MICROORGANISM HAVING NOVEL ACRYLIC ACID SYNTHESIS PATHWAY AND METHOD OF PRODUCING ACRYLIC ACID BY USING THE MICROORGANISM

Abstract
A microorganism capable of producing an acrylic acid (AA), wherein activities of a pathway producing AA through conversions of 3-HP to 3-HP-CoA and 3-HP-CoA to AA-CoA in the microorganisms are increased; as well as a method of producing the microorganism and a method of producing an acrylic acid by using the same.
Description
RELATED APPLICATION

This application claims the benefit of Korean Patent Application No. 10-2014-0057954, filed on May 14, 2014, in the Korean Intellectual Property Office, the entire disclosure of which is hereby incorporated by reference.


INCORPORATION BY REFERENCE OF ELECTRONICALLY SUBMITTED MATERIALS

Incorporated by reference in its entirety herein is a computer-readable nucleotide/amino acid sequence listing submitted herewith and identified as follows: One 510,691 bytes ASCII (Text) file named “719112_ST25.TXT” created Feb. 3, 2015.


BACKGROUND

1. Field


The present disclosure relates to microorganisms having a novel acrylic acid synthesis pathway and a method of producing an acrylic acid by using the microorganisms.


2. Description of the Related Art


Recently, due to the rapid increase in the price of petroleum and as pressure to decrease carbon emissions has become a global issue, efforts to produce fuel or chemicals through a carbon-neutral biological process instead of a conventional chemical process using petroleum as a raw material have continued.


An acrylic acid is a bulk chemical that has a market value of about 10 trillion Korean Won (KRW). The recent demand for an environment-friendly production method has increased the need for a method of producing an acrylic acid through a pathway other than a petroleum-based pathway.


An example of a non-petroleum-based acrylic acid production pathway may be a method including producing 3-hydroxypropionic acid (3-HP) from glycerol or glucose; and chemically isolating and purifying the 3-HP. However, this method includes isolating the produced 3-HP from a culture, purifying the 3-HP, and chemically converting the 3-HP by using a catalyst. Therefore, the cost of the isolation, purification, and conversion is added to the 3-HP production cost, and thus the method may not be competitive with respect to a method of producing an acrylic acid derived from a petroleum-based compound.


Even in the conventional method, alternative microorganisms capable of producing acrylic acid and a method of producing an acrylic acid by using the microorganisms are needed.


SUMMARY

Provided is a genetically engineered microorganism that produces acrylate, wherein the genetically engineered microorganism comprises a genetic modification that increases activities of a CoA transferase catalyzing conversion of 3-hydroxypropionic acid (3-HP) to 3-hydroxypropionyl-CoA (3-HP-CoA), a 3-HP-CoA dehydratase catalyzing conversion of the 3-HP-CoA to acrylyl-CoA, and an enzyme catalyzing the acrylyl-CoA to an acrylate in the microorganisms are increased, compared to cells that are not genetically engineered. Also provided is a method of preparing the engineered microorganism by introducing into a microorganism an exogenous polynucleotide encoding the CoA transferase, an exogenous polynucleotide encoding 3-HP-CoA dehydratase, and an exogenous polynucleotide encoding an enzyme catalyzing conversion of acrylyl-CoA to acrylate.


Further provided is a method of producing an acrylate, wherein the method includes culturing the engineered microorganism in a culture medium. The acrylate produced by the microorganism can be recovered from the culture.


Additional aspects will be set forth in part in the description which follows and, in part, will be apparent from the description, or may be learned by practice of the presented embodiments.





BRIEF DESCRIPTION OF THE DRAWINGS

These and/or other aspects will become apparent and more readily appreciated from the following description of the embodiments, taken in conjunction with the accompanying drawings in which:



FIG. 1 is a cleavage map of a pETDuet/dhaB_gdrAB_gabD4 vector;



FIG. 2 is a map of pETDuet™-1/MELS1449_yciA_YdiF;



FIG. 3 is a magnified view of a part of the map of the pETDuet™-1/MELS1449_yciA_YdiF vector; and



FIG. 4 illustrates a prospective pathway of an acrylic acid production from glucose or glycerol in Escherichia coli.





DETAILED DESCRIPTION

Reference will now be made in detail to embodiments, examples of which are illustrated in the accompanying drawings, wherein like reference numerals refer to like elements throughout. In this regard, the present embodiments may have different forms and should not be construed as being limited to the descriptions set forth herein. Accordingly, the embodiments are merely described below, by referring to the figures, to explain aspects of the present description.


As used herein, the wording “increase in activity” or “increased activity” and the like in reference to a cell, an enzyme, a polypeptide, or a protein may refer to any detectable increase in activity sufficient to show that the activity level of the cell, enzyme, polypeptide, or protein is higher than that of a comparable cell, enzyme, polypeptide, or protein (e.g., a cell, polypeptide, protein or enzyme of the same type that is not genetically engineered). For instance, the activity of a cell, an enzyme, a polypeptide, or protein may be increased by about 5% or more, about 10% or more, about 15% or more, about 20% or more, about 30% or more, about 50% or more, about 60% or more, about 70% or more, about 100%, about 200%, or about 300%, compared to the same biochemical activity of an unmanipulated polypeptide, protein, or enzyme, or the polypeptide, protein, or enzyme of an unmanipulated (non-genetically engineered) cell. Increased activity may be identified by using a method known in the art.


The increased activity of a polypeptide, protein, or enzyme may occur, for example, due to increased gene expression or increased specific activity of an enzyme, polypeptide or protein (hereinafter referred to collectively as “polypeptide”). The increased expression may occur by introducing a polynucleotide encoding a polypeptide into a cell, increasing a copy number of the polynucleotide in the cell, or mutating a regulatory region of the polynucleotide. A polynucleotide that is introduced or present in an increased copy number may be an endogenous gene or an exogenous gene. The endogenous gene refers to a gene that exists in a genetic material included in a microorganism prior to genetic manipulation of the microorganism. The exogenous gene refers to a gene that is introduced into a host cell, such as a gene that is integrated into a host cell genome, wherein the introduced gene may be homologous or heterologous with respect to the host cell genome.


The expression “increased copy number” may include an increase in copy number by an introduction of an exogenous gene, or amplification of an endogenous gene. The expression “increased copy number” may also include a copy number increase by genetically manipulating a cell that did not previously have a gene so as to have the gene in the cell. The introduction of the gene may occur by using a vehicle such as a vector. The introduction may be a transient introduction, in which the gene is not integrated into the genome, or an integration into the genome. The introduction may, for example, occur by introducing a vector inserted with a polynucleotide encoding a desired polypeptide into the cell and then replicating the vector in the cell or integrating the polynucleotide into the genome of the cell and then replicating the polynucleotide together with the replication of the genome.


As used herein, the term “genetic modification” may refer to introduction of a polynucleotide encoding a polypeptide (i.e., an increase in copy number of the gene), or substitution, addition, insertion, or deletion of at least one nucleotide with a genetic material of a parent cell, or chemical mutation of a genetic material of a parent cell. In other words, genetic modification may include cases associated with a coding region of a polypeptide or a functional fragment thereof of a polypeptide that is heterologous, homologous, or both heterologous and homologous with a referenced species. Genetic modification may also refer to modification in non-coding regulatory regions that are capable of modifying expression of a gene or an operon, wherein the non-coding regulatory regions include a 5′-non coding sequence and/or a 3′-non coding sequence.


The term “gene” as used herein refers to a nucleic acid fragment expressing a specific protein and may include a regulatory sequence such as a 5′-non-coding sequence and a 3′-non-coding sequence in addition to a coding region. The regulatory region may include a promoter, an enhancer, an operator, a ribosome binding site, a poly(A) binding sequence, and a terminator region.


The term “endogenous” refers to a referenced molecule (e.g., nucleic acid) or activity already present in the host cell prior to a particular genetic modification (e.g., a genetic composition, trait, or biosynthetic activity of a “wild-type” cell or a parent cell).


The term “heterologous” refers to molecule (e.g., nucleic acid) or activity derived from a source other than referenced species; and the term “homologous” refers to a molecule (e.g., nucleic acid) or activity derived from a host parent cell. Accordingly, an exogenous molecule or activity (e.g., expression of an exogenous coding nucleic acid) may be heterologous (e.g., a coding nucleic acid from a different species) or homologous (e.g., an additional copy of a coding nucleic acid from the same species) or both.


The term “secretion” as used herein refers to a movement of a material from a cell interior to a periplasmic space or an extracellular environment.


The terms “cell”, “strain”, or “microorganism” as used herein may be interchangeably used and may include bacteria, yeast, fungi, or the like.


The term “acrylic acid” as used herein may refer to an acrylic acid, an acrylate, or its salt. An acrylic acid may be produced by fermentation or enzyme reaction of microorganisms.


The expression “decreased activity”, “decrease in activity” or “reduced activity” of a cell or polypeptide (including an enzyme or protein) refers to an activity level at which a cell or polypeptide shows no activity or the activity level that is lower than that of a comparable cell of the same type (e.g., a cell that is not genetically engineered) or the original polypeptide. For instance, the activity of a cell or polypeptide may be decreased by about 20% or more, about 30% or more, about 40% or more, about 50% or more, about 55% or more, about 60% or more, about 70% or more, about 75% or more, about 80% or more, about 85% or more, about 90% or more, about 95% or more, or about 100%, compared to the same biochemical activity of an unmanipulated polypeptide or unmanipulated (i.e., not genetically engineered) cells. The decreased activity includes the case in which the enzyme is inactive or has reduced activity even when the enzyme is expressed and the case in which the gene encoding the enzyme is not expressed or has reduced expression in comparison to the unmanipulated gene or the unmanipulated cells, even when the enzyme is expressed.


The reduced activity of enzyme polypeptide (including an enzyme or protein) may be due to deletion or disruption of the gene encoding the polypeptide. The “deletion” or the “disruption” of the gene refers to mutation, substitution, or deletion of a part or entirety of the genes, or a promoter or a terminator region thereof, or an insertion of at least one base to the gene, such that the gene may not be expressed, have reduced expression, or show no activity or reduced activity of the polypeptide, even when the gene is expressed. The deletion or the disruption of the gene may be achieved by genetic manipulation such as homologous recombination, mutagenesis, or molecular evolution. When a cell includes a plurality of the same genes or two or more different paralogs, one or more genes may be removed or disrupted.


A sequence identity of nucleic acid or polypeptide according to an embodiment of the present disclosure refers to the extent of identity between bases or amino acid residues of sequences after aligning the sequences such that they maximally match in certain comparative regions. The sequence identity is a value calculated by optimally aligning two sequences at certain comparative regions, wherein portions of the sequences at the certain comparative regions may be added or deleted, compared to reference sequences. A percentage of sequence identity may be calculated by, for example, comparing two optimally aligned sequences in the entire comparative region, determining the number of locations in which the same amino acids or nucleic acids appear at corresponding positions in each aligned sequence (i.e. matched locations), dividing the number of matched locations by the total number of locations in the comparative region (that is, the size of the range), and multiplying by 100 to calculate the percentage of the sequence identity. The percentage of the sequence identity may be calculated by using a known sequence comparison program, and examples of such program include BLASTN (NCBI), CLC Main Workbench (CLC bio), and MegAlign™ (DNASTAR Inc).


Various levels of sequence identity may be used to identify various types of polypeptides or polynucleotides having the same or similar functions. For example, a sequence identity of about 50% or more, about 55% or more, about 60% or more, about 65% or more, about 70% or more, about 75% or more, about 80% or more, about 85% or more, about 90% or more, about 95% or more, about 96% or more, about 97% or more, about 98% or more, about 99% or more, or 100% may be used.


According to an aspect of the present disclosure, provided is a microorganism capable of producing acrylate, wherein activities of a CoA transferase catalyzing conversion of 3-hydroxypropionic acid (3-HP) to 3-hydroxypropionyl-CoA (3-HP-CoA), a 3-HP-CoA dehydratase catalyzing conversion of the 3-HP-CoA to acrylyl-CoA, and an enzyme catalyzing the acrylyl-CoA to an acrylate in the microorganisms are increased, compared to unengineered cells (i.e., cells that are not genetically engineered).


The CoA transferase may belong to EC 2.8.3.8, EC 3.1.2.-, or EC 6.2.1.17. The CoA transferase may have an activity catalyzing conversion of 3-HP to 3-HP-CoA, wherein the activity is higher than an activity catalyzing a reversed reaction of the conversion. The CoA transferase may include an amino acid sequence having a sequence identity of 65% or more, for example, 70% or more, 80% or more, 85% or more, 90% or more, 91% or more, 92% or more, 93% or more, 94% or more, 95% or more, 96% or more, 97% or more, 98% or more, 99% or more, or 100% to at least one amino acid sequence of SEQ ID NOS: 1 to 10. The polynucleotide encoding the CoA transferase may have a nucleotide sequence encoding an amino acid sequence having a sequence identity of 65% or more, for example, 70% or more, 80% or more, 85% or more, 90% or more, 91% or more, 92% or more, 93% or more, 94% or more, 95% or more, 96% or more, 97% or more, 98% or more, 99% or more, or 100% to at least one amino acid sequence of SEQ ID NOS: 1 to 10. The polynucleotide encoding the CoA transferase may have a sequence identity of 95% or more to at least one nucleotide sequence of SEQ ID NOS: 11 to 20. The CoA transferase may be at least one selected from enzymes shown in Table 1. All the enzymes of Table 1 may be E1-type.















TABLE 1










Place of








strain


No.
EC
Category
Source strain
Gene name
purchase
Sequence*





















1
2.8.3.8
Acetate CoA-

Clostridium propionicum

pct
KCTC5582
1/11




transferase


2
2.8.3.8
Acetate CoA-

Escherichia coli (strain K12)

ydiF b1694
In-house
2/12




transferase

JW1684


3
2.8.3.8
Acetate CoA-

Cupriavidus necator

pct
KCTC22469
3/13




transferase


4
6.2.1.17
CoA transferase

Halomonas smyrnensis

acuN
DSM21644
4/14


5
6.2.1.17
CoA transferase

Ruegeria pomeroyi DSS-3

SPO2934
DSM15171
5/15


6
2.8.3.8
Acetate CoA-

Desulfosporosinus youngiae

DesyoDRAFT_3698
DSM17734
6/16




transferase
DSM 17734


7
3.1.2.—
Thioesterase

Peptoniphilus indolicus ATCC

HMPREF9129_0351
KCTC15023
7/17





29427


8
2.8.3.8
Acetate CoA-

Desulfosporosinus meridiei

Desmer_1798
DSM13257
8/18




transferase
(strain ATCC BAA-275/DSM





13257/NCIMB 13706/S10)


9
2.8.3.8
Acetate CoA-

Desulfosporosinus orientis

Desor_3090
DSM765
9/19




transferase
(strain ATCC 19365/DSM 765/





NCIMB 8382/VKM B-1628)





(Desulfotomaculum orientis)


10
2.8.3.8
Acetate CoA-

Peptostreptococcus

BN738_00826
KCTC5182
10/20




transferase

anaerobius CAG: 621






*Sequence denotes SEQ ID NO. of an amino acid/SEQ ID NO. of a nucleotide.






The 3-HP-CoA dehydratase may belong to EC 4.2.1.- including EC 4.2.1.17, EC 4.2.1.55, and EC 4.2.1.166. The 3-HP-CoA dehydratase may have an activity catalyzing conversion of 3-HP-CoA to acrylyl-CoA, wherein the activity is higher than an activity catalyzing a reversed reaction of the conversion. The 3-HP-CoA dehydratase may include amino acid sequences having a sequence identity of 65% or more, for example, 70% or more, 80% or more, 85% or more, 90% or more, 91% or more, 92% or more, 93% or more, 94% or more, 95% or more, 96% or more, 97% or more, 98% or more, 99% or more, or 100% to at least one amino acid sequence of SEQ ID NOS: 21 to 98 and 401. The polynucleotide encoding 3-HP-CoA dehydratase may encode amino acid sequences having a sequence identity of 65% or more, for example, 70% or more, 80% or more, 85% or more, 90% or more, 91% or more, 92% or more, 93% or more, 94% or more, 95% or more, 96% or more, 97% or more, 98% or more, 99% or more, or 100% to at least one amino acid sequence of SEQ ID NOS: 21 to 98 and 401. The polynucleotide encoding 3-HP-CoA dehydratase may have a sequence identity of about 95% or more to one or more nucleotide sequence of SEQ ID NOS: 99 to 176 and 402. The 3-HP-CoA dehydratase may be at least one selected from enzymes shown in Tables 2 to 5. The enzymes shown in Tables 2 to 5 may be E2-type. The term “sequence*” as used herein denotes SEQ ID NO. of an amino acid/SEQ ID NO. of a nucleotide.















TABLE 2










Place of



No.
EC
Category
Source strain
Gene
purchase
Sequence*





















1
4.2.1.—
3-hydroxybutyryl-CoA

Dictyostelium

Q869N6
DSM947
21/99 




dehydratase(Crotonase)

discoideum (Slime






mold)


2
4.2.1.55
3-hydroxybutyryl-CoA

Clostridium

crt
KCTC1790
22/100




dehydratase(Crotonase)

acetobutylicum

CA_C2712


3
4.2.1.55
3-hydroxybutyryl-CoA

Clostridium difficile

crt ech
KCTC5009
23/101




dehydratase(Crotonase)


4
4.2.1.55
3-hydroxybutyryl-CoA
Clostridium
F502_09038
KCTC1674
24/102




dehydratase(Crotonase)

pasteurianum



5
4.2.1.55
3-hydroxybutyryl-CoA

Clostridium

F502_06297
KCTC1674
25/103




dehydratase(Crotonase)

pasteurianum



6
4.2.1.55
3-hydroxybutyryl-CoA

Megasphaera elsdenii

MELS_1449
KCTC5187
26/104




dehydratase(Crotonase)


7
4.2.1.116
3-hydroxybutyryl-CoA

Metallosphaera sedula

Msed_2001
DSM5348
27/105




dehydratase(Crotonase)


8
4.2.1.55
3-hydroxybutyryl-CoA

Clostridicum kluyvery

crt1
DSM555
28/106




dehydratase(Crotonase)


9
4.2.1.—
4-hydroxybutyryl-CoA

Sulfolobus tokodaii

STK_16590
DSM16993
29/107




dehydratase


10
4.2.1.—
4-hydroxybutyryl-CoA

Geobacter

Gmet_2215
DSM7210
30/108




dehydratase

metallireducens



11
4.2.1.—
4-hydroxybutyryl-CoA

Sulfolobus solfataricus

abfD-1
DSM1617
31/109




dehydratase


12
4.2.1.—
4-hydroxybutyryl-CoA

Syntrophobacter

Sfum_3141
DSM10017
32/110




dehydratase

fumaroxidans



13
4.2.1.—
4-hydroxybutyryl-CoA

Porphyromonas

PGN_0727
DSM20709
33/111




dehydratase

gingivalis



14
4.2.1.—
4-hydroxybutyryl-CoA

Polynucleobacter

Pnuc_0370
DSM18221
34/112




dehydratase

necessarius subsp.







Asymbioticus



15
4.2.1.116
3-hydroxypropionyl-CoA

Sulfolobus tokodaii

STK_15160
DSM16993
35/113




dehydratase


16
4.2.1.—
3-hydroxypropionyl-CoA

Gordonia terrae C-6

GTC6_11571
KCTC9807
36/114




dehydratase


17
4.2.1.—
3-hydroxypropionyl-CoA

Halalkalicoccus jeotgali

HacjB3_17558
DSM18796
37/115




dehydratase

C497_07209


18
4.2.1.—
3-hydroxypropionyl-CoA

Carboxydothermus

CHY_1739
DSM6008
38/116




dehydratase

hydrogenoformans



19
4.2.1.55
3-hydroxypropionyl-CoA

Thermomicrobium

trd_0041
DSM5159
39/117




dehydratase

roseum



20
4.2.1.17
3-hydroxypropionyl-CoA

Methylobacterium

croA
DSM1337
40/118




dehydratase

extorquens

METDI5699






















TABLE 3










Place of



No.
EC
Category
Source strain
Gene
purchase
Sequence*







21
4.2.1.—
R-phenyllactate

Clostridium

fldB
KCTC5654
41/119




dehydratase

sporogenes



22
4.2.1.—
R-phenyllactate

fldC
KCTC5654
42/120




dehydratase


23
4.2.1.—
R-phenyllactate

fldI
KCTC5654
43/121




dehydratase


24
4.2.1.—
R-phenyllactate

fldA
KCTC5654
44/122




dehydratase


25
4.2.1.—
R-phenyllactate

Lachnoanaerobaculum

fldC
DSM3986
45/123




dehydratase

saburreum

HMPREF0381_2734


26
4.2.1.—
R-phenyllactate

fldB
DSM3986
46/124




dehydratase

HMPREF0381_2735


27
4.2.1.—
R-phenyllactate

fldI2
DSM3986
47/125




dehydratase

HMPREF0381_2736


28
4.2.1.—
R-phenyllactate

Peptostreptococcus

fldI
DSM17678
48/126




dehydratase

stomatis

HMPREF0634_1391


29
4.2.1.—
R-phenyllactate

HMPREF0634_1028
DSM17678
49/127




dehydratase


30
4.2.1.—
R-phenyllactate

fldB
DSM17678
50/128




dehydratase

HMPREF0634_1029


31
4.2.1.—
2-hydroxyisocaproyl-CoA

Clostridium

hadB
KCTC5009
51/129




dehydratase

difficile



32
4.2.1.—
2-hydroxyisocaproyl-CoA

hadC
KCTC5009
52/130




dehydratase


33
4.2.1.—
2-hydroxyisocaproyl-CoA

hadI
KCTC5009
53/131




dehydratase


34
4.2.1.—
2-hydroxyisocaproyl-CoA

hadA
KCTC5009
54/132




dehydratase


35
4.2.1.17
Enoyl-CoA hydratase

Escherichia coli

paaF
In-house
55/133





(strain K12)


36
4.2.1.17
Enoyl-CoA hydratase

Rhodobacter

fadB1
KCTC2583
56/134






capsulatus



37
4.2.1.—
Enoyl-CoA hydratase

Pseudomonas

PSTAA_0117
DSM4166
57/135






stutzeri



38
4.2.1.—
Enoyl-CoA hydratase

Haliangium

Hoch_4602
DSM14365
58/136






ochraceum



39
4.2.1.—
Enoyl-CoA hydratase

Anoxybacillus

Aflv_0566
DSM21510
59/137






flavithermus



40
4.2.1.—
Enoyl-CoA hydratase

Streptomyces

echA3 SAV_717
DSM46492
60/138






avermitilis



41
4.2.1.—
Enoyl-CoA hydratase

Advenella

TKWG_10020
DSM17095
61/139






kashmirensis























TABLE 4










Place of



No.
EC
Category
Source strain
Gene
purchase
Sequence*







42
4.2.1.—
Enoyl-CoA hydratase

Oligotropha

OCA5_c12950
DSM1227
62/140






carboxidovorans

OCAR_6780


43
4.2.1.—
Enoyl-CoA hydratase

Riemerella

Riean_1526
DSM15868
63/141






anatipestifer

RA0C_1812


44
4.2.1.—
Enoyl-CoA hydratase

Fusobacterium

HMPREF1127_1435
DSM19678
64/142






necrophorum






subsp.






funduliforme Fnf






1007


45
4.2.1.—
Enoyl-CoA hydratase

HMPREF1127_1434
DSM19678
65/143


46
4.2.1.—
Enoyl-CoA hydratase

HMPREF1127_1436
DSM19678
66/144


47
4.2.1.—
Enoyl-CoA hydratase

Desulfosporosinus

DesyoDRAFT_3696
DSM17734
67/145






youngiae DSM






17734


48
4.2.1.—
Enoyl-CoA hydratase

DesyoDRAFT_3695
DSM17734
68/146


49
4.2.1.—
Enoyl-CoA hydratase

DesyoDRAFT_3697
DSM17734
69/147


50
4.2.1.—
Enoyl-CoA hydratase

Peptoniphilus

fldB
KCTC15023
70/148






indolicus ATCC

HMPREF9129_0353





29427


51
4.2.1.—
Enoyl-CoA hydratase

HMPREF9129_0354
KCTC15023
71/149


52
4.2.1.—
Enoyl-CoA hydratase

HMPREF9129_0352
KCTC15023
72/150


53
4.2.1.—
Enoyl-CoA hydratase

Desulfosporosinus

Desmer_1800
DSM13257
73/151






meridiei (strain






ATCC BAA-275/





DSM 13257/





NCIMB 13706/





S10)


54
4.2.1.—
Enoyl-CoA hydratase

Desmer_1801
DSM13257
74/152


55
4.2.1.—
Enoyl-CoA hydratase

Desmer_1799
DSM13257
75/153


56
4.2.1.—
2-hydroxyglutaryl-CoA

Acidaminococcus

hgdA
DSM20731
76/154




dehydratase

fermentans

Acfer_1815


57
4.2.1.—
2-hydroxyglutaryl-CoA

hgdB
DSM20731
77/155




dehydratase

Acfer_1815


58
4.2.1.—
2-hydroxyglutaryl-CoA

hgdC
DSM20731
78/156




dehydratase

Acfer_1815


59
4.2.1.—
2-hydroxyglutaryl-CoA

Carboxydothermus

hgdB
DSM6008
79/157




dehydratase

hydrogenoformans

CHY_0846


60
4.2.1.—
2-hydroxyglutaryl-CoA

hgdA
DSM6008
80/158




dehydratase

CHY_0847


61
4.2.1.—
2-hydroxyglutaryl-CoA

hgdC
DSM6008
81/159




dehydratase

CHY_0848


62
4.2.1.—
2-hydroxyglutaryl-CoA

Oscillibacter

hgdC
DSM18026
82/160




dehydratase

valericigenes

OBV_10870


63
4.2.1.—
2-hydroxyglutaryl-CoA

hgdA
DSM18026
83/161




dehydratase

OBV_10880


64
4.2.1.—
2-hydroxyglutaryl-CoA

hgdB
DSM18026
84/162




dehydratase

OBV_10890






















TABLE 5










Place of



No.
EC
Category
Source strain
Gene
purchase
Sequence*







65
4.2.1.—
2-hydroxyglutaryl-

Desulfosporosinus orientis

Desor_3092
DSM765
85/163




CoA dehydratase
(strain ATCC 19365/





DSM 765/NCIMB 8382/





VKM B-1628)





(Desulfotomaculum






orientis)



66
4.2.1.—
2-hydroxyglutaryl-

Desor_3093
DSM765
86/164




CoA dehydratase


67
4.2.1.—
2-hydroxyglutaryl-

Desor_3091
DSM765
87/165




CoA dehydratase


68
4.2.1.—
2-hydroxyglutaryl-

Peptostreptococcus

BN738_00824
KCTC5182
88/166




CoA dehydratase

anaerobius CAG: 621



69
4.2.1.—
2-hydroxyglutaryl-

BN738_00823
KCTC5182
89/167




CoA dehydratase


70
4.2.1.—
2-hydroxyglutaryl-

BN738_00825
KCTC5182
90/168




CoA dehydratase


71
4.2.1.—
2-hydroxyglutaryl-

Chloroflexus aggregans

Cagg_1174
DSM9485
91/169




CoA dehydratase
(strain MD-66/DSM





9485)


72
4.2.1.17
2-hydroxyglutaryl-

Marivirga tractuosa (strain

Ftrac_3721
KCTC2958
92/170




CoA dehydratase
ATCC 23168/DSM 4126/





NBRC 15989/NCIMB





1408/VKM B-1430/H-





43) (Microscilla tractuosa)





(Flexibacter tractuosus)


73
4.2.1.—
2-hydroxyglutaryl-

Marinithermus

Marky_1278
DSM14884
93/171




CoA dehydratase

hydrothermalis (strain






DSM 14884/JCM 11576/





T1)


74
4.2.1.—
2-hydroxyglutaryl-

Chitinophaga pinensis

Cpin_6304
KCTC3412
94/172




CoA dehydratase
(strain ATCC 43595/





DSM 2588/NCIB 11800/





UQM 2034)


75
4.2.1.—
2-hydroxyglutaryl-

Megasphaera elsdenii

MELS_0744
KCTC5187
95/173




CoA dehydratase
DSM 20460


76
4.2.1.—
2-hydroxyglutaryl-

Megasphaera elsdenii

MELS_0745
KCTC5187
96/174




CoA dehydratase
DSM 20460


77
4.2.1.—
2-hydroxyglutaryl-

Megasphaera elsdenii

MELS_0746
KCTC5187
97/175




CoA dehydratase
DSM 20460


78
4.2.1.—
2-hydroxyglutaryl-

Chloroflexus aurantiacus

Chy400_0108
DSM635
98/176




CoA dehydratase
(strain ATCC 29364/





DSM 637/Y-400-fl)


79
4.2.1.—
enoyl-CoA

Ruegeria pomeroyi DSS-3

SP00147
DSM15171
401/402 




hydrastase









The enzyme catalyzing conversion of acrylyl-CoA to acrylate may belong to EC 3.1.2- including EC 3.1.2.4. The enzyme catalyzing conversion of acrylyl-CoA to acrylate may be 3-HP-CoA hydrolase or 3-hydroxyisobutyryl-CoA hydrolase. The enzyme catalyzing conversion of acrylyl-CoA to acrylate may have activity of catalyzing conversion of acrylyl-CoA to acrylate higher than activity of catalyzing the reversed reaction. The enzyme catalyzing the conversion of acrylyl-CoA to acrylate may include amino acid sequences having a sequence identity of 65% or more, for example, 70% or more, 80% or more, 85% or more, 90% or more, 91% or more, 92% or more, 93% or more, 94% or more, 95% or more, 96% or more, 97% or more, 98% or more, 99% or more, or 100% to at least one amino acid sequence of SEQ ID NOS: 177 to 182. The polynucleotide encoding the enzyme catalyzing conversion of acrylyl-CoA to acrylate may encode amino acid sequences having a sequence identity of 65% or more, for example, 70% or more, 80% or more, 85% or more, 90% or more, 91′)/0 or more, 92% or more, 93% or more, 94% or more, 95% or more, 96% or more, 97% or more, 98% or more, 99% or more, or 100% to at least one amino acid sequence of SEQ ID NOS: 177 to 182. The polynucleotide encoding the enzyme catalyzing conversion of acrylyl-CoA to acrylate may have a sequence identity of about 95% or more to nucleotide sequences of SEQ ID NOS: 405 to 410. The enzyme catalyzing conversion of acrylyl-CoA to acrylate may be at least one selected from enzymes shown in Table 6. The enzymes shown in Table 6 may be E3-type. The term “sequence*” as used in herein denotes SEQ ID NO. of an amino acid/SEQ ID NO. of a nucleotide.















TABLE 6










Place of



No.
EC
Category
Source strain
Gene name
purchase
Sequence*







1
3.1.2.—
Acyl-CoA thioester

E. coli

yciA
In-house
177/405




hydrolase


2
3.1.2.—
Acyl-CoA thioester

Klebsiella oxytoca

HMPREF9689_01673
KCTC1686
178/406




hydrolase
10-5245


3
3.1.2.—
Acyl-CoA thioester

Cronobacter

yciA
In-house
179/407




hydrolase

turicensis



4
3.1.2.—
Acyl-CoA thioester

Citrobacter freundii

D186_20262
In-house
180/408




hydrolase


5
3.1.2.—
Acyl-CoA thioester

Salmonella enterica

Sel_A1458
DSM5569
181/409




hydrolase


6
3.1.2.—
Acyl-CoA thioester

Shigella flexneri

SF123566_2028
In-house
182/410




hydrolase
1235-66









The microorganism may be microorganisms that are genetically engineered so that expression of the three types of enzyme genes (CoA transferase, 3-HP-CoA dehydratase, and enzyme catalyzing conversion of acrylyl-CoA to acrylate) may increase compared to that of cells that are not genetically engineered. When the activities of the three enzymes were already present in the parent cells, expression of the three enzymes may further increased by genetically engineering the microorganism. Also, when the activities of the three enzymes were not present in the parent (e.g., not genetically engineered) cells, genes that encode the three enzymes may be introduced to parent cells by genetic engineering and express or overexpress the genes. The genetically unengineered cells denote a wild microorganism or parent cells, from which the microorganism is derived.


The expression or overexpression of the three enzymes may be achieved by using various methods known to one of ordinary skill in the art. For example, the expression may be increased by increasing the number of gene copies, or by using a control material such as an inducer or a repressor. The number of gene copies may be increased by introduction or amplification of the gene. That is, the increasing of the number of gene copies may be achieved by introducing a vector or an expression cassette including a regulation element and the three enzyme genes that are operably linked to one another into a host cell.


Also, the increase in the activities of the three genes may be caused by modification of an expression regulatory sequence of the gene. The regulatory sequence may be e.g., a promoter sequence or a transcription terminator sequence for the gene expression. The regulatory sequence may be a sequence that encodes a motif which may influence the gene expression. The motif may be, for example, a secondary structure-stabilizing motif, an RNA destabilizing motif, a splice-activating motif, a polyadenylation motif, an adenine-rich sequence, or an endonuclease recognition site.


The microorganism may be selected from the group consisting of bacteria, yeast, and fungi. The microorganism may be selected from the group consisting of Escherichia, Corynebacterium genus, and Brevibacterium genus. The cells may be Corynebacterium genus. The microorganism may be a microorganism selected from the group consisting of E. coli, Corynebacterium glutamicum, Corynebacterium thermoaminogenes, Brevibacterium flavum, and Brevibacterium lactofermentum.


The microorganism may naturally produce the acrylic acid or may be genetically engineered to produce the acrylic acid by using a recombinant method. In this case, the microorganism may be a microorganism capable of producing acrylic acid from monosaccharides such as glucose, or a glycerol. Also, the microorganism may have the capability to produce 3-HP, for example from monosaccharides such as glucose, or a glycerol. The microorganism may have a biochemical pathway forming glycerol from monosaccharides such as glucose. The biochemical pathway may include glycolytic pathway converting monosaccharides such as glucose to dihydroxyacetone phosphate (DHAP), and a pathway converting DHAP to glycerol such as dihydroxyacetone phosphate phosphatase (DHAPP) that catalyzes the conversion of dihydroxyacetone phosphate (DHAP) into dihydroxyacetone (DHA); and glycerol dehydrogenase (GLDH) that catalyzes the conversion of DHA into glycerol. The microorganism may include a polynucleotide encoding dihydroxyacetone phosphate phosphatase (DHAPP) that catalyzes the conversion of dihydroxyacetone phosphate (DHAP) into dihydroxyacetone (DHA); and a polynucleotide encoding glycerol dehydrogenase (GLDH) that catalyzes the conversion of DHA into glycerol. 3-HP produced by the microorganism may be converted to acrylate by the increased CoA transferase activity, 3-HP-CoA dehydratase activity and activity of an enzyme that catalyzes conversion of acrylyl-CoA to acrylate of the claimed microorganism. When the microorganism does not naturally produce 3-HP, the microorganism may be genetically engineered to produce 3-HP. When a gene that encodes an enzyme catalyzing conversion of glycerol to 3-HPA and a gene that encodes an enzyme catalyzing conversion of 3-HPA to 3-HP are introduced to the microorganism, the microorganism may have a 3-HP productivity from glycerol. In this case, the microorganism may be a microorganism capable of producing a glycerol. The microorganism may be, for example, a microorganism of Escherichia genus including E. coli. The enzyme catalyzing conversion of glycerol to 3-HPA may be a glycerol dehydratase (GDH). The enzyme catalyzing conversion of 3-HPA to 3-HP may be an aldehyde dehydrogenase (ALD).


The GDH may include any enzyme catalyzing conversion of glycerol to 3-HPA. The GDH may belong to EC 4.2.1.30 or diol dehydratase (EC 4.2.1.28). The GDH and a nucleotide encoding the GDH may be derived from Ilyobacter polytropus, Klebsiella pneumoniae, Citrobacter freundii, Clostritidium pasteurianum, Salmonella typhimurium, or Klebsiella oxytoca. In each case, the GDH may be composed of three subunits. The subunits may be a large or “α” subunit, a medium or “β” subunit, and a small or “γ” subunit. The gene encoding the large or “α” subunit of the GDH may include dhaB1, gldA, and ghaB. The gene encoding the medium or “β” subunit of the GDH may include dhaB2, gldB, and dhaC. The gene encoding the small or “γ” subunit of the GDH may include dhaB3, gldC, and dhaE. The gene encoding the large or “α” subunit of the diol dehydratase may include pduC and pddA. The gene encoding the medium or “β” subunit of the diol dehydratase may include pduD and pddB. The gene encoding the small or “γ” subunit of the diol dehydratase may include pduE and pddC. Tables 7 and 8 show Gene names and GenBank references with respect to GDH and functions linked to GDH. The GDH may include dhaB1, dhaB2, and dhaB3 that are derived from Ilyobacter polytropus. The Ilyobacter polytropus-derived dhaB1, dhaB2, and dhaB3 may each have amino acid sequences of SEQ ID NOS: 183, 184, and 185, respectively. The dhaB1 gene, dhaB2 gene, and dhaB3 gene may each encode amino acid sequences of SEQ ID NOS: 183, 184, and 185, respectively. The Ilyobacter polytropus-derived dhaB1 gene, dhaB2 gene, and dhaB3 gene may each have nucleotide sequences of SEQ ID NOS: 186, 187, and 188, respectively.











TABLE 7









Gene function











Organism
Control
Unknown
Reactivation
Unknown















(GenBank

Base

Base

Base

Base


reference number)
Gene
pair
Gene
pair
Gene
pair
Gene
pair






K. pneumoniae (U30903)



orf2c
7116-7646
orf2b
6762-7115
orf2a
5125-5556



K. pneumoniae (U60992)





GdrB



C. freundii (U09771)

dhaR
3746-5671
orfW
5649-6179
orfX
6180-6533
orfY
7736-8164



C. pasteurianum (AF051373)




C. pasteurianum (AF026270)



orfW
210-731
orfX
 1-196
orfY
 746-1177



S. typhimurium (AF026270)





pduH
8274-8645



K. oxytoca (AF017781)





DdrB
2063-2440



K. oxytoca (AF051373)


















TABLE 8







Organism



(GenBank
Gene function











reference
dehydrase, α
dehydrase, α
dehydrase, α
Reactivation















number)
Gene
Base pair
Gene
Base pair
Gene
Base pair
Gene
Base pair






K. pneumoniae (U30903)

dhaB1
3047-4714
dhaB2
2450-2890
dhaB3
2022-2447
orf2a
 186-2009



K. pneumoniae (U60992)

gldA
 121-1788
gldB
1801-2382
gldB
2388-2813
gdrA



C. freundii (U09771)

dhaB
 8556-10223
dhaC
10235-10819
dhaC
10822-11250
orfY
11261-13072



C. pasteurianum (AF051373)

dhaB
 84-1748
dhaC
1779-2318
dhaC
2333-2773

2790-4598



C. pasteurianum (AF026270)







orfY



S. typhimurium (AF026270)

pduC
3557-5221
pduD
5232-5906
pduD
5921-6442

6452-8284



K. oxytoca (AF017781)








 241-2073



K. oxytoca (AF051373)

pddA
 121-1785
pddB
1796-2470
pddB
2485-3006









The GDH may include an amino acid sequence having a sequence identity of 65% or more, for example, 70% or more, 80% or more, 85% or more, 90% or more, 91′)/0 or more, 92% or more, 93% or more, 94% or more, 95% or more, 96% or more, 97% or more, 98% or more, 99% or more, or 100% to each sequence of dhaB1, dhaB2, and dhaB3 genes derived from Ilyobacter polytropus.


The ALD may include any protein that may catalyze conversion of 3-HPA to 3-HP. The ALD may use a redox cofactor such as NAD, NADP, FAD, or PQQ. The ALD may be EC 1.2.1.3 (NAD-dependent), EC 1.2.1.4 (NADP-dependent), EC 1.2.99.3 (PQQ-dependent), or EC 1.2.99.7 (FAD-dependent). An example of the NADP-dependent ALD may be AldB, which is encoded by an E. coli gene, aldB. An example of the NAD-dependent ALD may be AldA, which is encoded by an E. coli gene, aldA, or AldH, which is encoded by an E. coli gene, aldH. The ALD may be a succinate semialdehyde dehydrogenase (SSADH). The SSADH may belong to EC 1.2.1.24 or EC 1.2.1.16. The SSADH may be dependent upon NAD+, NADP+, or both. The SSADH may be CoA independent. For example, the SSADH may be derived from Corynebacterium genus, Rhodococcus genus, Gordonia genus, Mycobacterium genus, Enterobacter genus, and Escherichia genus. The SSADH may be gabD1, gabD2, or gabD3 derived from E. coli. For example, a gene encoding the SSADH may be polynucleotides encoding amino acid sequences of SEQ ID NOS: 189, 190, and 191. The SSADH may be gabD (a nucleotide sequence of SEQ ID NO: 192 and an amino acid sequence of SEQ ID NO: 193) derived from Cupriavidus necator. The gene encoding the SSADH may be, for example, a polynucleotide encoding amino acid sequences of SEQ ID NOS: 189, 190, 191, and 193. The gene encoding the SSADH may have, for example, nucleotide sequences of SEQ ID NOS: 194, 195, 196, and 192. The SSADH may include amino acid sequences having a sequence identity of 65% or more, for example, 70% or more, 80% or more, 85% or more, 90% or more, 91% or more, 92% or more, 93% or more, 94% or more, 95% or more, 96% or more, 97% or more, 98% or more, 99% or more, or 100% to amino acid sequences of SEQ ID NOS: 189, 190, 191, and 193.


The microorganism may further include a polynucleotide encoding a glycerol dehydratase reactivase (GDR). The glycerol and diol dehydratase may be subject to mechanism-based suicide inactivation by glycerol and other substrates (Daniel et al., FEMS Microbiol. Rev. 22, 553(1999)). The term “glycerol dehydratase reactivase (GDR)” refers to a protein that reactivates activity of the dehydratase. The term “dehydratase reactivating activity” refers to a phenomenon of converting a dehydratase not capable of catalysis of a substrate to one capable of catalysis of a substrate or to the phenomenon of inhibiting the inactivation of a dehydratase or the phenomenon of extending the useful half-life of the dehydratase enzyme in vivo. The GDR may be at least one of dhaB, gdrA, pduG, and ddrA. Also, the GDR may be at least one of orfX, orf2b, gdrB, pduH, and ddrB.


The GDR may be gdrA and gdrB derived from K. pneumoniae (U60992), each of which may have amino acid sequences of SEQ ID NOS: 197 and 198. Also, the GDR may be gdrA and gdrB derived from Ilyobacter polytropus, each of which may have amino acid sequences of SEQ ID NOS: 199 and 200. The GDR may include amino acid sequences having a sequence identity of 65% or more, for example, 70% or more, 80% or more, 85% or more, 90% or more, 91% or more, 92% or more, 93% or more, 94% or more, 95% or more, 96% or more, 97% or more, 98% or more, 99% or more, or 100% to amino acid sequences of SEQ ID NOS: 197, 198, 199, and 200. Each of the Genes encoding GdrA and GdrB may have sequences encoding amino acid sequences of SEQ ID NOS: 197, 198, 199, and 200 or, for example, nucleotide sequences of SEQ ID NOS: 201, 202, 203, and 204.


In the microorganism, at least one of the polynucleotide encoding GDH, the polynucleotide encoding ALD, and the polynucleotide encoding GDR may be expressed at a level higher than that of an unengineered or parent microorganism. The expression level may be expression of mRNA or protein level. The expression of protein level may be based on an amount or activity of the expressed protein. The expression level may be about 5% or more, about 10% or more, about 15% or more, about 20% or more, about 30% or more, about 50% or more, about 60% or more, about 70% or more, about 100% or more, 200% or more, or 300% or more increased than that of an unengineered microorganism.


The microorganism may have a 3-HP productivity. In the microorganism, the increase in the expression of at least one of the polynucleotide encoding GDH, the polynucleotide encoding ALD, and the polynucleotide encoding GDR may allow the 3-HP to be produced at a higher level than in an unengineered microorganism. The 3-HP production may be performed by using a method of in-cell production, a method of secretion to outside the cell after producing inside the cell, or a combination thereof. The 3-HP produced inside the cell may be converted from another metabolic product such as an acrylic acid. The 3-HP production may be about 5% or more, about 10% or more, about 15% or more, about 20% or more, about 30% or more, about 50% or more, about 60% or more, about 70% or more, about 100% or more, about 200% or more, or about 300% or more increased than that of an unengineered microorganism.


The increased expression of at least one of the polynucleotide encoding GDH, the polynucleotide encoding ALD, and the polynucleotide encoding GDR may occur by introducing a polynucleotide encoding a polypeptide into a cell, increasing a copy number of the polynucleotide in the cell, or mutating a regulatory region of the polynucleotide. A polynucleotide that is introduced or present in an increased copy number may be an endogenous gene or an exogenous gene. The endogenous gene refers to a gene that exists in a genetic material included in a microorganism. The exogenous gene refers to a gene that is introduced into a host cell, such as a gene that is integrated into a host cell genome, wherein the introduced gene may be homologous or heterologous with respect to the host cell genome.


The microorganism may have reduced activity of one or more enzymes involved in a pathway of decomposition or conversion of an acrylate to another product. In the microorganism, a gene encoding one or more enzymes involved in a pathway of decomposition or conversion of an acrylate to another product may be deleted or disrupted.


Also, the microorganism may further include a pathway of conversion of an acrylate to the other product. In the microorganism, production of an acrylate may be performed by using a method of in-cell production or a method of secretion after producing in the cell. Thus, the microorganism may further include the pathway involved in production of acrylate in a cell and conversion to the other product, for example, an enzyme gene and its expressed product. The other product may be an acrylate ester.


The microorganism may have an inactivated or reduced pathway of synthesizing lactate from pyruvate. In the microorganism, activity of lactate dehydrogenase (LDH) may be deleted or reduced. The LDH may have activity of catalyzing conversion of pyruvate to lactate. The LDH may be an enzyme that is classified under EC.1.1.1.27. For example, the LDH may include amino acid sequences having a sequence identity of 65% or more, for example, 70% or more, 80% or more, 85% or more, 90% or more, 91% or more, 92% or more, 93% or more, 94% or more, 95% or more, 96% or more, 97% or more, 98% or more, 99% or more, or 100% to an amino acid sequence of SEQ ID NO: 205. In the microorganism, a gene encoding lactate dehydrogenase may be disrupted or deleted. The LDH gene may encode amino acid sequences having a sequence identity of 65% or more, for example, 70% or more, 80% or more, 85% or more, 90% or more, 91% or more, 92% or more, 93% or more, 94% or more, 95% or more, 96% or more, 97% or more, 98% or more, 99% or more, or 100% to an amino acid sequence of SEQ ID NO: 205.


According to another aspect of the present disclosure, provided is a method of producing acrylate, the method including culturing the microorganism described above in a culture medium.


The culturing of the microorganism may be performed in a suitable medium under suitable culturing conditions known in the art. One of ordinary skill in the art may suitably change a culture medium and culturing conditions according to the microorganism selected. A culturing method may be batch culturing, continuous culturing, fed-batch culturing, or a combination thereof. The microorganism may secrete acrylate to outside the cell.


The culture medium may include various carbon sources, nitrogen sources, and trace elements.


The carbon source may be, for example, carbohydrate such as glucose, sucrose, lactose, fructose, maltose, starch, or cellulose; fat such as soybean oil, sunflower oil, castor oil, or coconut oil; fatty acid such as palmitic acid, stearic acid, linoleic acid; alcohol such as glycerol or ethanol; organic acid such as acetic acid, or a combination thereof. The culturing may be performed by having glucose as the carbon source. The nitrogen source may be an organic nitrogen source such as peptone, yeast extract, beef stock, malt extract, corn steep liquor (CSL), or soybean flour, or an inorganic nitrogen source such as urea, ammonium sulfate, ammonium chloride, ammonium phosphate, ammonium carbonate, and ammonium nitrate, or a combination thereof. The culture medium is a supply source of phosphorus and may include, for example, potassium dihydrogen phosphate, dipotassium phosphate, and corresponding sodium-containing salt thereof, and a metal salt such as magnesium sulfate or iron sulfate. Also, amino acid, vitamin, a suitable precursor, or the like may be included in the culture medium. The culture medium or individual component may be added to a culture medium solution in a batch, fed-batch, or continuous manner.


Also, pH of the culture medium solution may not be adjusted or may be adjusted by adding a compound such as ammonium hydroxide, potassium hydroxide, ammonia, phosphoric acid, and sulfuric acid to the culture medium solution by using a suitable method during the culturing process. Also, an antifoaming agent such as fatty acid polyglycol ester may be used during the culturing process to inhibit the generation of bubbles.


The culturing process may be performed in a microaerobic condition. As used herein, the term “microaerobic conditions” when used in reference to a culture or growth condition is intended to mean that the dissolved oxygen concentration in the medium remains between 0 and about 10% of saturation for dissolved oxygen in liquid media. Microaerobic conditions also include growing or resting cells in liquid medium or on solid agar inside a sealed chamber maintained with an atmosphere of less than 1% oxygen. The percent of oxygen can be maintained by, for example, sparging the culture with an N2/CO2 mixture or other suitable non-oxygen gas or gases. The oxygen conditions for the acrylic acid production may include maintaining a dissolved oxygen (DO) concentration of 1 to 10%, 1 to 8%, 1 to 6%, 1 to 4%, or 1 to 2%, 2 to 10%, 2 to 8%, 2 to 6%, 2 to 4%, 3 to 10%, 3 to 8%, 3 to 6%, 4 to 10%, 4 to 8%, or 4 to 6% of saturation for dissolved oxygen in liquid media.


The method may further include recovering acrylate from the culture (e.g., from the culture medium). The collecting may include isolating acrylate from the cells, from the culture solution (i.e. medium) except the cells, or from both the cells and the culture solution. The isolation of acrylate from the culture may be performed by a separation and purification method known in the art. The collecting may be performed by centrifugation, chromatography, extraction, filtration, precipitation, or a combination thereof.


In the method, the microorganism further includes a pathway of converting acrylate to the other product, and thus the method may further include converting the produced acrylate to the other product. The other product may be an acrylate ester including a polyacrylate.


According to an aspect of the present disclosure, a microorganism has an increased productivity of 3-acrylic acid.


According to another aspect of the present disclosure, an acrylic acid may be efficiently produced.


Hereinafter, the present disclosure is described in greater detail with reference to embodiments. However, the embodiments are for illustrative purposes only and do not limit the scope of the present invention.


Example 1
Confirmation of Enzyme Activities of Converting 3-HP to 3-HP-CoA, AA-CoA, and AA

In this example, each of the enzyme activities of converting 3-HP to 3-HP-CoA, AA-CoA, and AA was confirmed. That is, the activities of an enzyme catalyzing conversion of 3-HP to 3-HP-CoA, an enzyme catalyzing conversion of 3-HP-CoA to AA-CoA, and an enzyme catalyzing conversion of AA-CoA to AA were confirmed in vitro. As a result, enzymes catalyzing the forward reaction to occur more dominantly than the reverse reaction thereof were isolated.


(1) Confirmation of Enzyme Catalyzing Conversion of 3-HP to 3-HP-CoA


First, CoA-transferase genes catalyzing conversion of 3-HP to 3-HP-CoA listed in Table 1 were amplified by PCR using genomic DNAs of microorganisms shown in Table 1 as a template and primer sets each including a HindIII restriction site or a BamHI restriction site. 30 cycles of the PCR were performed 30 seconds at 95° C., 30 seconds at 50° C., and 1 minute at 72° C. Table 9 shows the primers used in the PCR.












TABLE 9







No.
Forward/Reverse primer (SEQ ID NO:)



















1
206/207



2
208/209



3
210/211



4
212/213



5
214/215



6
216/217



7
218/219



8
220/221



9
222/223



10
224/225










The amplified products thus obtained were digested with HindIII and BamHI, and the resultants were connected to HindIII and BamHI sites of a pETDuet™-1 vector (Novagen, cat. no. 71146-3) to prepare a CoA-transferase gene expression vector (hereinafter, also referred to as a pETDuet™-1(CT) vector). Each of the enzymes in the expression vector was operably linked with a His-Tag encoding sequence in the vector so that the expression product was expressed in a His-Tag fused form.


The pETDuet™-1(CT) vector obtained therefrom was transformed and then introduced to Escherichia coli BL21(DE3). The transformed E. coli was inoculated in an LB medium and incubated in a 100 mL flask at 37° C. During the incubation, when optical density at 600 nanometers (OD600) was 0.6 to 0.8, 1 mM IPTG was added to induce the expression of an introduced CoA transferase gene. After 24 hours of expression induction, only cells were separated by performing centrifugation, were put into Solution 1 (50 mM NaH2PO4, 0.5 M NaCl, and pH7.4) with ice, and then sonicated to disrupt the cells. Then, the protein was separated using a Ni Sepharose™ High Performance HIS Trap™ HP (GE Healthcare Bio-Sciences AB) kit. Briefly, after cell disruption, only the supernatant was separated from the cell debris by performing centrifugation, the supernatant was mixed with Ni Sepharose resin to bind the protein to the resin, the resin was washed with the solution 1, and then, after packing the resin in chromatography column, the protein was eluted from the resin using 200 mM of imidazole as elution buffer as indicated by the manufacturer to obtain an enzyme solution including each of the enzymes at a high purity in a 200 mL imidazole aqueous solution.


Activity of each CoA-transferase was analyzed as follows: In particular, after adding 100 mM Tris-HCl (pH 8.4), 2 mM MgCl2, 3 mM ATP, and 15 mM CoA-containing aqueous solution, the enzyme solution (at an amount equivalent to 10 mg CoA transferase), and 10 mM 3-HP as a medium were mixed and reacted for about 2 minutes to about 10 minutes. The expected reaction scheme was as follows:





3-HP+acetyl-CoA+ATP+CoA transferase->3-HP-CoA+acetate+CoA transferase


Next, each of the reactants from the reaction was analyzed to confirm peaks and the amounts of the reactant, acetyl-CoA, and the product, 3-HP-CoA, by performing an HPLC analysis. The HPLC analysis was performed by using an Aminex HPX-87H (300 mm×7.8 mm) column and 0.5 mM of a sulfuric acid solution containing 9% of acetonitrile as a mobile phase. A flow rate was 0.4 ml/min, a temperature of the column was 35° C., and the RI detector and UV/VIS (210 nm) dual-mode were used.


Also, each of the reactants from the reaction was reacted with a citrate synthase to convert the remaining acetyl-CoA to CoA, 0.5 mM of DTNB (5,5′-Dithiobis-(2-Nitrobenzoic Acid) or an Ellman's reagent) was added thereto, and then an absorbance was measured at 412 nm. DTNB may be used to measure the amount of thiol in a material by measuring the absorbance thereof. DTNB easily forms a disulfide mixed by thiol and releases chromophore 5-merapto-2-nitrobenzoic acid (having a maximum absorbance at 410 nm). Only thiol among materials that may approach this water-soluble sample may be modified. As a result, activity of each of the enzymes was confirmed by comparing the amount of the remaining acetyl-CoA with its initial amount.


Table 10 shows the amounts of consumed acetyl-CoA, compared with their initial amounts.











TABLE 10





No.
Gene name
Consumed acetyl-CoA (mol %)

















1
Pct*
62 ± 4.0


2
ydiF b1694 JW1684
66 ± 4.0


3
Pct**
53 ± 3.0


4
acuN
17 ± 4.4


5
SPO2934
32 ± 2.7


6
DesyoDRAFT_3698
37 ± 2.4


7
HMPREF9129 0351
33 ± 3.8


8
Desmer_1798
28 ± 4.9


9
Desor_3090
27 ± 3.6


10
BN738_00826
35 ± 3.2





*Pct is derived from Clostridium propionicum


**Pct is derived from Cupriavidus necator






As shown in Table 10, when the amount of acetyl-CoA decreased, it was considered that the amount of 3-HP-CoA increased, and, as a result, it was confirmed that 10 of the enzymes catalyzed the conversion of 3-HP to 3-HP-CoA.


(2) Confirmation of Enzyme Catalyzing Conversion of 3-HP-CoA to AA-CoA


First, the dehydratase genes listed in Tables 2 to 5 that catalyze conversion of 3-HP-CoA to AA-CoA were amplified by PCR using genomic DNAs of microorganisms shown in Tables 2 to 5 as a template and primer sets each including a HindIII restriction site or a BamHI restriction site. Then, a dehydratase enzyme was produced and purified in the same manner as in the process (1), except that a pACYCDuet™-1 vector (Novagen, cat. no. 71147-3) was used instead of a pETDuet™-1 vector (Novagen, cat. no. 71146-3). Table 11 shows information about the primer sets used in the PCR. In Table 11, numbers denote serial numbers of the enzymes or the genes in Tables 2 to 5.












TABLE 11








SEQ ID NO:



No.
forward/reverse



















1
226/227



2
228/229



3
230/231



4
232/233



5
234/235



6
236/237



7
238/239



8
240/241



9
242/243



10
244/245



11
246/247



12
248/249



13
250/251



14
252/253



15
254/255



16
256/257



17
258/259



18
260/261



19
262/263



20
264/265



21
266/267



22
268/269



23
270/271



24
272/273



25
274/275



26
276/277



27
278/279



28
280/281



29
282/283



30
284/285



31
286/287



32
288/289



33
290/291



34
292/293



35
294/295



36
296/297



37
298/299



38
300/301



39
302/303



40
304/305



41
306/307



42
308/309



43
310/311



44
312/313



45
314/315



46
316/317



47
318/319



48
320/321



49
322/323



50
324/325



51
326/327



52
328/329



53
330/331



54
332/333



55
334/335



56
336/337



57
338/339



58
340/341



59
342/343



60
344/345



61
346/347



62
348/349



63
350/351



64
352/353



65
354/355



66
356/357



67
358/359



68
360/361



69
362/363



70
364/365



71
366/367



72
368/369



73
370/371



74
372/373



75
374/375



76
376/377



77
378/379



78
380/381



79
403/404










Activity of each of the purified dehydratases was analyzed as follows: For example, in the reaction that is catalyzed by a dehydratase such as a 3-HP-CoA/lactoyl-CoA dehydratase, an acrylyl-CoA reductase was added to the reactant to produce propionyl-CoA, and then the amount of consumed NAD(P)H was measured instead of directly measuring the amount of the reactant or the product of the reaction. In particular, 0.05 to 0.2 units of CoA transferase (which is derived from E. coli shown in No. 2 in Table 1) was added to 100 mM of MOPS (3-(N-morpholino)propanesulfonic acid)-KOH (pH 7.0), 10 mM MgCl2, 3 mM ATP, 0.1 mM CoA, and 0.5 ml of 20 mM 3-HP-containing aqueous solution, and the mixture was pre-incubated for about 3 minutes. Then, each of the purified dehydratases (10 mM) was added to the pre-incubated mixture and then allowed to react for about 5 minutes at a temperature of 35° C. The expected reaction scheme was as follows:





3-HP+acetyl-CoA+ATP+CoA transferase->3-HP-CoA+acetate+dehydratase->AA-CoA+NAD(P)H+Acrylyl-CoA reductase (YhdH)->propionyl-CoA+NAD(P)


Next, as the result of the reaction, a decrease in the amount of NAD(P)H according to the addition of 5 mM NAD(P)H/AcuI was confirmed. AcuI is an acrylyl-CoA reductase which was added with a YhdH resemblant. The final NAD(P)H measurement was performed by measuring an absorbance at 340 nm.


Table 12 shows the remaining amounts of NAD(P)H, compared to their initial amounts (i.e., a degree of enzyme activity), as the results of the analysis.












TABLE 12








Consumed



No.
NAD(P)H (mol %)



















1
0.2



2
10.3



3
0.2



4
12.1



5
12.1



6
13.4



7
2.3



8
0.2



9
0.2



10
0.2



11
0.2



12
0.2



13
0.2



14
0.2



15
0.2



16
0.2



17
0.2



18
0.2



19
0.2



20
0.2



21
0.2



22
0.2



23
0.2



24
0.2



25
0.2



26
0.2



27
0.2



28
0.2



29
0.2



30
0.2



31
0.2



32
0.2



33
0.2



34
0.2



35
0.2



36
0.2



37
0.2



38
1.65



39
14.6



40
0.2



41
0.2



42
0.2



43
0.2



44
0.2



45
0.2



46
0.2



47
0.2



48
0.2



49
0.2



50
0.2



51
0.2



52
0.2



53
0.2



54
0.2



55
0.2



56
0.2



57
0.2



58
0.2



59
0.2



60
0.2



61
0.2



62
0.2



63
0.2



64
0.2



65
0.2



66
0.2



67
0.2



68
0.2



69
0.2



70
0.2



71
0.2



72
0.2



73
0.2



74
0.2



75
13.4



76
13.4



77
13.4



78
0.2



79
10.95










As shown in Table 12, it was confirmed that 79 of the enzymes catalyzed the conversion of 3-HP-CoA to AA-CoA.


Next, with respect to each of the reactants from the reaction, peaks and amounts of the reactant and the product were confirmed in the same manner as in the process (1). As the result of the HPLC analysis, it was confirmed that 79 of the enzymes listed in Tables 2 to 5 produced AA-CoA and thus were confirmed as having activity of catalyzing conversion of 3-HP-CoA to AA-CoA.


(3) Confirmation of Enzyme Catalyzing Conversion of AA-CoA to AA


First, a vector was prepared in the same manner as in the process (1), the vector was introduced to E. coli, and an enzyme was produced and purified, except that the CoA hydrolase genes catalyzing conversion of AA-CoA to AA, the genes listed in Table 6, were amplified by PCR using genomic DNAs of microorganisms shown in Table 6 as a template and primer sets each including a HindIII restriction site or a BamHI restriction site. Then, Table 13 shows information about the primer sets used in the PCR. In Table 13, numbers denote serial numbers of the enzymes or the genes in Table 6.












TABLE 13







No.
SEQ ID NO::forward/reverse









1
382/383



2
384/385



3
386/387



4
388/389



5
390/391



6
392/393










Activity of each of the purified CoA hydrolases was analyzed as follows: In particular, 100 mM Tris-HCl (pH 8.4), 2 mM MgCl2, 3 mM ATP, 15 mM AA-CoA-containing aqueous solution and the enzyme solution (at an amount equivalent to 10 mg CoA hydrolase) were mixed and reacted for about 2 minutes to about 10 minutes. The expected reaction scheme was as follows:





AA-CoA+CoA hydrolase->AA+free CoA


Next, with respect to each of the reactants from the reaction, peaks and amounts of the reactant and the product (e.g., AA) were confirmed in the same manner as in the process (1) by performing an HPLC analysis. As a result of the HPLC analysis, it was confirmed that 6 of the enzymes listed in Table 6 produced the final product AA.


Also, with respect to each of the reactants from the reaction, the amount of the free CoA was confirmed by measuring an absorbance at 410 nm in the same manner as in the process (1). As the result, it was confirmed that 6 of the enzymes in Table 6 had activity of catalyzing the conversion of AA-CoA to AA. Table 14 shows the measurement results of the produced free CoA.












TABLE 14







No.
Amount of produced CoA*



















1
0.7



2
0.2



3
0.06



4
0.06



5
0.1



6
0.2







*an absorbance value at 410 nm, and a control group experiment was conducted by conducting a reaction as described in paragraph [0095], except that the enzyme solution was replaced with the same volume of the buffer used in the enzyme solution, where the absorbance value of the control group at 410 nm was 0.






As shown in Table 14, it was confirmed that 6 of the enzymes listed in Table 6 had activity of catalyzing the conversion of AA-CoA to AA.


Example 2
Preparation of Microorganisms Introduced with CoA Transferase, Dehydratase, and CoA Hydrolase Gene and Production of AA by Using the Microorganisms

In this example, E. coli-derived CoA transferase (ydiF) genes, M. elsdenii-derived dehydratase MELS1449 genes, and E. coli-derived CoA hydrolase yciA genes, which were confirmed as having the highest activity among CoA transferase genes, dehydratase genes, and CoA hydrolase genes in Example 1, were introduced to E. coli having 3-HP productivity, and the production of AA in the E. coli was confirmed.


(1) Preparation of E. coli Having 3-HP Productivity


(1.1) Manufacture of ET_BAB_Dc5 Vector


In order to prepare a microorganism producing 3-hydroxypropionic acid from glycerol, an ET_BAB_Dc5 vector was manufactured.


Genes (dhaB1, dhaB2, and dhaB3)(SEQ ID NOS: 186, 187, and 188) encoding a glycerol dehydratase (GDH) from a genomic DNA of Ilyobacter polytropus and genes (gdrA and gdrB)(SEQ ID NOS: 201 and 202) encoding a glycerol dehydratase reactivase (GDR) were secured. As an amplification product, dhaB123 was obtained by performing PCR amplification on the dhaB1, dhaB2, and dhaB3 genes using genomic DNAs of Ilyobacter polytropus as a template and primer sets of dhaB123_F (SEQ ID NO: 394) and dhaB123_R (SEQ ID NO: 395). As an amplification product, gdrAB was obtained by performing PCR amplification on the gdrA and gdrB genes using genomic DNA of Ilyobacter polytropus as a template and primer sets of gdrAB_F (SEQ ID NO: 396) and gdrAB_R (SEQ ID NO: 397). The PCR products thus obtained were treated with BamHI and SacI restrictive enzymes and then cloned to a pETDuet™-1 vector (Novagen).


Also, a gene (gabD, SEQ ID NO: 398) encoding a succinate semialdehyde dehydrogenase (SSADH) was obtained by PCR amplification using a genomic DNA of Cupriavidus necator as a template and primer sets of gabD_F (SEQ ID NO: 399) and gabD_R (SEQ ID NO: 400). The PCR product thus obtained was treated with NdeI and KpnI restrictive enzymes and cloned to the vector. As the result, a pETDuet-1/dhaB_gdrAB_gabD4 vector was obtained.



FIG. 1 is a cleavage map of a pETDuet/dhaB_gdrAB_gabD4 vector.


(1.2) Evaluation of 3-HP Productivity


A vector, pETDuet/dhaB_gdrAB_gabD4, produced in the process (1) was transformed and then introduced to Escherichia coli K(DE3).


The culture was performed by culturing the cells in a 50 ml culture medium (including (1.4 g/L of MgSO4H2O, 17.4 g/L of K2HPO4, 3 g/L of KH2PO4, 4 g/L of (NH4)2HPO4, 1.7 g/L of citric acid, 0.014 g/L of ZnCl2, 0.041 g/L of FeCl2H2O, 0.015 g/L of MnCl2, 0.0015 g/L of CuCl2, 0.003 g/L of H3BO3, 0.0025 g/L of Na2MoO4, 200 mg/L of nitriloacetic acid, 30 μg/L of sodium selenate, and 40 g/L of glycerol) in a 250 ml flask at a temperature of 33° C. and at a rate of 250 rpm. Initially, when an absorbance (OD) at 600 nm was 0.8, expression was induced by using 0.05 mM of IPTG, and then 50 μM of vitamin B12 was added.


After culturing for 24 hours, a part of the culture solution was extracted, an absorbance and pH of the culture solution were measured, and then production of 3-HP was confirmed by using an HPLC (Waters). The pH was adjusted to pH 7.0 by using 4 N of NaOH every 24 hours. The HPLC analysis was performed by using an Aminex HPX-87H (300 mm×7.8 mm) column and 0.5 mM of a sulfuric acid solution containing 9% of acetonitrile as a mobile phase. A flow rate was 0.4 ml/min, a temperature of the column was 35° C., and the RI detector and UV/VIS (210 nm) dual-mode were used. The 3-HP was detected at 17.5 minutes during the total analysis time of 30 minutes.


As a result, a strain obtained by transforming a vector, pETDuet/dhaB_gdrAB_gabD4, to E. coli K(DE3) was cultured in a 100 ml flask for 24 hours under the same conditions described above, and an amount of the 3-HP product was 13.2 g/L.


(2) Preparation of AA Production Strain


First, in the same manner as in the process (1), (2), and (3) of Example 1, ydiF gene, MELS1449 gene, and yciA gene were amplified, and each of the genes were digested by using a restriction enzyme. Then, the genes were sequentially connected to a pETDuet™-1 vector, which was digested by the same enzyme, and a vector (pETDuet™-1/MELS1449_yciA_YdiF) for expressing the three genes was prepared. Here, primers (SEQ ID NOS: 208/209, 236/237, and 382/383) used in amplification of ydiF gene, MELS1449 gene, and yciA gene have restriction sites BamHI and HindIII, NdeI and BglII, and BglII and XhoI, respectively. When connected to the vector, the genes were digested by using the enzymes. In the vector for expression, each of the enzymes was operably linked with a His-Tag encoding sequence in the vector, and thus the expression product was expressed in the form that is fused with a His-tag.



FIGS. 2 and 3 are a map of pETDuet™-1/MELS1449_yciA_YdiF and a magnified view of a part of the map. FIG. 3 is a magnified view of a part including “CoA transferase-Dehdyratase-CoA hydrolase” of the map in FIG. 2.


Next, the pETDuet™-1/MELS1449_yciA_YdiF vector was transformed to E. coli K(DE3) (pETDuet_dhaB_gdrAB_gabD4), which was a strain having 3-HP productivity. E. coli, to which the pETDuet™-1/MELS1449_yciA_YdiF thus obtained was introduced, was inoculated into 100 mL of a M9 minimum culture medium (including 1.4 g/L of MgSO4H2O, 17.4 g/L of K2HPO4, 3 g/L of KH2PO4, 4 g/L of (NH4)2HPO4, 1.7 g/L of citric acid, 0.014 g/L of ZnCl2, 0.041 g/L of FeCl2H2O, 0.015 g/L of MnCl2, 0.0015 g/L of CuCl2, 0.003 g/L of H3BO3, 0.0025 g/L of Na2MoO4, 200 mg/L of nitriloacetic acid, 30 μg/L of sodium selenate, and 40 g/L of glycerol) so that OD600 was 0.1 and cultured at a temperature of 30° C. until OD600 was 0.6. Then, 0.02 mM of IPTG was added thereto and cultured at temperature of 33° C. for 24 hours. The culture was performed by shake culturing in a 250 mL flask for 24 hours.


Then, the expressed MELS1449, YdiF, and YciA were separated and purified in the same manner as in the process (1), (2), and (3) of Example 1, an in vitro enzyme reaction was performed on a combination of the three purified enzymes, and the reaction product was analyzed by using a mass spectrometry. As a result, 0.5 g/L of AA was produced.


Thereafter, a concentration of acrylic acid in the culture was measured by using an HPLC. In particular, when the culture was terminated, a part of the culture solution was obtained to measure an absorbance, and then AA production in the culture without cells was confirmed by using HPLC (Waters). The HPLC analysis was performed by using an Aminex HPX-87H (300 mm×7.8 mm) column and 0.5 mM of a sulfuric acid solution containing 9% of acetonitrile as a mobile phase. A flow rate was 0.4 ml/min, a temperature of the column was 35° C., and the RI detector and UV/VIS (210 nm) dual-mode were used. As the result of the HPLC analysis, it was confirmed that the recombinant E. coli strain produced 0.50 g/L of acrylic acid (AA) after 24 hours of culture.



FIG. 4 illustrates a prospective pathway of an acrylic acid production from glucose or glycerol in E. coli, according to an embodiment of the present disclosure. In the current embodiment, the acrylic acid is expected to be produced along the pathway shown in FIG. 4, but the claimed invention is not particularly limited to the mechanism.


It should be understood that the exemplary embodiments described therein should be considered in a descriptive sense only and not for purposes of limitation. Descriptions of features or aspects within each embodiment should typically be considered as available for other similar features or aspects in other embodiments.


While one or more embodiments of the present disclosure have been described with reference to the figures, it will be understood by those of ordinary skill in the art that various changes in form and details may be made therein without departing from the spirit and scope of the present invention as defined by the following claims.


All references, including publications, patent applications, and patents, cited herein are hereby incorporated by reference to the same extent as if each reference were individually and specifically indicated to be incorporated by reference and were set forth in its entirety herein.


The use of the terms “a” and “an” and “the” and “at least one” and similar referents in the context of describing the invention (especially in the context of the following claims) are to be construed to cover both the singular and the plural, unless otherwise indicated herein or clearly contradicted by context. The use of the term “at least one” followed by a list of one or more items (for example, “at least one of A and B”) is to be construed to mean one item selected from the listed items (A or B) or any combination of two or more of the listed items (A and B), unless otherwise indicated herein or clearly contradicted by context. The terms “comprising,” “having,” “including,” and “containing” are to be construed as open-ended terms (i.e., meaning “including, but not limited to,”) unless otherwise noted. Recitation of ranges of values herein are merely intended to serve as a shorthand method of referring individually to each separate value falling within the range, unless otherwise indicated herein, and each separate value is incorporated into the specification as if it were individually recited herein. All methods described herein can be performed in any suitable order unless otherwise indicated herein or otherwise clearly contradicted by context. The use of any and all examples, or exemplary language (e.g., “such as”) provided herein, is intended merely to better illuminate the invention and does not pose a limitation on the scope of the invention unless otherwise claimed. No language in the specification should be construed as indicating any non-claimed element as essential to the practice of the invention.


Preferred embodiments of this invention are described herein, including the best mode known to the inventors for carrying out the invention. Variations of those preferred embodiments may become apparent to those of ordinary skill in the art upon reading the foregoing description. The inventors expect skilled artisans to employ such variations as appropriate, and the inventors intend for the invention to be practiced otherwise than as specifically described herein. Accordingly, this invention includes all modifications and equivalents of the subject matter recited in the claims appended hereto as permitted by applicable law. Moreover, any combination of the above-described elements in all possible variations thereof is encompassed by the invention unless otherwise indicated herein or otherwise clearly contradicted by context.

Claims
  • 1. A genetically engineered microorganism that produces acrylate, wherein the genetically engineered microorganism comprises: a genetic modification that increases CoA transferase activity in catalyzing conversion of 3-hydroxypropionic acid (3-HP) to 3-hydroxypropionyl-CoA (3-HP-CoA),a genetic modification that increases 3-HP-CoA dehydratase activity in catalyzing conversion of 3-HP-CoA to acrylyl-CoA, anda genetic modification that increases activity of an enzyme that catalyzes conversion of acrylyl-CoA to acrylate in the microorganism,compared to a microorganism of the same type that is not genetically engineered.
  • 2. The microorganism of claim 1, wherein the CoA transferase has an amino acid sequence comprising one of SEQ ID NOS: 1 to 10.
  • 3. The microorganism of claim 1, wherein the CoA transferase belongs to EC 2.8.3.8, EC 3.1.2.-, or EC 6.2.1.7.
  • 4. The microorganism of claim 1, wherein the 3-HP-CoA dehydratase has an amino acid sequence comprising one of SEQ ID NOS: 21 to 98 and 401.
  • 5. The microorganism of claim 1, wherein the 3-HP-CoA dehydratase belongs to EC 4.2.1.
  • 6. The microorganism of claim 1, wherein the enzyme catalyzing conversion of acrylyl-CoA to acrylate has an amino acid sequence comprising one of SEQ ID NOs: 177 to 182.
  • 7. The microorganism of claim 1, wherein the enzyme catalyzing conversion of acrylyl-CoA to acrylate belongs to EC 3.1.2.
  • 8. The microorganism of claim 1, wherein the enzyme that catalyzes conversion of acrylyl-CoA to acrylate is a 3-HP-CoA hydrolase or a 3-hydroxyisobutyryl-CoA hydrolase.
  • 9. The microorganism of claim 1, wherein activity of the CoA transferase, 3-HP-CoA dehydratase, and the enzyme catalyzing conversion of acrylyl-CoA to acrylate is increased due to increased expression of polynucleotides encoding the enzymes as compared to a microorganism of the same type that is not genetically engineered.
  • 10. The microorganism of claim 1, wherein the genetically engineered microorganism comprises exogenous polynucleotides encoding the CoA transferase, 3-HP-CoA dehydratase, and the enzyme catalyzing conversion of acrylyl-CoA to acrylate.
  • 11. The microorganism of claim 1, wherein the microorganism is selected from the group consisting of Escherichia, Corynebacterium genus, and Brevibacterium genus.
  • 12. The microorganism of claim 1, wherein a gene that encodes at least one enzyme involved in a pathway of decomposing acrylate or converting acrylate to another product is deleted or disrupted in the microorganism.
  • 13. The microorganism of claim 1, wherein the genetically engineered microorganism produces 3-HP.
  • 14. The microorganism of claim 1, wherein the genetically engineered microorganism is E. coli that produces 3-HP and comprises a gene that encodes an enzyme that catalyzes conversion of glycerol to 3-propionic aldehyde (3-HPA) and a gene that encodes an enzyme that catalyzes conversion of 3-HPA to 3-HP.
  • 15. The microorganism of claim 14, wherein the enzyme catalyzing conversion of glycerol to 3-HPA is dhaB, and the enzyme catalyzing conversion of 3-HPA to 3-HP is AldH or gabD.
  • 16. A method of producing acrylate, the method comprising culturing the microorganism of claim 1 in a culture medium.
  • 17. The method of claim 16, further comprising recovering acrylate from the culture.
  • 18. The microorganism of claim 10, further comprising polynucleotides encoding a glycerol dehydratase reactivase (GDR).
  • 19. A method of producing a genetically engineered microorganism according to claim 1, the method comprising introducing into a microorganism an exogenous polynucleotide encoding CoA transferase, an exogenous polynucleotide encoding 3-HP-CoA dehydratase, and an exogenous polynucleotide encoding an enzyme that catalyzes conversion of acrylyl-CoA to acrylate.
  • 20. An expression vector encoding a CoA transferase, a 3-HP-CoA dehydratase, and an enzyme catalyzing conversion of acrylyl-CoA to acrylate.
Priority Claims (1)
Number Date Country Kind
10-2014-0057954 May 2014 KR national