443, filed Dec. 5, 2012, Belsom et al.
Related Publications (1)
Number Date Country
20140260268 A1 Sep 2014 US