Microorganisms and cells for diagnosis and therapy of tumors

Abstract
Described are diagnostic and pharmaceutical compositions comprising a microorganism or cell containing a DNA sequence encoding a detectable protein or a protein capable of inducing a detectable signal, e.g. a luminescent or fluorescent protein, and, in a particular embodiment, furthermore (a) DNA sequence(s) encoding (a) protein(s) suitable for tumor therapy and/or elimination of metastatic tumors, e.g. a cytotoxic or cytostatic protein.
Description

The present invention relates to diagnostic and pharmaceutical compositions comprising a microorganism or cell containing a DNA sequence encoding a detectable protein or a protein capable of inducing a detectable signal, e.g. a luminescent or fluorescent protein, and, in a particular embodiment, furthermore (a) DNA sequence(s) encoding (a) protein(s) suitable for tumor therapy and/or elimination of metastatic tumors, e.g. a cytotoxic or cytostatic protein.


Presence of bacteria in tumors was reported approximately fifty years ago. Several publications substantiated the earlier clinical findings that unexpectedly large numbers of bacteria were discovered in excised tumors from human patients. Investigators argue that chronic infections may predispose cells to malignant growth. Chronic infections of various strains of Chlamydia have been associated with lung and cervical cancer as well as malignant lymphoma. Another well described association between the presence of a specific bacterial species and cancer development is Helicobacter pylori in patients with gastric ulcers. Elevated levels of H. pylori-associated antibodies have been found in patients with duodenal ulcer and gastric adenocarcinoma. These observations demonstrate a concomitant presence of bacteria at tumor sites; however, it was not yet clear whether the microorganisms were the cause of tumor formation or whether the tumorous tissues were more susceptible to bacterial colonization. Intravenously injected strict anaerobic bacteria, Clostridium pasteurianum, into mice replicated selectively in the tumor suggesting a hypoxic microenvironment in the necrotic center Intravenous injection of attenuated Salmonella typhimurium mutants resulted in elevated bacterial titers in the tumor tissues in comparison to the other organs of mice upon histologic and bacteriologic analyses.


Similarly, the presence of virus particles was reported in excised human breast tumors as early as 1965. More recently, based on polymerase chain reaction (PCR) data, the human papillomavirus has been claimed to be associated with anogenital tumors and esophageal cancers, breast cancers, and most commonly, cervical cancers. In addition, the presence of hepatitis C virus in human hepatocellular carcinoma, Epstein-Barr virus in squamous cell carcinoma in Kirnura's disease, mouse mammary tumor virus-like paiticles (MMTV) in human breast cancer, SV40 virus in macaque astrocytoma, and herpesvirus in turtle fibropapilloma has been reported. Surprisingly, the concentration of virus particles in the tumors shows variations among patients. The presence of human papillomavirus in squamous cell carcinomas of the esophagus ranges from 0 to 72% (10-15). In contrast to tumor tissues, no virus particles have been found in tumor-free areas of the esophageal epithelium of the same patient suggesting that the virus particles are located only in the tumor tissues.


However, so far it could not be shown definitely whether the above discussed microorganisms are responsible for the development of disorders like tumors (except for papillomaviruses) or whether, e.g., tumors can attract and/or protect viruses or bacteria. Accordingly, there was no basis for the use of such microorganisms for the diagnosis or therapy of tumors. Conventional tumor diagnostic methods, such as MRI (Magnetic Resonance Imaging) lack sensitivity and specificity and therapeutic methods, e.g. surgery, are invasive and not very sensitive.


Therefore, it is the object of the present invention to provide a means for the efficient and reliable diagnosis as well as the therapy of tumors which overcomes the disadvantages of the diagnostic and therapeutic approaches presently used.


According to the present invention this is achieved by the subject matters defined in the claims. When Vaccinia virus (LIVP strain) carrying the light emitting fusion gene construct rVV-ruc-gfp was injected intravenously into nude mice, the virus particles were found to be cleared from all internal organs within 4 days, as determined by extinction of light emission. In contrast, when the fate of the injected Vaccinia virus was similarly followed in nude mice bearing tumors grown from subcutaneously implanted C6 rat glioma cells, virus particles were found to be retained over time in the tumor tissues, resulting in lasting light emission. The presence and amplification of the virus-encoded fusion proteins in the same tumor were monitored in live animals by observing GFP fluorescence under a stereomicroscope and by collecting luciferase-catalyzed light emission under a low-light video-imaging camera. Tumor-specific light emission was detected 4 days after viral injection in nude mice carrying subcutaneous C6 glioma implants ranging in size from 25 to 2500 mm3. The signal became more intense after the 4th postinjection day and lasted for 30 to 45 days, indicating continued viral replication. Tumor accumulation of rVV-ruc-gfp virus particles was also seen in nude mice carrying subcutaneous tumors developed from implanted PC-3 human prostate cells, and in mice with orthotopically implanted MCF-7 human breast tumors. Further, intracranial C6 rat glioma cell implants in immunocompetent rats and MB-49 mouse bladder tumor cell implants in C57 mice were also targeted by the Vaccinia virus. Cross sections of a C6 glioma revealed that light emission was clustered in “patches” at the periphery of the tumor where the fast-dividing cells reside. In contrast, cross sections of breast tumors revealed that fluorescent “islands” were distributed throughout the tumors. In addition to primary breast tumors, small metastatic tumors were also detected externally in the contralateral breast region, as well as in nodules on the exposed lung surface, suggesting metastasis to the contralateral breast and lung. In summary, light-emitting cells or microorganims, e.g. Vaccinia virus can be used to detect and treat primary and metastatic tumors.


Similar results were obtained with light-emitting bacteria (Salmonella, Vibrio, Listeria, E. coli) which were injected intravenously into mice and which could be visualized in whole animals under a low light imager immediately. No light emission was detected thirty-six hours after bacterial injection in both athymic (nu/nu) mice and immunocompetent C57 mice as a result of clearing by the immune system. In the cutaneous wound of an intravenously injected animal, the bacterial light emission increases and remains detectable up to six days post-injection. In nude mice baring tumors developed from implanted C6 glioma cells, light emission was abolished from the animal entirely thirty-six hours after delivery of bacteria, similar to mice without tumors. However, forty-eight hours post-injection, unexpectedly, a strong, rapidly increasing light emission originating only from the tumor regions was observed. This observation indicates a continuous bacterial replication in the tumor tissue. The extent of light emission is dependent on the bacterial strain used. The homing-in process together with the sustained light emission was also demonstrated in nude mice carrying prostate, bladder, and breast tumors. In addition to primary tumors, metastatic tumors could also be visualized as exemplified in the breast tumor model. Tumor-specific light emission was also observed in immunocompetent C57 mice with bladder tumors as well as in Lewis rats with brain glioma implants. Once in the tumor, the light-emitting bacteria were not observed to be released into the circulation and to re-colonize subsequently implanted tumors in the same animal. Further, mammalian cells expressing the Ruc-gfp fusion protein, upon injection into the bloodstream, were also found to home into and propagate in glioma tumors.


These findings open the way for (a) designing multifunctional viral vectors useful for the detection of tumors based on signals like light emission and/or for suppression of tumor development and/or angiogenesis signaled by, e.g., light extinction and (b) the development of bacterium- and mammalian cell-based tumor targeting systems in combination with therapeutic gene constructs for the treatment of cancer. These systems have the following advantages: (a) They target the tumor specifically without affecting normal tissue; (b) the expression and secretion of the therapeutic gene constructs are, preferably, under the control of an inducible promoter, enabling secretion to be switched on or off; and (c) the location of the delivery system inside the tumor can be verified by direct visualization before activating gene expression and protein delivery.


Accordingly, the present invention relates to a diagnostic and/or pharmaceutical composition comprising a microorganism or cell containing a DNA sequence encoding a detectable protein or a protein capable of inducing a detectable signal.


In a preferred embodiment, the microorganism or cell of said diagnostic and/or pharmaceutical composition furthermore contains (a) DNA sequence(s) encoding (a) protein(s) suitable for tumor therapy and/or elimination of metastatic tumors, such as a cytotoxic protein, a cytostatic protein, a protein inhibiting angiogenesis or a protein stimulating apoptosis. Such proteins are well-known to the person skilled in the art and further examples of suitable proteins are given below.


Any microorganism or cell is useful for the compositions of the present invention, provided that they replicate in the organism, are not pathogenic for the organism, e.g. attenuated, and are recognized by the immune system of the organism, etc. Examples of microorganisms useful for the present invention are bacteria and viruses. The term “bacteria” as used herein refers to bacteria which are per se not tumor-targeted (i.e. they can not differentiate between a cancerous cell or tissue and the non-cancerous counterpart cell or tissue) since the results of the experiments leading to the present invention show that bacteria etc. accumulate in the tumor due to the fact that in this environment they are not exposed to attack by the immune system of the host. A list of candidate bacteria which might be useful for the purposes of the present invention and which might not be tumor-targeted are given in Table 1, below. The person skilled in the art can easily identify such bacteria which are not tumor-targeted by commonly available methods, e.g. the methods described in section 61 of WO 96/40238. Preferably, said bacteria are intercellular bacteria such as E. coli, E. faecalis, Vibrio cholerae, Vibrio fischeri, Vibrio harvoyi, Lactobacillus spp., Pseudomonas spp. In the method of the present invention, viruses and cells, particularly mammalian cells, are preferred which are not tumor-targeted. Particularly preferred are cytoplasmic viruses.


In a particularly preferred embodiment, the diagnostic and/or pharmaceutical composition comprises a microorganism or cell containing a DNA sequence encoding a luminescent and/or fluorescent protein.


As used herein, the term “DNA sequence encoding a luminescent and/or fluorescent protein” also comprises a DNA sequence encoding a luminescent and fluorescent protein as fusion protein.


In an alternative preferred embodiment of the diagnostic and/or pharmaceutical composition, the protein encoded by the DNA sequence is a cell receptor capable of binding a ligand which can be a diagnostic or therapeutic ligand. The ligand can be a protein (including large or small peptides, antibodies, etc.), a synthetic compound (such as a synthetic steroid analog), etc. Therefore, the in vivo location of labeled ligands in live animals and human patients can be visualized, e.g, in real time by SPECT or PET. Almost any known protein ligand-receptor pair for tumor labeling is useful in the method of the present invention. Preferably, to increase specificity, mutant protein ligands (or analogs if it is a chemical compound) or mutant ligand receptors can be genetically or chemically engineered so that they will not bind to any endogenous molecules. In addition to increasing specificity, these mutants/analogs will also limit adverse effect to the normal host physiology.


In a more preferred embodiment of the diagnostic and/or pharmaceutical composition of the present invention, the ligand is a radionuclide-labelled ligand. Said ligand is, e.g., useful for tumor visualization by single-photon emission computed tomography (SPECT) or positron-emission tomography (PET) resulting from the binding of radionuclide-labelled ligand to its receptors expressed specifically on the surface of tumor cells following intravenous delivery of, e.g., engineered bacteria, viruses, or mammalian cells carrying the receptor protein gene constructs. Radionuclides may be used for conventional tumor scintigraphy, PET and possibly internal radiotherapy of tumors. Examples of radionuclides useful in the present invention are (a) B+-emitters such as 11C, 13N, 15O or 64CU or (b) γ-emitters such as 123I. Other radionuclides that can, e.g., be used as tracers for PET include 55Co, 57Ga, 68Ga, 60Cu(I), 67Cu(II), 57Ni, 55Co, 52Fe, 18F, etc.


SPECT and PET are sensitive techniques that may be used for tumor imaging according to the present invention. Both SPECT and PET are capable of detecting trace amounts of β+ and γ emission from radionuclides PET is even more sensitive than SPECT. In experiments using small laboratory animals, tumor imaging is performed using a microPET instrument, which is commercially available through, eg., Concorde Microsystems (Knoxville, Tenn.).


Examples of useful radionuclide-labeled agents are 64Cu-labeled engineered antibody fragment (Wu et al., PNAS USA 97 (2002), 8495-8500), 64Cu-labeled somatostatin (Lewis et al., J. Med. Chem. 42 (1999), 1341-1347, 64Cu-pyruvaldehyde-bis(N-4-methylthiosemicarbazone) (64Cu-PTSM) (Adonai et al., PNAS USA 99 (2002), 3030-3035, 52Fe-citrate (Leenders et al., J. Neural Transm. Suppl. 43 (1994), 123-132, 52Fe/52mMn-citrate (Calonder et al., J. Neurochem. 73 (1999), 2047-2055) and 52Fe-labeled iron (III) hydroxide-sucrose complex (Beshara et al., Br. J. Haematol. 104 (1999), 288-295, 296-302).


In order to apply the radionuclide-labeled ligand in tumor detection, the genes encoding the receptor proteins that the ligands may bind are delivered by intravenously injected bacteria, viruses, or mammalian cells according to the present invention. Since it could be shown in the examples, below, that certain intravenously injected bacteria, viruses and mammalian cells replicate specifically in the tumors, expression of the receptor proteins in the tumors will mark the tumors for targeting by the radionuclide-labeled ligands.


For example, in the case of Vaccinia virus, to allow efficient tumor detection, the virus can be used to carry gene constructs encoding receptor proteins that can bind specifically to the ligands. Intravenously injection of recombinant Vaccinia virus allows the delivery of the receptor gene and surface expression of the receptor protein in the tumor tissues. Then, the radionuclide-labeled ligands are injected intravenously into the host. The specific binding between radionuclide-labelled ligands and their receptors expressed on the tumor cell surface allows the detection of tumors based on β+- or γ-emissions originating only from the tumors. Labelling the tumors with radionuclides will allow easy distinction between tumors and normal tissues. Therefore, handhold β+- or γ-detectors that are attached to a surgical blade holder can be designed. Based on the signal of β+- or γ-emission, the labelled tumors can be cleanly excised while the removal of normal tissues is kept at a minimum.


Particularly preferred is gallium-67 for the purposes of the present invention. Gallium-67 (67Ga) can be used for diagnostic imaging using PET, SPECT, or scintigraphy. It is known for its ability to accumulate in inflammatory lesions and tumors, especially in lymphomas, but also in many other types of tumors, such as in pancreatictumors, lung tumors etc. The mechanism of 67Ga uptake has been proposed to be through both transferrin-dependent route and transferrin-independent route. In the transferrin-dependent route, it has been shown that over-expression of transferrin receptor significantly increases 67Ga uptake by tumor cells. Furthermore, anti-transferrin receptor antibody significantly blocks 67Ga by tumor cells. For small tumor imaging, very high concentrations of 67Ga are required to overcome background signal. Thus, in this case, the use of recombinant Vaccinia virus carrying a transferrin receptor gene construct for over-expressing transferrin receptors specifically on the surface of tumor cells in live animals or human patients following intravenous injection of the viruses is preferred. 67Ga will be also delivered intravenously. High level accumulation of 67Ga in tumor cells with the help from the over-expressed transferrin receptors helps to significantly improve tumor detection abilities in live animals and human patients.


In an alternative preferred embodiment, the diagnostic and/or pharmaceutical composition of the present invention comprises a microorganism or cell containing a DNA sequence encoding a protein capable of inducing a signal detectable by magnetic resonance imaging (MRI), e.g. metal binding proteins. Furthermore, the protein can bind contrast agents, chromophores, ligands or compounds required for visualization of tissues. Preferably, said protein is a cell receptor capable of binding a paramagnetic- or superparamagnetic metal-labelled ligand. Tumor visualization by MRI, resulting from the binding of paramagnetic- or superparamagnetic-metal-labelled ligands to their receptors expressed specifically on the surface of tumor cells following, e.g., intravenous delivery of engineered bacteria, viruses, or mammalian cells according to the present invention carrying the receptor protein gene constructs has several advantages. The high level of accumulation of these metals in the tumors will facilitate tumor detection. Virtually any paramagnetic or superparamagnetic metals can be used for this purpose. Preferably, due to the systemic toxicity of naked heavy metals, the paramagnetic or superparamagnetic are carefully selected to keep adverse effects at minimal. In most currently available contrast agents, the metal particles are either linked to chelates or are coated with polymers, which are much safer to use than naked particles. Therefore, the use of ligands tagged with chelated or polymer-coated metals is preferred.


Methods for generating contrast agents linked with proteins are well known to the person skilled in the art, e.g., the protein ligand (or other chemical compound ligand) is first chemically attached to the chelates (e.g. diethylene triamine pentaacetic acid (DTPA)). Then, the chelate-protein complex is labeled with metals. A similar labeling method has been used in generating gallium-labeled somatostatin analogs and used in producing indium-111-labeled low density lipoprotein using DTPA-bis(stearylamide). Details of protein modifications with chelates used in contrast agents have been previously described. For example, modifying proteins with the bifunctional chelate 2-(4-isothiocyanotobenzyl-6-methyl) diethylenetriamine-pentaacetic acid (MX-DTPA)) (Mirzadeh et al., Bioconjug. Chem. 1 (1990), 59-65) and modifying proteins with the cyclic anhydride of diethylenetriamine-pentaacetic acid (cDTPAA) (Duncan and Welch, J. Nucl. Med. 34 (1993), 1728-1738) have been described.


Alternatively, MRI can be carried out by the following approaches:


(a) Modified Gadolinium Activation due to Enzyme/Protein Delivery


This approach is based on the principles of Gene-Directed Enzyme Prodrug Therapy (GDEPT), in which case the enzymes/proteins activate a systemically delivered nontoxic prodrug into active toxic drug. Specific activation of the MRI contrast agent in weak relaxivity state into strong relaxivity state by the enzyme/protein in the tumors allows tumor detection. The enzyme/protein delivery to tumors is achieved through intravenously injected engineered bacteria, viruses, and mammalian cells, which carry the gene encoding β-galactosidase (or any other related enzymes). The B. galactosidase can be in either extracellular secreted form or expressed an the bacteria or mammalian cell surface. An example of an MRI agent that can be cleaved by β-galactosidase and used in MRI imaging for tumor detection is (4,7,10-tri(acetic acid)-1-(2-β-galactopyranosylethoxy)-1,4,7,10-tetraazacyclododecane)gadolinium (Egad) (Moats et al., 1997,). In this compound, a galactopyranose residue is positioned at the 9th coordination site of the Gd3+ ion. Due to this blockage, water protons are excluded from interacting with Gd3+ ion, and therefore diminished effect on Ti relaxation time. In the presence of β-galactosidase, the enzyme cleaves the galactopyranose from the chelate, freeing the coordination site, and allows irreversible transition of the contrast agent from a weak to a strong relaxivity state. Since the bacterium-, virus-, or mammalian cell-based enzyme expression occurs only in tumors, the enzyme-mediated relaxivity state transition will also occur only in the tumors. Therefore, this enzyme-mediated activation of MRI contrast agents can be used for tumor detection.


In addition to the above MRI contrast agent, similar new contrast agents may be developed in which other types of residues may be attached to the chelates. These residues can be removed by their corresponding enzymes (similar to the removal of galactopyranose by galactosidase) (e.g. α-mannosidases, α- and β-glucosidases, β-glucuronidases) to free the 9th coordination site of the Gd3+ ion and modify the T1 relaxation time for tumor detections. The genes encoding these enzymes may all be delivered by the engineered bacteria, viruses, or mammalian cells according to the present invention. Moreover, new contrast agents using metals other than gadolinium may be developed for enzyme-activated MRI tumor imaging.


This approach can be combined with therapy as shown in the following sections.


(b) Engineering of Delivery Vector Systems for Activation of the Contrast Agents (e g. Modified Gadolinium) First and Subseguently, the activation of an injected Prodrug by the Same Constitutively Expressed Enzyme (e.g. β-Galactosidase)-One-Gene-Product-Based Detection and Therapy System (OGPBDTS)


For example, the gadolinium-based contrast agent can be activated by an enzyme (e.g. β-galactosidase), as described above, which can be used for tumor detection. Subsequently, the intravenously delivered prodrugs, such as CBI, TMI, PCI (described in U.S. Pat. No. 5,646,298), may be cleaved by the same β-galactosidase in the tumors, to yield active cytotoxic drugs against tumor cells for cancer treatment.


(c) Engineering of Delivery Vector Systems with the Two-Gene-Product-Based Detection and Therapeutic Systems (TGPBDTS)


Gene 1 is linked to a constitutive promoter and produces the enzymes/proteins for sensing the contrast agents (e.g. metal-binding proteins, modified gadolinium, or other agents) and gene 2 is linked to an exogenously activatable promoter, which is silent without the activator drug, and only turned on after the detection vector system is found positive by MRI. The activation of the vector-based promoter gene construct is achieved by injection or by oral administration of the activator drug. The repeated injection of the contrast agent allows the real-time monitoring of tumor size and location of metastases during the treatment procedure


Preferably, for transfecting the cells the DNA sequences encoding the (diagnostic or therapeutic) proteins described above, e.g., a luminescent and/or fluorescent protein are present in a vector or an expression vector. A person skilled in the art is familiar with examples thereof. The DNA sequences can also be contained in a recombinant virus containing appropriate expression cassettes. Suitable viruses that may be used in the diagnostic or pharmaceutical composition of the present invention include baculovirus, vaccinia, sindbis virus, Sendai virus, adenovirus, an AAV virus or a parvovirus, such as MVM or H-1. The vector may also be a retrovirus, such as MoMULV, MoMuLV, HaMuSV, MuMTV, RSV or GaLV. For expression in mammals, a suitable promoter is e.g. human cytomegalovirus “immediate early promoter” (pCMV). Furthermore, tissue and/or organ specific promoters are useful. Preferably, the DNA sequences encoding, e.g., a luminescent and/or fluorescent protein are operatively linked with a promoter allowing high expression. Such promoters, e.g. inducible promoters are well-known to the person skilled in the art. Preferably, the above constructs are inserted into the bacterial genome by stable integration. If such constructs are made in mammalian cells using mammalian vectors, stably transformed cell lines with a single-copy insertion will be generated for long-term expression in tumor cells.


For generating the above described DNA sequences and for constructing expression vectors or viruses which contain said DNA sequences, it is possible to use general methods known in the art. These methods include e.g. in vitro recombination techniques, synthetic methods and in vivo recombination methods as described in Sambrook et al., Molecular Cloning, A Laboratory Manual, 2nd edition (1989) Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., for example. Methods of transfecting cells, of phenotypically selecting transfectants and of expressing the DNA sequences by using the above described vectors are known in the art.


The person skilled in the art knows DNA sequences encoding proteins, e.g., luminescent or fluorescent proteins that can be used in the diagnostic and/or pharmaceutical composition of the present invention. During the past decade, the identification and isolation of structural genes encoding light-emitting proteins from bacterial luciferase from Vibrio harveyi (Belas et al., Science 218 (1982), 791-793) and from Vibrio fischerii (Foran and Brown, Nucleic acids Res. 16 (1988), 177), firefly luciferase (de Wet et al., Mol. Cell. Biol. 7 (1987), 725-737), aequorin from Aequorea victoria (Prasher et al., Biochem. 26 (1987), 1326-1332), Renilla luciferase from Renilla reniformis (Lorenz et al., PNAS USA 88 (1991), 4438-4442) and green fluorescent protein from Aequorea victoria (Prasher et al., Gene 111 (1987), 229-233) have been described that allow the tracing of bacteria, viruses or mammalian cells based on light emission. Transformation and expression of these genes in bacteria allows detection of bacterial colonies with the aid of the low light imaging camera or individual bacteria under the fluorescent microscope (Engebrecht et al., Science 227 (1985), 1345-1347; Legocki et al., PNAS 83 (1986), 9080-9084; Chalfie et al., Science 263 (1994), 802-805).


Luciferase genes have been expressed in a variety of organisms. Promoter activation based on light emission, using lux AB fused to the nitrogenase promoter, was demonstrated in Rhizobia residing within the cytoplasm of cells of infected root nodules by low light imaging (Legocki et al., PNAS 83 (1986), 9080-9084; O'Kane et al., J. Plant Mol. Biol. 10 (1988), 387-399). Fusion of the lux A and lux B genes resulted in a fully functional luciferase protein (Escher et al., PNAS 86 (1989), 6528-6532). This fusion gene (Fab2) was introduced into Bacillus subtilis and Bacillus meqatherium under the xylose promoter and then fed into insect larvae and was injected into the hemolymph of worms. Imaging of light emission was conducted using a low light video camera. The movement and localization of pathogenic bacteria in transgenic arabidopsis plants, which carry the pathogen-activated PAL promoter-bacterial luciferase fusion gene construct, was demonstrated by localizing Pseudomonas or Ervinia spp. infection under the low light imager as well as in tomato plant and stacks of potatoes (Giacomin and Szalay, Plant Sci. 116 (1996), 59-72).


All of the luciferases expressed in bacteria require exogenously added substrates such as decanal or coelenterazine for light emission. In contrast, while visualization of GFP fluorescence does not require a substrate, an excitation light source is needed. More recently, the gene cluster encoding the bacterial luciferase and the proteins for providing decanal within the cell, which includes luxCDABE was isolated from Xenorhabdus luminescens (Meighen and Szittner, J. Bacteriol. 174 (1992), 5371-5381) and Photobacterium leiognathi (Lee et al., Eur. J. Biochem. 201 (1991), 161-167) and transferred into bacteria resulting in continuous light emission independent of exogenously added substrate (Fernandez-Pinas and Wolk, Gene 150 (1994), 169-174). Bacteria containing the complete lux operon sequence, when injected intraperitoneally, intramuscularly, or intravenously, allowed the visualization and localization of bacteria in live mice indicating that the luciferase light emission can penetrate the tissues and can be detected externally (Contag et al., Mol. Microbiol. 18 (1995), 593-603).


Preferably, the microorganism of the present invention is a bacterium which is not tumor-targeted, e.g. an attenuated bacterium. A list of candidate bacterial strains that might be useful for the present invention (i.e. BMPT (bacterium-mediated protein therapy) and tumor imaging) and which might not be tumor-targeted are listed in Table 1. The person skilled in the art can easily identify such bacteria which are not tumor-targeted by commonly available methods, e.g. the methods described in section 6.1 of WO 96/40238.


For safety and direct applicability to humans, bacterial cell lines such as milk and cheese associated microorganisms are preferred which are naturally consumed by most individuals and have intrinsic anti-tumor activity when injected directly to solid tumors. Such bacteria also include bacteria that were naturally isolated from human tumors which developed co-existence (symbiosis) with a variety of types of tumors or with a specific type of tumor. Extracellular secretion of the therapeutic proteins by bacteria is mediated through either signal peptides or endogenous protein secretion pathways. To provide additional safety to the BMPT, bacterial inducible promoters, such as IPTG-induced lac promoter may be used to exogenously regulate therapeutic protein production by bacteria. IPTG-regulated expression of mammalian proteins in bacteria has been well documented. IPTG has also been shown to be functional in promoter activation in animals. In addition to lac promoter, other examples of promoters that allow regulation of gene expression in bacteria include the ara promoter (activated by arabinose) and PLtetO-1 promoter (activated by anhydrotetracycline (aTc)) (Lutz and Bujard, Nucleic Acids Res. 25 (1997), 1203-1210).

TABLE 1Examples of candidate bacterial strains which mightbe useful in the present invention:BacterialstrainBrief descriptionReferenceAerobes, grampositiveLactobacillusYogurt bacteria; nonpathogenic (part of normal flora beneficialSimonds et al.bulgaricusorganism needed by human body); blastolysin1971, J Bacteriolfraction isolated from L. bulgaricus shows antitumor107: 382-384;effect (Bogdanov et al. 1975; Bogdanov et al. 1977; KetlinskiiBogdanov etet al. 1987); may reduce the risk of developingal. 1975,colon tumors in humans (Wollowski et al. 2001);FEBS LettATCC#11842.57: 259-261;Bogdanov etal. 1977, BiullEksp Biol Med84: 709-712;Ketlinskii etal. 1987, VoprOnkol 33: 51-56;Wollowski etal. 2001, Am JClin Nutr73: 451S-455SLactobacillusNonpathogenic (part of normal flora beneficial organismKato et al.caseineeded by human body); i.v. injected LC9018 strain of L.1981, Ganncasei shows markedly inhibition of the growth of subcutaneously72: 517-523;inoculated sarcoma-180 in mice (Kato et al.Kato et al.1981); shows antitumor activity from i.p. injected L. casei1988, Cancer(LC9018 strain) (Kato et al. 1988); ATCC# 393.Immunollmmunother26: 215-221LactobacillusNonpathogenic (part of normal flora beneficial organismMizutani andacidophilusneeded by human body); inhibitory effect on liver tumori-Mitsuokagenesis (Mizutani and Mitsuoka 1980); reduces 1,2-di-1980, Cancermethylhydrazine (DMH)-induced intestinal tumors in maleLett 11: 89-95;Sprague-Dawley rats (McIntosh et al 1999); shows strongBiffi et al.antiproliferative effect of milk fermented by L. acidophilus1997, Nutron the growth of a human breast cancer cell line (BiffiCancer 28: 93-99;et al. 1997);McIntosh etal. 1999, NutrCancer35: 153-159LactobacillusNonpathogenic (part of normal flora beneficial organismbrevisneeded by human body);LactobacillusNonpathogenic (part of normal flora beneficial organismBiffi et al.paracaseineeded by human body); shows antiproliferative effect of1997, Nutrmilk fermented by L. paracasei on the growth of a humanCancer 28: 93-99breast cancer cell line (Biffi et al. 1997);LactobacillusNonpathogenic (part of normal flora beneficial organismMurosaki etplantarumneeded by human body); Murosaki et al. (2000) describedal. 2000, Cancerthat “that daily administration of L. plantarum L-137 isImmunolrequired to exert an antitumor effect at the late stages ofImmunothertumor development when IL-12 production is considerably49: 157-164impaired”;LactobacillusNonpathogenic (part of normal flora beneficial organismrhamnosusneeded by human body);LactobacillusNonpathogenic (part of normal flora beneficial organismO'Mahony etsalivariusneeded by human body); modification of enteric flora inal. 2001, AlimentIL-10 knockout mice by probiotic lactobacilli (throughPharmacolmilk feeding) was associated with reduced prevalence ofThercolon cancer and mucosal inflammatory activity15: 1219-1225(O'Mahony et al. 2001);LactobacillusNonpathogenic (part of normal flora beneficial organismsporogenesneeded by human body);LactobacillusNonpathogenic (part of normal flora beneficial organismlactisneeded by human body);LactobacillusATCC#9338fermentumStreptococcusYogurt bacteria; nonpathogenic (part of normal flora beneficialKelkar et al.thermophilusorganism needed by human body); reported tumor-1988, Cancerspecific transplantation resistance in mice afterLett 42: 73-77;treatment of initial tumors with S. thermophilus (KaklijKaklij et al.and Kelkar 1996); T-lymphocytes are involved in antitumor1991, Canceractivity exhibited by S. thermophilus (Kaklij et al.Lett 56: 37-43;1991); intraperitoneal administration of S. thermophilusKaklij andresulted in complete cure in a very significant proportionKelkar 1996,of ascitic form of sarcoma-180 or Ehrlich ascites carcinomaMicrobioltumor-bearing mice (Kelkar et al. 1988); ATCC#ImmunolBAA-250D.40: 55-58Bacillus subtilisNonpathogenic; B. subtilis bacteremia has been significantlyBanerjee et al.linked with cancer patients (Banerjee et al. 1988);1988, ArchIntern Med148: 1769-1774BacillusNonpathogenic; peptidoglycan from B. megaterium inhibitsNauciel andmegateriumtumor growth (Nauciel and Goguel 1977);Goguel 1977,J Natl CancerInst 59: 1723-1726BacillusNonpathogenic;polymyxaMycobacteriumNonpathogenic; fast-growing; Saito and Watanabe (1981)Lamensans etsmegmatisshowed that “the bacteriocin from M. smegmatis producedal. 1975, Procmorphological alterations and inhibition of synthesis ofNatl Acad Sciribonucleic acid, deoxyribonucleic acid and protein in theUSAtransformed but not in the nontransformed cells”;72: 3656-3660;Saito andWatanabe1981, MicrobiolImmunol25: 13-22MycobacteriumNonpathogenic;vaccaeMycobacteriumNonpathogenic; ATCC# 35782microtiMycobacteriumNonpathogenic; slow-growing, photochromogenhabanaoriginially isolated from monkeys;ListeriaIntracellular pathogenmonocytogenesEnterococcusHave been isolated from tumors and infection endocarditis;MilbrandtfaecalisATCC# 29212, 512991998, ClinCardiol21: 123-126Aerobes, gramnegativeEscherichiaIntravenously injected E. coli shows tumor-specific localization.Shabahang etcolial.unpublisheddataSalmonellaBermudes and associates have used intravenously injectedPawelek et al.typhimuriumSalmonella as a protein delivery vector (Pawelek et al.1997, Cancer1997; Bermudes et al. 2000; Clairmont et al. 2000; ZhengRes 57: 4537-4544;et al. 2000;) Bermudes and associates showed a SalmonellaBermudes et(TK)-dependent [(14)C]FIAU accumulation of atal. 2000, Advleast 30-fold higher in tumor tissue compared to muscleExp Med Bioltissue (Tjuvajev et al. 2001); Phase I study of the intravenous465: 57-63;administration of attenuated Salmonella typhimuriumClairmont etto patients with metastatic melanoma showed NOal. 2000, JANTITUMOR effect (Toso et al. 2002)Infect Dis181: 1996-2002;Zheng et al.2000, OncolRes 12: 127-135;Tjuvajev et al.2001, JControl Release74: 313-315;Toso et al.2002, J ClinOncol 20: 142-152.Vibrio choleraIntravenously injected V. cholera shows tumor-specificShabahang etlocalization; nonpathogenic strains of V. cholera areal.available;unpublisheddataVibrio harveyiNonpathogenic; luminescent bacteria; ATCC# 700106.PseudomonasNonpathogenic; motile by means of multiple polarHsueh et al.fluorescensflagella; P. fluorescens bacteremia has been reported1998, J Clinin cancer patients (Hsueh et al. 1998); P.Microbiolfluorescens can bind to nerve cells and behave as36: 2914-2917;a pathogen (Picot et al. 2001); normally grow at 26-30° C.,Picot et al.but ATCC# 17583 can grow at 37° C.2001, MicrobesInfect3: 985-995PseudomonasP. putida bacteremia has been reported in cancer patientsPekhov et al.putida(Martino et al. 1996); L-Methioninase from P. putida1983, Biulldepletes methionine and inhibits tumor growth (KokkinakisEksp Biol Medet al. 1997); normally grow at 26° C., but ATCC#95: 87-88;43142, 47054 can grow at 37° C.Anaissie et al.1987, Am JMed 82: 1191-1194;Martino et al.1996, Eur JClin MicrobiolInfect Dis15: 610-615;Kokkinakis etal. 1997, NutrCancer29: 195-204;Miki et al.2000, CancerRes 60: 2696-2702Anaerobes,gram positiveBifidobacteriumNonpathogenic (part of normal flora beneficial organismKimura et al.bifidumneeded by human body); showed by Kimura et al. (1980)1980, Cancerthat “selectively localized and proliferated in several typesRes 40: 2061-2068;of mouse tumors following i.v. administration” and “NoneBiffi et al.of the same bacilli could be detected in the tissues of1997, Nutrhealthy organs such as the liver, spleen, kidney, lung,Cancer 28: 93-99blood, bone marrow, and muscle 48 or 96 hr after i.v.administration into tumor-bearing mice”; shows antiproliferativeeffect of milk fermented by B. bifidum on thegrowth of a human breast cancer cell line (Biffi et al.1997); ATCC# 11863, 15696BifidobacteriumNonpathogenic (part of normal flora beneficial organismMizutani andlongumneeded by human body); inhibitory effect on liver tumorigenesisMitsuoka(Mizutani and Mitsuoka 1980); B. longum was1980, Cancershown to “selectively localized to and proliferated in 7,12-Lett 11: 89-95;dimethylbenz[a]anthracene-induced rat mammary tumorsYazawa et al.after systemic application.” (Yazawa et al. 2001); was2000, Cancershown to selectively localize and grow in hypoxic tumorsGene Ther(Yazawa et al. 2000); ATCC# 157077: 269-274;Yazawa et al.2001, BreastCancer ResTreat 66: 165-170BifidobacteriumNonpathogenic (part of normal flora beneficial organismKohwi et al.infantisneeded by human body); shows strong antiproliferative1978, Ganneffect of milk fermented by B. infantis on the growth of a69: 613-618;human breast cancer cell line (Biffi et al. 1997) and otherSekine et al.tumor cells or tumors (Kohwi et al. 1978; Sekine et al.1985, Cancer1985; Sekine et al. 1995); ATCC# 15697Res 45: 1300-1307,Sekine et al.1995, BiolPharm Bull18: 148-153,Biffi et al.1997, NutrCancer 28: 93-99BifidobacteriumNonpathogenic (part of normal flora beneficial organismlaterosporusneeded by human body);BifidobacteriumShows antiproliferative effect of milk fermented by B. animalisBiffi et al.animalison the growth of a human breast cancer cell line1997, Nutr(Biffi et al. 1997); ATCC# 25527Cancer 28: 93-99ActinomycesActinomycetes are fungus-like bacteria that form filamentousisraeliibranches. They are known to reside in the mouthand in the intestinal tract. Pathogenic proliferation of theorganisms, which is usually a result of trauma to the regionof infection, can lead to actinomycosis.EubactriumEubactrium species are normal flora of the intestinallentumtract. However, they may cause opportunistic infections.E. lentum, the most often isolated species, has been linkedto endocarditis and some wound infections.PeptostreptococcusOne of the most common bacteria found in non-sparingChatterjee andanaerobiusanaerobic (NSA) infections in certain surgical group ofChakrabortipatients; ATCC# 273371995, J IndianMed Assoc93: 333-5, 339PeptococcusFound in wound infections;Chatterjee andprevotiiChakraborti1995, J IndianMed Assoc93: 333-5, 339ClostridiumStrict anaerobe; wildly in soil; motility is inhibited in theDang et al.novyipresence of oxygen; Vogelstein lab (Dang et al. 2001)2001, Procshowed that “intravenously injected C. novyi-NT sporesNatl Acad Sci.germinated within the avascular regions of tumors in miceUSAand destroyed surrounding viable tumor cells”, “Large98: 15155-15160;numbers (up to 108 in a volume of 500 μl) of C. novyi andNuyts et al.C. sordellii spores could be injected intravenously into2002, Anticancernormal mice without causing any noticeable side effects.”;DrugsATCC# 1940213: 115-125ClostridiumATCC# 9714sordelliiClostridiumATCC# 27555absonumClostridiumTheys et al. (2001) demonstrated “Specific targeting ofTheys et al.acetobutylicumcytosine deaminase to solid tumors by engineered Clostridium1999, Applacetobutylicum”; Other related papers (Theys et al.Environ Microbial1999); ATCC# 82465: 4295-4300;Theys et al.2001, CancerGene Ther8: 294-297ClostridiumATCC# 17836bifermentansClostridiumThe link between C. difficile and cancer patients has beenAnand anddifficiledocumented (Anand and Glatt 1993; Simon et al. 2000);Glatt 1993,ATCC# 700057Clin Infect Dis17: 109-113;Schuller et al.1995, ArchDis Child72: 219-222;Wehl et al.1999, MedPediatr Oncol32: 336-343;Simon et al.2000, InfectControl HospEpidemiol21: 592-596ClostridiumATCC# 19401histolyticumClostridiumPathogenic; C. perfringens bacteremia has been oftenBodey et al.perfringensreported in cancer patients; C. perfringens enterotoxin1991, Cancerkills tumor cells and reduce tumor growth (Michl et al.67: 1928-1942;2001); ATCC# 3624, 13124Michl et al.2001,Gastroenterology121: 678-684ClostridiumBrown and associates at Stanford described that “To demonstrateMinton et al.beijerinckiithe specificity of this approach for tumor targeting,1995, FEMSwe intravenously injected the inactive spore form ofMicrobiol RevC. beijerinckii, which upon transition to a reproductive17: 357-364;state will express the E. coli nitroreductase gene. NitroreductaseFox et al.activity was detectable in 10 of 10 tumors during1996, Genethe first 5 days after intravenous injection of inactiveTher 3: 173-178;clostridial spores, indicating a rapid transition from sporeLemmon et al.to reproductive state” (Lemmon et al. 1997); other related1997, Genepapers on C. beijerinckii tumor targeting (Minton et al.Ther 4: 791-7961995, FEMS Microbiol Rev 17: 357-364; Fox et al.1996); ATCC# 25752ClostridiumHarmless saprophyte; Brown and associates at StanfordLiu et al.sporogenesdescribed that “systemic delivery of 5-FC into mice previously2002, Geneinjected with CD-transformed spores of C. sporogenesTher 9: 291-296produced greater antitumor effect than maximallytolerated doses of 5-FU”; ATCC# 19404StaphylococcusNon-motile, non-sporing and facultatively anaerobic; aaureushalotolerant (salt tolerant) organism associated with thenasal mucosa of mammals which has both benign andpathogenic strains; S. aureus bacteremia is frequently seenin cancer patients; ATCC# 25923StaphylococcusNonpathogenic normal microflora component of the skin;epidermidisAnaerobes,gram negativeAcidaminococcusFound in wound infections;Chatterjee andfermentansChakraborti1995, J IndianMed Assoc93: 333-5, 339Plant bacteria,grampositiveClavibacterPathogen of tomatomichiganensissubsp. michiganensisPlant bacteria,gramnegativeAgrobacteriumA. tumefaciens in plant tumors (Ullrich and Aloni 2000);Aksac 1974,tumefaciensKunik et al. (2001, Proc Natl Acad Sci USA 98: 1871-1876)Turk Hij Tecrdescribed “Agrobacterium attaches to and geneticallyBiyol Dergtransforms several types of human cells”; it has been34: 48-51;reported that antibodies against A. tumefaciens wereZambryski etfound in patients with various cancers (Aksac 1974, Turkal. 1982, JHij Tecr Biyol Derg 34: 48-51); grow at 26-30° C.; ATCC#Mol Appl15955Genet 1: 361-370;Rezmer et al.1999, Planta209: 399-405;Ullrich andAlorri, 2000, JExp Bot51: 1951-1960;Azmi et al.2001, Planta2001May, 213(1): 29-36;Kunik et al.2001, ProcNatl Acad SciUSA98: 1871-1876Erwinia herbicolaNon-capsulated, non-spore forming, short rods with aMeadows etsingle monotrichous polar flagellum, and are harmless toal. 1976, Cancerhumans; purified tyrosine phenol-lyase from E. herbicolaRessignificantly inhibited growth of established B-16 melanoma36: 167-167tumors;AzorhizobiumSymbiotic, colonize plants, fix nitrogen;caulinodansXanthomonasPathogen of pepper and tomatocampestris pv.vesicatoriaXanthomonasPathogen of beat and cabbage; E. coli lac promoter wasSoby and Danielscampestris pv.shown to be functional in this plant pathogen;1996,campestrisAppl MicrobiolBiotechnol46: 559-561
Note:

The content of this table is by no-means to be exhaustive. Any other similar bacterial strains, which are not listed in this table, are also considered to be included.


Particularly preferred is attenuated Vibrio cholerae.


A further example of a bacterium useful for the preparation of a diagnostic composition for tumor-imaging or monitoring a therapeutic tumor treatment is a magnetic bacterium (Metal-Binding-Bacteria-Mediated Tumor Detection (MBBMTD)). Such bacteria allow tumor detection through the accumulation of iron-based contrast agents. Magnetic bacteria can be isolated from fresh and marine sediments. They are capable of producing magnetic particles (Fe3O4) (Blakemore, Annu. Rev. Microbiol. 36 (1992), 217-238). To do so, they have efficient iron uptake systems, which allow them to utilize both insoluble and soluble forms of iron. Magnetospirillum magneticum AMB-1 is an example of such magnetic bacteria that has been isolated and cultured for magnetic particle production (Yang et al., Enzyme Microb. Technol. 29 (2001), 13-19). Since it can be expected that these magnetic bacteria (naturally occuring or genetically modified), when injected intravenously, possess the similar tumor accumulation ability as that of Vibrio cholera, for example, these bacteria can be used for accumulating iron-based contrast agents in the tumors, which in turn allows tumor detection by MRI. Similarly, other naturally isolated metal-accumulating strains of bacteria can be used for tumor targeting, absorption of metals from contrast agents, and eventually tumor imaging.


Alternatively, viruses such as Vaccinia virus, AAV, a retrovirus etc. are also useful for the diagnostic and therapeutic compositions of the present invention; see Table 2 listing examples of viruses useful in the present invention.

TABLE 2Examples of viruses useful in the present invention:Viral strainsBrief descriptionReferencesVaccinia virusWe have shown that viral thymidine kinase mutation is notYu et al. 2002, unpublishednecessary for tumor accumulation by intravenously injecteddataVaccinia virus.Epstein-BarrvirusHumanzur Hausen 2002, NatpapillomavirusRev Cancer 2: 342-350RetrovirusAdenovirusLindsey 2002, LancetOncol 3: 264AdenoassociatedvirusSV40 virusCytomegalovirusNewcastlesafe, replicates in and kill tumor cells; local injection isSchirrmacher et al.Disease Virusmore effective than systemic injection2001, Int J Oncol18: 945-952Bovine enterovirusBovine enterovirus has been shown to exhibit wide tissueSmyth et al. 2002, Int Jtropism for cell types in vitro. It also shows oncolyticMol Med 10: 49-53activity towards human cells.Lymphocytichigh stability, low toxicity, and broad host rangeBeyer et al. 2002, JchoriomeningitisVirol 76: 1488-1495virus(LCMV)LentivirusesDerivatives ofsafe, live attenuated, has been shown to induce regressionGrote et al. 2001, Bloodthe Edmonston-of human lymphoma xenografts in immunodeficient mice97: 3746-3754B strainof measlesvirus (MV-Ed)Herpes simplexLachmann andvirus type IEfstathiou 1999, CurrOpin Mol Ther 1: 622-632;Wu et al. 2001, CancerRes 61: 3009-3015Attenuatedpowerful vaccine, safeBarrett 1997, Biologicalsyellow fevercals 25: 17-25;(YF) virusMcAllister et al. 2000, JVirol 74: 9197-205
Note:

The content of this table is by no-means to be exhaustive. Any other similar viral strains, which are not listed in this table, are also considered to be included.


Preferably, the virus is Vaccinia virus.


Preferably, the cell of the diagnostic or therapeutic composition of the present invention is a mammalian cell such as stem cells which can be autologous or heterologous to the organism. Examples of suitable cell types are shown in Table 3.

TABLE 3Examples of mammalian cells useful in the present invention:MammaliancellsBrief descriptionReferenceStem cellsIt has been shown that neural stemAboody et al. 2000,cells implanted intravenouslyProc Natl Acadoutside the central nervous systemSci USAtarget to an intracranial tumor.97: 12846-12851;Additionally, when implantedHerrlinger et al.intracranially at distant sites from2000, Mol Therthe tumor, such as into the1: 347-357contralateral hemisphere or intothe cerebral ventricles, the donorneural stem cells migrate throughnormal brain tissues to target thehuman glioblastoma cells.DifferentFor example, ovarian cancer cellstypes ofhave been shown to infiltrate thetumor cellspleural space of patients to targetmalignant pleural mesotheliomas(Harrison et al. 2000, Ann ThoracSurg 70: 407-411). We haveshown that intravenously injectedfibrosarcoma cells accumulate inbreast tumors and subcutaneousglioma tumors (Yu et al.unpublished data).
Note:

The content of this table is by no-means to be exhaustive. Any other similar types of mammalian cells, which are not listed in this table, are also considered to be included.


In a further preferred embodiment of the diagnostic and/or therapeutic composition of the present invention the luminescent or fluorescent protein is a luciferase, green fluorescent protein (GFP) or red fluorescent protein (RFP).


In a particularly preferred embodiment, the microorganism or cell of the diagnostic and/or pharmaceutical composition of the present invention additionally contains a gene encoding a substrate for the luciferase. In an even more preferred embodiment, the microorganism or cell of the diagnostic and/or pharmaceutical composition of the present invention contains a ruc-gfp expression cassette which contains the Renilla luciferase (ruc) and Aequorea gfp cDNA sequences under the control of a strong synthetic early/late (PE/L) promoter of Vaccinia or the luxCDABE cassette.


A preferred use of the microorganisms and cells described above is the preparation of a diagnostic composition for tumor-imaging. The diagnostic composition of the present invention can be used e.g. during surgery, to identify tumors and metastasis. Furthermore, the diagnostic composition of the present invention is useful for monitoring a therapeutic tumor treatment. Suitable devices for analysing, e.g., the localization or distribution of luminescent and/or fluorescent proteins in an organism, organ or tissue are well known to the person skilled in the art and, furthermore described in the literature cited above as well as the examples, below. Additionally, the microorganisms and cells can be modified in such a way that they bind metals and consequently are useful in MRI technology to make tumor localization more specific.


The present invention also relates to the use of an antimicrobial, e.g. antibacterial or antiviral compound, e.g., peptide or protein fused to a detectable protein for the preparation of a diagnostic composition for tumor-imaging or monitoring a therapeutic tumor treatment. This diagnostic composition is useful for tumor detection through the binding of the antimicrobial compound, e.g., a light-emitting or radiolabeled antimicrobial peptide/protein with bacteria localized in tumors (Peptide-Linked-Tumor-Targeting-Vector-Detection (PLTTVD)).


The present invention also relates to the use of an antimicrobial, e.g. antibacterial or antiviral compound, e.g., peptide or protein fused to a therapeutic protein for the preparation of a pharmaceutical composition for tumor therapy.


Examples of naturally occurring antimicrobial proteins include ubiquicidin (UBI, 6.7 kDa) and lactoferrin (hLF, 77 kDa). UBI was originally isolated from murine macrophages and later from human airway epithelial cells. hLF is found in mucosa and neutrophils, and is known to bind to surface structures of both gram-negative and gram-positive bacteria. Small synthetic peptides containing the bacteria binding domains of UBI or hLF have been designed for imaging of bacterial infections, which can be discriminated from sterile inflammations (Nibbering et al., Nucl. Med. Commun. 19 (1998), 1117-1121; Welling et al., Nucl. Med. Biol. 29 (2000), 413-422; Welling et al., Eur. J. Nucl. Med. 27 (2002), 2929-301). These peptides are radiolabeled with 99mTc, which allows real-time visualization in live animals using planar scintigraphy. For example, a planar gamma camera (e.g. Toshiba GCA 7100/UI, Tokyo, Japan) equipped with a low-energy general-purpose parallel-hole collimator can be used to visualize the distribution of 99mTc-labelled antimicrobial peptides in live animals or humans. To apply these synthetic peptides for tumor detection, first the tumorous individuals are infected with a particular strain of extracellular bacteria. After bacterial colonization of the tumors, the radiolabelled compounds, e.g., peptides are delivered intravenously. Specific binding of the labeled peptides to the bacteria in the tumors can be visualized in real time by scintigraphy, which therefore allows the localization of tumors in humans and animals. In addition to labeling with 99mTc, the compounds, e.g., synthetic peptides can also be labeled with paramagnetic- or superparamagnetic-metal particles for visualization using MRI or the compounds can be labeled with radionuclides, such as 55CO, 68Ga, 60CU(II), 123I etc. for non-invasive visualization by SPECT or PET. Furthermore, the compounds, e.g., synthetic peptides can also be tagged with fluorescent probes, fluorescent proteins (such as green fluorescent protein (GFP) or DsRed)., or luminescent proteins (such as Renilla luciferase, firefly luciferase) for real-time visualization in an individual.


In addition to UBI and hLF, there are many other examples of antimicrobial peptides/proteins produced by bacteria, plants, invertebrates, and vertebrates including humans (Schroder, Cell. Mol. Life Sci. 56 (1999), 32-46; Cole and Ganz, Biotechniques 29 (2000), 822-826, 828, 830-831) which are useful for the purposes of the present invention, e.g. pediocin PA-1 from lactic acid bacteria, gramicidin S from Bacillus brevis), protegrin-1 from porcine leukocytes, SMAP-29 from sheep myeloid cells, buforin I & buforin II from Asian toad, beta-defensins, LL-37, a fragment of human cathelicidin hCAP-18, arasin I from catfish, granulysin, PAMP from Propionibaeterium jensenii etc. Based on these naturally occurring antimicrobial proteins, small peptides can be designed and synthesized to retain the bacteria-binding capability while eliminating the bacteria-killing effect by the original proteins. These synthetic peptides could then be used in bacterium-mediated tumor detection.


Similar to detection of bacteria by antibacterial compounds (e.g. peptides/proteins), antiviral compounds (e.g. peptides/proteins) may be used for detecting viral particles in the tumors. Lactoferricin is one of the examples of antiviral peptide/protein that may be used to design peptides for detecting viral particles. In addition to the antimicrobial peptides/proteins discussed, radiolabelled- or light-emitting-protein/probe-labeled antibody fragments can also be used to target bacteria or viruses localized in tumors for tumor detection.


Moreover, the antimicrobial compound can be fused to a metal-binding protein (Fusion-Peptide-Linked Tumor Targeting Vector Detection (PLTTVD)) for detecting the accumulation of bacteria, viruses etc. according to the present invention in tumors. After allowing the binding of the fusion construct to the engineered bacteria etc. in tumor, metal agents (which can be used for detection by MRI, PET or SPECT) are injected intravenously. Binding and absorption of the metal agents by the bacteria etc. will allow indirect tumor detection.


The present invention also relates to a pharmaceutical composition comprising a microorganism or cell containing DNA sequence(s) encoding a cell receptor capable of binding a ligand and furthermore a ligand which is coupled to a toxin (=chimeric toxin). Suitable toxins which can be coupled to the ligand are well known to the person skilled in the art. Several chimeric toxins have been described previously. First, the Tfn-CRM 107 chimeric toxin was prepared by conjugating transferrin to the mutated diphtheria toxin CRM 107 (Johnson et al., J. Neurosurg. 70 (1989), 240-248), which targets the transferrin receptor. Second, the 425.3-PE immunotoxin was prepared by conjugating anti-EGF receptor antibody to the whole Pseudomonas exotoxin A (Myklebust et al., Cancer Res. 53 (1993), 3784-3788). Third, the Tfn-PE was prepared by conjugating transferrin to the Pseudomonas exotoxin (Hall et al., J. Neurosurg. 76 (1992), 838-844; Hall et al., Neurosurgery 34 (1994), 649-656). It could be shown in animal models and human patients that these chimeric toxins have anti-tumor activities against medulloblastoma, small cell lung cancer, glioma xenografts and intracranial tumors. Thus, e.g. recombinant Vaccinia virus can be designed to specifically express transferrin receptors on the surface of tumor cells allowing the use of these receptor-targeting chimeric toxins for antitumor treatment.


The present invention also relates to a pharmaceutical composition comprising (a) a microorganism or cell containing a DNA sequence encoding a cell receptor capable of binding a ligand and (b) said ligand, which is coupled to a therapeutic protein. Suitable therapeutic proteins as well as methods for generating therapeutic ligand fusion proteins by linking therapeutic proteins to the ligand proteins are well known to the person skilled in the art. Examples of suitable therapeutic proteins are shown in Tables 4 and 5.

TABLE 4Examples of enzyme/prodrug pairs in which the delivery of theenzyme gene is facilitated by intravenously injectedmicroorganisms and cells:Therapeutic proteins(enzymes), drugs,prodrugsDescriptionReferencesHerpes simplex virusMost well-knownMoolten Cancer Res.thymidine kinase (HSV-enzyme/produrg combination.1986; 46: 5276-5281TK)+Ganciclovir (GCV)Herpes simplex virus thymidineA-5021 has highly selective antihepaticHasegawa et al. 2000,kinase (HSV-TK)activity and was selectivelyCancer Gene+A-5021 (1'S,2'R)-phosphorylated by viral TKTher 7: 557-5629{[1′,2′-in herpes virus-infected cells.bis(hydroxymethyl)cycloprop-The anti-herpetic activity of A-1′-yl]methyl}guanine5021 was most potent in comparisonwith ACV and penciclovir.Horseradish peroxidaseWhen activated by purifiedGreco et al. 2000, Cancer Gene(HRP)HRP, IAA was shown toThera. 7: 1414-1420+Indole-3-acetic acidinhibit colony formation in(IAA)mammalian cells, whereas,neither enzyme nor prodrugalone was cytotoxic at thesame concentration or times.The HRP/IAA-induced cell killwas effective in normoxic andanoxic conditions.Bacterial enzyme carboxypeptidaseCPG2 can be expressed bothSpooner et al. 2000,G2 (CPG2)intracellularly or tethered toCancer Gene+4-([2-chloroethyl][2-the outer surface ofTher. 7: 1348-1356mesyloxyethyl]amino)benzoyl-mammalian cells, where it isWebley et al. 2001,L-glutamic acidable to activate mustardBr J Cancer 84:(CMDA)prodrugs for use in suicide1671-1676or +4-[N,N-bis(2-gene therapy.iodoethyl) amino]phenoxycarbonyl L-glutamicacid (ZD2767P)Human cytochrome P450Acetaminophen is cytotoxicThatcher et al. 2000,CYP1A2through the cytochrome P450-Cancer Gene+acetaminophenmediated generation of aTher 7: 521-525chemically reactive metabolite,N-acetylbenzoquinoneimine(NABQI).Rabbit cytochrome P450CYP4B1 is able to induceMohr et al. 2000, Cancer Gene Ther.4B1 (CYP4B1)tumor cell death at low micro-7: 1008-1014;+4-ipomeanol (4-IM)molar concentrations inHeuser et al. 2000, Cancer Geneglioblastoma cells after treatmentTher 7: 806-12with the prodrug 4-IM.Rat cytochrome P450 4BIThe CYP2B1 gene productKammertoens et al. 2000, Cancer(CYP2B1)activates oxaphosphorines toGene Ther 7: 629-636+oxaphosporines, such asthe hydroxy form, giving riseifosfamide (IFO)to the toxic products phosphamidemustard and acrolein,which alkylate DNA and proteins,respectively.E. coli nitroreductaseCB1954 is a weakDjeha et al. 2000, Cancer Gene(NTR)monofunctional alkylatingTher. 7: 721-731;+CB1954agent that is converted by NTRDjeha et al. 2001, Mol Ther 3: 233-240into 2- and 4-hydroxylaminoWestphal et al. 2000, Cancer Genederivatives. Cellular thioestersTher 7: 97-106such as acetyl coenzyme AWeedon et al. 2000, Int J Cancersubsequently convert the latter86: 848-854into a powerful bifunctionalalkylating agent that can killboth proliferating andnonproliferating cells.PTX0147 is the plasmidexpressing NTR from thehuman cytomegalovirus(CMV) early promoter/enhancer and alsocarries the b-globin secondintron and poly (A) sequencesand a G418 selectable marker.E. coli cytosine deaminaseDespite CD expression, aKoyama et al. 2000, Cancer Gene(CD), E. coli uracilnumber of tumor cells were 5-Ther. 7: 1015-1022;phosphoribosyltransferaseFC-resistant, which may beTheys et al. 2001, Cancer Gene Ther(UPRT)attributable to the lack of an8: 294-297;active cytosine transportKammertoens et al. 2000, Cancer+5-fluorocytosine (5-FC)system in mammalian cells andGene Ther 7: 629-636;to the degradation of theBlock et al. 2000, Cancer Gene Therformed 50FU by7: 438-445;dihydropyrimidineBentires-Alj et al. 2000 Cancer Genedehydrogenase (DPD). In theTher 7: 20-26;gene transfer strategy, to improveKawamura et al. 2000, Cancer Genethe effect of the CD/5-Ther 7: 637-643;FC system, it might be possibleLi et al. 1997, Cancer Gene Therto transduce the enzyme gene4: 113-117that converts 5-FU to its activeforms. One of the candidatesis E. coli UPRT. It is apyrimidine salvage enzyme andis characteristic to bacteria. Itdirectly converts 5-FU to 5-fluorouridine monophosphate(FUMP) at the first step of 5-FU activation and has thepotential to enhance theactivating pathway againstDPD.Cytochrome P450 enzymesLiver tissue has a high contentHuang et al. 2000, Cancer Gene+cyclophosphamideof P450 enzymes active towardTher. 7: 1034-1042;(CPA)CPA and is the major organKan et al. 2001, Cancer Gene Therresponsible for CPA activation.8: 473-482Activated CPA generated inthe liver circulates through theblood and gains entry to tumortissue to exert its therapeuticeffects.Intratumoral CPA activationcan result in a high, localizedconcentration of active drugmetabolite at its site of action,which may maximizetherapeutic effects while at thesame time minimizing the hosttoxicities associated with hepaticdrug activation.rabbit carboxylesteraseExposure of neuroblastomaMeck et al. 2001, Cancer Res+7-ethyl-10-[4-(1-piperidino)-cell lines or of mixtures of61: 5083-50891-piperidino]these cell lines with CD34(+)carbonyloxycamp-cells at a ratio of 10:90 totothecin (CPT-11)replication-deficientAdRSVrCE for 24 h andsubsequent exposure of cells to1-5 microM CPT-11 for 4 hincreased the toxicity of CPT-11 to threeNeuroblastoma cell lines(SJNB-1, NB-1691, and SK-N-SH) from approximately 20-50-fold and eradicated theirclonogenic potential.Mushroom tyrosinaseA sterically undemandingJordan et al 2001, Bioorg Med Chem+bis-(2-chloroethyl)amino-prodrug bis-(2-chloro-9: 1549-15584-hydroxyphenylaminomethanoneethyl)amino-4-hydroxyphenylaminomethanone2828 was synthesised and foundto be oxidised by mushroomtyrosinase at a superior rate totyrosine methyl ester, thecarboxylic acid of which is thenatural substrate for tyrosinase.E. coli β-galactosidaseProdrug cleaved byTietze et al. 2001, Chembiochem+1-chloromethyl-5-galactosidase shows high2: 758-765hydroxy-1,2-dihydro-3Hcytotoxicity towards humanbenz[e]indole (CC-1065)bronchial carcinoma cells ofor +1-(1′-chloroethyl)-5-line A549.hydroxy-1,2-dihydro-3H-benz[e]indoleA mutant of carboxypeptidaseActivation of all three of theFriedlos et al. 2002, Cancer ResG2 (CPG2, glutamateprodrugs not only kills the cells62: 1724-1729carboxypeptidaseexpressing the mutant CPG2+4-[bis(2-on the surface but also theiodoethyl)amino]-neighboring cells through by-phenyloxycarbonyl-L-glutamicstander effect.acidor +3-fluoro-4-[bis(2-chlorethyl)amino]benzoyl-L-glutamic acidor +3,5-difluoro-4-[bis(2-iodoethyl)amino]benzoyl-L-glutamic acid
Note:

The content of this table is by no-means to be exhaustive. Any other similar enzyme-prodrug pairs, which are not listed in this table, are also considered to be included.









TABLE 5










Further examples of therapeutic proteins that can be used for


BMPT (bacterium-mediated protein therapy), VMPT


(virus-mediated protein therapy) or CMPT (cell-mediated


protein therapy), e.g. mCMPT (mammalian-cell-mediated


protein therapy), against tumors:









Therapeutic proteins,




drugs
Description
References





rsCD40L
Ligand of CD40, sensitizing
Eliopoulos et al. 2000, Mole. Cell. Biol.



tumor cells to apoptosis
20: 5503-5515



induced by a variety of agents,



including TNF-alpha, anti-Fas,



and cytotoxic drugs.


Fas-ligand

Sharma et al. 2000, Pharmacol Ther.




88: 333-347


TRAIL
Ligand for death receptors such
Golstein 1997, Curr. Biol. 7: R750-753.



as DcR2, DcR1, DR5, DR4.


TNF
TNF is the ligand for TNFR1,
Baker and Reddy 1996, Oncogene 12: 1-9;



which mediates cell-death
Theys et al. 1999, Appl Environ



signaling.
Microbiol 65: 4295-4300;




Lammertyn et al. 1997, Appl Environ




Microbiol 63: 1808-1813


Recombinant antibodies


Anti-GA733-2
Secreted or membrane-anchored
Paul et al. 2000, Cancer Gene Ther



form of monoclonal antibody
7: 615-623



(mAb) (CO17-1A) specific for



Ag (GA733-2) that is present



on the surface of most



gastrointestinal carcinomas.


Anticancer drugs adriamycin
Some tumor cells express Fas
Nakamura et al. 1997, Anticancer Res.


(ADM), cytosine
antigen on their surface, and
17: 173-179;


arabinoside (Ara-C),
apoptosis is induced in those
Micheau et al. 1997, J. Natl. Cancer


cisplatin, doxorubicin,
cells by IgM-anti-Fas MoAb.
Inst. 89: 783-789;


mitomycin C,
Clinically relevant
Chang et al. 1998, Osaka City Med. J.


fluorouracil, campto-
concentrations of anticancer
44: 173-180;


thecin, cis-diammine-
drugs enhance Fas receptor
Mizutani et al. 1997, Cancer 79: 1180-1189;


dichloroplatinum (II),
expression on the plasma
Jiang et al. 1999, Hepatology 29: 101-110;


CDDP, etc.
membrane of tumor cells.
Mizutani et al. 1998, J. Urol. 160: 561-570


+anti-Fas antibody
By the combination of ADM or



Ara-C with IgM-anti-Fas



MoAb, the induction of



apoptosis in HL60 leukemic



cells was enhanced significantly.



Therefore, we may use



bacteria or viruses to deliver



the gene encoding anti-Fas



antibody. Expression of the



anti-Fas antibody on the



surface of tumor cells may



sensitizes these cells to chemotherapy



agents, which therefore



may improve the efficiency of



chemotherapy.


Bacterial


toxins


Microcin E492
A low-molecular mass channel-
de Lorenzo 1984, Arch Microbiol



forming bacteriocin (7,887 Da)
139: 72-75;



produced by Klebstella
Hetz et al. 2002, Proc Natl Acad Sci USA




pneumoniae. It has been shown

99: 2696-2701



that microcin E492 induces



apoptosis in certain human cell



lines. Treatment with zVAD-



fmk, a general caspase inhibitor,



completely blocked the



cytotoxic effect of this bacteriocin,



which may provide a



safety mechanism when microcin



is used in anti-tumor



treatment. Microcin-E492-



insensitive mutants of E. coli



K12 have been isolated, which



may be used as a carrier to



deliver microcin (Pugsley et al.



1986, J Gen Microbiol



132: 3253-3259).


diphtheria toxin (DT)
Toxin-labeled monoclonal



antibodies have been used to



target tumor cell surface



receptors for cell killing (Kreitman



2001, Curr Pharm



Biotechnol 2: 313-325; Thomas



et al. 2002, J Pediatr Surg



37: 539-544). Toxin-label



protein ligands have also been



used to target cell surface



receptors (Olson et al. 1997, Int



J Cancer 73: 865-870; Arora et



al. 1999, Cancer Res 59: 183-188;



Wild et al. 2000, Br J



Cancer 83: 1077-1083).



Pseudomonas exotoxin




Escherichia coil Shiga

Shiga toxins, Shiga-like toxin I
O'Brien et al. 1992, Curr Top Microbiol


toxins
(SLT-I) and Shiga-like toxin II
Immunol 180: 65-94;



(SLT-II) are cell-associated
Nakao and Takeda 2000, J Nat Toxins



cytotoxins, which have been
9: 299-313



shown to be able to kill tumor



cells. The toxins kill target



cells by inducing apoptosis.



Escherichia coli Vero-

VT1 is an E. coli elaborated
Farkas-Himsley et al. 1995, Proc Natl


toxin 1 (VT1)
subunit toxin active only
Acad Sci USA 92: 6996-7000;



against (tumor) cell lines that
Arab et al. 1999, Oncol Res 11: 33-39



express the VT1 receptor,



globotriaosyl ceramide-Gb3. In



an example of VT1 action, it



has been shown that VT1 eliminates



human astrocytoma



xenograft in nude mice.


Plant toxins


Hyperforin
Hyperforin is a plant derived
Hostanska et al. 2002, Pharmazie



antibiotic. It was shown that
57: 323-331;



hyperforin can inhibit tumor
Schempp et al. 2002, Oncogene



growth by activating mitochondria-
21: 1242-1250



mediated apoptosis



pathway.







Note:





The content of this table is by no-means to be exhaustive. Any other similar therapeutic proteins, which are not listed in this table, are also considered to be included.







Since the tutor tissues can be labeled with ligand receptors using intravenously injected engineered bacteria, viruses or cells, the binding of therapeutic-ligand fusion proteins to the ligand receptors will enable the targeting of the therapeutic proteins to the tumor tissues. Intracellular bacteria and viruses are particularly useful in labeling the tumor cell surface with designated receptor proteins. However, due to “bystander effect” of therapeutic proteins on neighboring cells, extracellular bacteria and mammalian cells can also be used to deliver the therapeutic proteins.


In the case of Gene-Directed Enzyme Prodrug Therapy (GDEPT) (see below), for example, extracellular bacteria may be used to secrete the enzyme-ligand fusion protein. The tumor cell surface may be labeled with receptor proteins by viruses. After the intravenous delivery of prodrug, not only the cells expressing the receptors will be bathed with and killed by the active drug, the surrounding tumor cells (which may not be labeled with receptors) will also be killed.


Viruses (such as Vaccinia virus) may also be used to label the tumor cell surface with receptor proteins. For example, the tumor tissues can be specifically infected by intravenously injected engineered Vaccinia virus carrying, e.g., a transferrin receptor gene (also encoding a single peptide for cell surface expression). Expression of the transferrin receptor on the tumor cell surface will mark these cells for targeting by therapeutic-ligand fusion proteins. In this case, the ligand is the transferrin protein, and the therapeutic protein could be a Pseudomonas exotoxin (or any other cytotoxic therapeutic proteins). Tumor cell internalization of the transferrin/transferrin receptor pair allows the internalization of the therapeutic protein, which in turn delivers the cytotoxicity specifically to the tumor cells. Transferrin/transferrin receptor pair is only one of many examples of ligand-receptor pairs that can be used. In addition, mutant ligands and mutant receptors with highly specific affinity toward each other may be used to avoid the binding to endogenous proteins.


Additional examples of suitable proteins are human endostatin and the chimeric PE37/TGF-alpha fusion protein. Endostatin is a carboxyterminal peptide of collagen XVIII which has been characterized (Ding et al., PNAS USA 95 (1998), 10443). It has been shown that endostatin inhibits endothelial cell proliferation and migration, induces G1 arrest and apoptosis of endothelial cells in vitro, and has antitumor effect in a variety of tumor models. Intravenous or intramuscular injection of viral DNA and cationic liposome-complexed plasmid DNA encoding endostatin result in limited expression levels of endostatin in tumors. However intratumoral injection of purified endostatin shows remarkable inhibition of tumor growth. Pseudomonas exotoxin is a bacterial toxin secreted by Pseudomonas aeruginosa. PE elicits its cytotoxic effect by inactivating elongation factor 2 (EF-2), which results in blocking of protein synthesis in mammalian cells. Single chain PE is functionally divided into three domains: domain Ia is required for binding to cell surface receptor, domain II is required for translocating the toxin into the target cell cytosol, and domain III is responsible for cytotoxicity by inactivating EF-2. PE40 is derived from wild type Pseudomonas exotoxin that lacks the binding domain Ia. Other proteins such as antibody fragments or protein ligands can be inserted in place of the binding domain. This will render the PE40-ligand fusion protein specific to its receptor. One of the highly specific engineered chimeric toxins is the TGF alpha/PE40 fusion protein, where the C-terminus of TGF alpha polypeptide has been fused in frame with the N-terminus of the PE40 protein. TGF alpha is one of the ligands of epidermal growth factor receptor (EGFR), which has been shown to be preferentially expressed on the surface of a variety of tumor cells. TGF alpha-PE40 fusion protein has been shown to be highly toxic to tumor cells with elevated EGYRs on the cell surface and while it is less toxic to nearby cells displaying fewer numbers of surface EGFR. The toxicity of TGF alpha-PE40 chimeric protein is dependent on a proteolytic processing step to convert the chimeric protein into its active form, which is carried out by the target. To overcome the requirement for proteolysis, a new chimeric toxin protein that does not require processing has been constructed by Theuer and coworkers (J. Biol. Chem. 267 (1992), 16872). The novel fusion protein is termed PE37/TGF alpha, which exhibited higher toxicity to tumor cells than the TGF alpha-PE40 fusion protein.


In a particular preferred embodiment of the diagnostic and/or pharmaceutical composition of the present invention the ligand is not the naturally occurring ligand but any compound which is capable of specifically binding to the receptor, e.g. an antibody. The term “antibody”, preferably, relates to antibodies which consist essentially of pooled monoclonal antibodies with different epitopic specificities, as well as distinct monclonal antibody preparations. Monoclonal antibodies are made from an antigen containing fragments of the particular receptor by methods well known to those skilled in the art (see, e.g., Köhler et al., Nature 256 (1975), 495). As used herein, the term “antibody” (Ab) or “monoclonal antibody” (Mab) is meant to include intact molecules as well as antibody fragments (such as, for example, Fab and F(ab′)2 fragments) which are capable of specifically binding to a receptor. Fab and F(ab′)2 fragments lack the Fc fragment of intact antibody, clear more rapidly from the circulation, and may have less non-specific tissue binding than an intact antibody (Wahl et al., J. Nucl. Med. 24:316-325 (1983). Thus, these fragments are preferred, as well as the products of an FAB or other immunoglobulin expression library. Moreover, antibodies of the present invention include chimeric, single chain, and humanized antibodies.


Antibody-ligands are, e.g., useful in anti-tumor therapy using fusion proteins (i.e. immunotherapeutic proteins) between antibodies and therapeutic proteins: Firstly, the genes encoding cell surface receptors are delivered to tumors cells in live organisms via intravenously injected engineered bacteria and viruses. Such receptors can be, e.g., transferrin receptor, EGF receptor, somatostatin receptor, etc. over-expression of receptors on the cell surface following bacterial or viral infections will be used to mark the tumor cells. Secondly, a fusion protein (an immunotherapeutic protein) between an antibody, preferably an antibody fragment, (specific to the overexpressed surface receptors) and a therapeutic protein (e.g. any type of toxins, see Table 5) is prepared. The intravenously injected fusion protein may bind to the marked tumor cells and exhibit cytotoxicity toward these cells in the tumor tissues.


The present invention also relates to a diagnostic and/or pharmaceutical composition containing a microorganism or cell as described above and furthermore (a) an antimicrobial compound fused to a protein suitable for tumor therapy and/or elimination of metastatic tumors and/or (b) an antimicrobial compound fused to a detectable protein or a protein capable of inducing a detectable signal Anti-tumor therapy using such fusion proteins between antimicrobial compounds (e.g. peptides/proteins) and therapeutic proteins can be carried by firstly preparing fusion gene constructs encoding hybrid proteins between antimicrobial peptides/proteins and therapeutic proteins (see Table 5, above). After protein expression, the hybrid proteins are purified and ready for intravenous injection. Secondly, e.g. light-emitting bacteria, which can be recognized and bound by the antimicrobial peptides/proteins, are injected intravenously into the subject for tumor-specific accumulation. The specific binding of antimicrobial peptides/proteins to bacteria in the tumors helps to concentrate therapeutic proteins specifically in the tumors, which therefore may elicit tumor specific cytotoxicity.


Furthermore, the protein suitable for tumor therapy and/or elimination of metastatic tumors can be an enzyme converting an inactive substance (prodrug) administered to the organism into an active substance, i.e. toxin, which kills the tumor or metastasis (Gene-Directed Enzyme Prodrug Therapy (GDEPT)). The principle of GDEPT is that an enzyme/protein activates a systemically delivered nontoxic prodrug into active toxic drug, which is cytotoxic to tumors. To be specific, GDEPT is a two-step treatment. In the first step, the gene encoding a foreign enzyme is administered and directed to the tumor, where it may be expressed using specific transcriptional elements. In the second step, prodrugs are administered and activated by the foreign enzyme expressed at the tumor. If the enzyme/proteins are present only in the tumors, the active drugs will also be produced only in the tumors, and therefore exhibit cytotoxicity only toward the tumor cells, while at the same time, systemic toxicity is kept to a minimum. The gene encoding enzyme/protein is delivered specifically to the tumors using intravenously injected engineered bacteria, viruses, or (mammalian) cells according to the present invention. These genes can be under the control of either constitutive promoters or exogenously regulated inducible promoters additionally ensuring that the conversion of the prodrug into the toxin only occurs in the target tissue, i.e. tumor. Such promoters are e.g. IPTG-, antibiotic-, heat-, pH-, light-, metall-, aerobic-, host cell-, drug-, cell cycle- or tissue specific-inducible promoters.


For example, the enzyme can be glucuronidase converting the less toxic form of the chemoterapeutic agent gluctronyldoxorubicin into a more toxic form. Preferably, the gene encoding such an enzyme is directed by a promoter which is a constitutive or inducible promoter Further examples of enzyme/prodrug pairs which are useful in the pharmaceutical composition of the present invention are listed in Table 4, above.


Moreover, the delivery system of the present application even allows the application of compounds which could so far not be used for tumor therapy due to their high toxicity when systemicly applied. Such compounds include proteins inhibiting elongation factors, proteins binding to ribosomal subunits, proteins modifying nucleotides, nucleases, proteases or cytokines (e.g. IL-2, IL-12 etc.), since experimental data suggest that the local release of cytokines might have a positive effect on the immunosuppressive status of the tumor.


Furthermore, the microorganism or cell can contain a BAC (Bacterial Artificial Chromosome) or MAC (Mammalian Artificial Chromosome) encoding several or all proteins of a specific pathway, e.g. antiangiogenesis, apoptosis, wound-healing or anti-tumor growth. Additionally the cell can be a computer-designed cyber cell or cyber virus endocing these proteins in multiple combinations.


For administration, the microorganisms or cells of the present invention are preferably combined with suitable pharmaceutical carriers. Examples of suitable pharmaceutical carriers are well known in the art and include phosphate buffered saline solutions, water, emulsions, such as oil/water emuslions, various types of wetting agents, sterile solutions etc. Such carriers can be formulated by conventional methods and can be administered to the subject at a suitable dose. Administration of the microorganisms or cells may be effected by different ways, e.g. by intravenous, intraperitoneal, subcutaneous, intramuscular, topical or intradermal administration. The preferred route of administration is intravenous injection. The route of administration, of course, depends on the nature of the tumor and the kind of microorganisms or cells contained in the pharmaceutical composition. The dosage regimen will be determined by the attending physician based on various clinical factors. As is well known in the medical arts, dosages for any one patient depends on many factors, including the patient's size, body surface area, age, sex, the particular compound to be administered, time and route of administration, the kind, size (and localization of the tumor, general health and other drugs being adminstered concurrently.


Preferred tumors that can be treated with the microorganisms or cells of the present invention are bladder tumors, breast tumors, prostate tumors, brain tumors, colon tumors, lung tumors, ovarial carcinomas, and pancreatic carcinomas; liver tumors, skin tumors.




BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1: External imaging of GFP expression in subcutaneous C6 glioma tumors in nude mice


C6 glioma cells (5×105) were implanted subcutaneously into the right lateral thigh. At designated days after tumor cell implantation, the animals were infected intravenously with 1×108 pfu of rVV-ruc-gfp virus particles. GFP expression was monitored under a fluorescence stereomicroscope. Bright field (top), fluorescence (middle), and bright field, fluorescence overlay (bottom) images of subcutaneous glioma tumor are shown. GFP signal can be observed in tumors as small as 22 m3 in size (B-B″), or as old as 18 days (about 2500 mm3 in size) (A-A″). In older tumors, GFP expression was seen in “patch”-like patterns (indicated by arrows in A′). Marker gene expression in the tumor of the same animal can be monitored continuously 4 (C-C″), 7 (D-D″), and 14 (E-E″) days after intravenous viral injection. (Bars=5 mm.)



FIG. 2: Visualization of tumor angiogenesis


C6 glioma cells (5×105) were implanted subcutaneously into the right lateral thigh of nude mice. Ten days after tumor cell implantation, the animals were infected intravenously with 1×108 pfu of rVV-ruc-gfp. GFP expression was monitored 7 days post-viral injection. Vascularization at the surface of the subcutaneous C6 glioma tumor is shown against the bright green fluorescent background in the tumor following Vaccinia-mediated gene expressions. Bright field (A), fluorescence (B), and bright field, fluorescence overlay (C) images of subcutaneous glioma tumor are illustrated. (Bars=5 mm.)



FIG. 3: Expression of GFP in subcutaneous glioma tumor of the same animal


Five days after the subcutaneous implantation of 5×105 C6 glioma cells into the right lateral thigh, 108 of rWV-ruc-gfp virus particles were injected intravenously. Five days after viral injection, the animal was anesthetized and sacrificed for analysis of GFP expression under fluorescence microscope. The tumor was visualized externally (A-K), with the overlying skin reflected (B-B″), in cross section (C-C″), and in the amputated leg (D-D″). Bright field (A), fluorescence (B), and bright field, fluorescence overlay (C) images of subcutaneous glioma tumor are illustrated. The strongest GFP expressions are seen as patches located along the outer surface of the tumor on the right (double arrows in C-C″). Sharp difference of GFP expression in tumor tissue and in the normal muscle tissue (arrows in D-D″) is clearly visible. Asterisks mark the reflected skin (B-B″ and D-D″). (Bars=5 mm.)



FIG. 4: Bright field (A) and fluorescence (B) images of tumor cells expressing GFP


Frozen sections (30 μm thick) of the glioma tumor tissues were prepared from a nude mouse that has been intravenously injected with 1×108 of rVV-ruc-gfp virus particles. (Bars=50 Wm.)



FIG. 5: Low light image of the anesthetized nude mouse to indicate the location of Renilla luciferase-triggered light emission in the presence of intravenously injected substrate coelenterazine (5 μg ethanol solution)



FIG. 6: Monitoring tumor-specific viral infection based on GFP gene expression in a variety of tumor models including subcutaneous PC-3 human prostate tumor (A-A″) and MCF-7 human breast tumor (B-B″) in nude mice, intracranial C6 rat glioma tumor (C-C″, arrows indicate the location of the tumor) in Lewis rats, and MB-49 mouse bladder tumor (D-D″) in C57 mice. Animals were monitored 7 days after intravenous injections of 1×109 of rVV-ruc-gfp virus particles. Bright field (top), fluorescence (middle), and bright field, fluorescence overlay (bottom) images of the tumor are illustrated. (Bars=5 mm.)



FIG. 7 Monitoring Vaccinia-mediated GFP expression in a breast tumor model


Nude mouse carrying breast tumor was injected intravenously with 1×108 of rVV-ruc-gfp virus particles. Both the primary tumor (A-A″, B-B″, and C-C″) and the metastasized tumor (D-D″, E-E″, and F-F″) were visualized externally (A-A″ and D-D″), with overlying skin removed (B-B″ and E-E″), and when they were split open (C-C″ and F-F′) in a set of bright field, fluorescence (′) and bright field, fluorescence overlay (″) images. GFP expression in lung metastases in the same animal was also visualized (G-G″). (Bars=5 mm (A-A″ to F-F″), and Bars 1 mm (G-G″)



FIG. 8: Visualization of the clearance of light emitting bacteria from nude mice based on the detection of light emission under the low light imager


Nude mice were intravenously injected with 107 cells of attenuated S. typhimurium (A, B) and V. cholera (C, D). Both strains were transformed with pLITE201 carrying the lux operon. Photon collection was done 20 min (A, C) and 2 days (B, D) after bacterial injections.



FIG. 9: Homing of glioma gumors by attenuated bacteria


Nude mice with a C6 glioma tumor in the right hind leg were intravenously injected with 107 attenuated S. typhimurium (A-D) and with V. cholera (E-H) both transformed with pLITE201 plasmid DNA encoding the lux operon. Photon collection was carried out for one minute under the low light imager. Mice injected with S. typhimurium exhibited luminescence immediately through the whole animal (A). In contrast, luminescence in the mice injected with V. cholera was visible in the liver area (E). Two days after bacterial injection, both groups of mice demonstrated luminescence only in the tumor region (B, F). The light emission in the tumors infected with S. typhimurium slowly diminished four (C) and six (D) days after bacterial injection. Tumors infected with V. cholera showed enormously increased light emission four (G) and six (H) days after injection suggesting continued replication of the bacteria in the tumor tissues.



FIG. 10: Homing in of bacteria to breast tumors


Nude mice with breast tumors in the right breast pad were intravenously injected with 107 attenuated V. cholera (A-D) or with 107 B. coli (E-F) transformed with pLITE201 plasmid DNA encoding the lux operon. Photon collection was carried out for one minute under the low light imager. Twenty minutes after (bacterial delivery, luminescent V. cholera were observed in the liver (A). Forty-eight hours after injection, light emission was noted in the primary breast tumor in the right breast area and a metastatic tumor (arrow) in the left breast area, and in the incision wound (B). At five days, the light emission was visible only in the tumor regions, and not at the wound (C). Eight days after bacterial injection, the luminescent activity was abolished from the smaller tumor region but remained strong in the primary breast tumor (D). Homing in of E. coli to breast tumors in nude mice was also observed two days after intravenous bacterial injection (E: side view, F: ventral view).



FIG. 11: Homing in of bacteria to bladder tumors in C57 mice


C57 mice were intravenously injected with 107 attenuated V. cholera transformed with pLITE201 encoding the lux operon. Nine days after bacterial delivery, luminescence was noted in the bladder region of the whole animal (A). The animal was sacrificed and an abdominal incision was made to expose the bladder. The light emission was limited to the bladder region (B). With the removal of the bladder (C) from the mouse, the entire source of light emission was removed (D) as demonstrated by the overlay of the low light photon emission image over the photographic image of the excised bladder.



FIG. 12: Homing in of bacteria to brain glioma tumors in Lewis rats


Lewis rats were intravenously injected with 108 cells of attenuated V. cholera transformed with pLITE201 encoding the lux operon. Twenty-four hours after bacterial injection, faint luminescence was noted in the head region of the whole animal during visualization under the low light imager. The animals were sacrificed and their brain removed. Photon collection was carried out for one minute from rats with (A) and without (B) brain tumors. Strong luminescence was confirmed in regions of the brain of the rats with the brain tumor (marked with arrows in A). Luminescence was completely absent in the control brain tissues (B).



FIG. 13: Transformed human fibrosarcoma cells home in on subcutaneous glioma tumors in nude mice


Nude mice with subcutaneous glioma tumors were injected intravenously with 5×105 human fibrosarcoma cells, which were permanently transformed with retrovirus derived from pLEIN. Seven days post-injection, the animals were anesthetized and monitored under a fluorescent stereomicroscope. Fluorescent cells were noted only in the tumor region of the whole mice through the skin (A1-3). Upon exposure of the tumor tissues by reflection of the overlying skin (B1-3), and in cross sections of the tumors (C1-3), fluorescent patches were visible in distinct regions. Close examination of the organs of the mice showed the presence of small clusters of fluorescent cells in the lungs of the animals, demonstrating the affinity of the fibrosarcoma cells for the lungs in addition to the tumorous tissues (D1-3). (Bars=5 mm (A1-C3), =1 mm (D1-D3)).



FIG. 14: Homing of attenuated Listeria monocytogene into subcutaneous prostate tumors


Nude mice with subcutaneous human PC3 prostate tumor in the right hind leg were intravenously injected with 107 attenuated L. monocytogenes transformed with psod-gfp plasmid DNA carrying the gfp cDNA, GFP fluorescence was observed under a fluorescence stereo microscope. Twenty-seven hours after bacterial injection, GFP signal was detected only in the tumor region. The tumor is shown in a set of visible light (a), fluorescent (b), and visible and fluorescent light overlay (C) images. (Bars=5 mm.)




The present invention is explained by the examples.


EXAMPLE 1
Materials and Methods

(A) Bacterium strains. The bacterial strains used were attenuated Salmonella typhimurium (SL7207 hisG46, DEL407[aroA544::Tn10]), attenuated Vibrio cholerae (Bengal 2 Serotyp 0139, MO01 DattRS1), and attenuated Listeria monocytogenes (D2 mpl, actA, plcB) The bacterial strains were kindly provided by Prof. W. Göbel (University of Würzburg, Germany).


(B) Plasmid constructs. The plasmid pLITE201 containing the luxCDABE cassette was obtained from Dr. Marines, Biotech 24,1998, 56-58). The plasmid pXylA-dual with the operon sequence of gfp-cDNA, lux AB, lux CD, and lux E under the control of the Xylose promoter was kindly provided by Dr. Phil Hill (University of Nottingham, UK).


(C) Transformation of Bacteria

    • The bacteria were transformed by electroporation.


(D) Tumor Cell lines. The rat C6 nitrosourea-induced glioma cell line (ATCC, Rockille, MID) was cultured in RPMI-1640 medium (Cellgro, Mediatech, Inc., Herndon, Va.) supplemented with 10% (v/v) FBS and 1× penicillin/streptomycin. The human PC3 prostate carcinoma cell line (ATCC, Rockville, Md.) and the MB-49 mouse bladder tumor cells and rat 9L glioma cells were maintained in DMEM medium (Cellgro, Mediatech, Inc., Herndon, Va.) supplemented with L-glutamine and 10% (v/v) FBS. HT1080 fibrosarcoma cells (ATCC, Manassas, Va.) were cultured in F12 minimal essential media (Cellgro, Mediatech, Inc., Herndon, Va.) supplemented with 10% FBS and 1× penicillin/streptomycin. The MCF-7 human mammary carcinoma cell line (ATCC, Rockville, Md.), permanently transformed with a plasmid carrying pro-IGF-II cDNA (obtained from Dr. Daisy De Leon, Loma Linda University, Loma Linda, Calif.) was cultured in DMEM/F12 medium supplemented with 5% FBS and 560 μg/ml of G41B (Life Technologies, Grand Island, N.Y.).


(E) Production and propagation of retrovirus to generate a light-emitting stably transformed cell line. PT67 packing cells (Clontech, Palo Alto, Calif.) were cultured in DMEM medium supplemented with 10% (v/v) FBS. At 70% confluence, PT67 cells were transformed with pLEIN (Clontech, Palo Alto, Calif.) using calcium phosphate precipitation method (Profection Mammalian Transfection Systems, Promega, Madison, Wis.) for 12 hours. Fresh medium was replenished at this time. Retroviral supernatant collected from PT67 cells 48 hours post transformation was filtered through a 0.45 μm filter and was added to target HT1080 cells along with polybrene to a final concentration of 4 μg/ml. The medium was replaced after 24 hours and the cells were treated with G418 selection at 400 μg/ml and stepwise increased to 1200 μg/ml.


(F) Propagation of recombinant Vaccinia virus. Vaccinia virus Lister strain (LIVP) was used as a wild type virus. Recombinant Vaccinia virus rVV-ruc-gfp was constructed by inserting, via homologous recombination, the ruc-qfp-cassette (Wang et al., Proc. Biolumin. Chemilumin. 9, 1996, 419-422) into the Vaccinia virus genome. The virus was amplified in CV-1 cells by addition of virus particles at a multiplicity of infection (MOI) of 0. 1 pfu/cell to CV-1 cell monolayers followed by incubation at 37° C. for 1 h with brief agitation every 10 min. At this time, the supernatant fluid with virus particles was removed, and the cell monolayers were washed once with serum free medium. Complete growth medium was then added and the cells were incubated at 37° C. rVV-ruc-gfp virions propagated in CV-1 cells were purified through a sucrose gradient. A plaque assay was used 72 h after infection to determine the titer of recombinant virus by staining the cells with 50% crystal violet solution in ethanol.


(G) Generation of mice carrying tumor implants. Five- to six-week-old male BALB/c athymic nu/nu mice (25-30 g in body weight) and. Lewis rats (250-300 g in body weight) were purchased from Harlan (Frederick, Md.). C57BL/6J Min/+ mice were obtained from Jackson Laboratories (Bar Harbor, Me.), Min (multiple intestinal neoplasia) is an autosomal dominant trait involving a nonsense mutation in codon 850 of the murine Apc gene, which renders these animals susceptible to spontaneous intestinal adenoma formation.


To obtain tumors in nude mice, C6 glioma cells were grown, harvested and the cell number was determined by the Trypan Blue exclusion method. Disinfectant was applied to the skin surface, then approximately 5×105 cells were suspended in 100 μl of phosphate buffered saline (PBS) and injected subcutaneously into the right lateral thigh of each mouse. Tumor growth was monitored by recording the size of the tumor with a digital caliper. Tumor volume (mm3) was estimated by the formula (L×H×W)/2, where L is the length, W is the width, and H is the height of the tumor in mm.


Intracerebral glioma tumors were generated by injecting C6 glioma cells into the head of rats. Prior to injection, rats were anesthetized with sodium pentobarbital (Nembutal® Sodium solution, Abbot Laboratories, North Chicago, Ill.; 60 mg/kg body weight). A midline scalp incision (0.5-1 cm) was made, the skin was retracted, and a 1 mm burr hole was made in the skull at a location 2 mm to the left and 2.5 mm posterior to the brigma. Tumor cells were pipetted into an insulin syringe, which was fitted with a 29-gauge needle and mounted in a stereotactic holder. The needle was inserted vertically through the burr hole to a depth of 3 mm. After injection into the brain of 5×105 C6 cells in a 10 μl volume, the needle was kept in place for 15 sec and then withdrawn. The skin incision was closed with surgical clips. Mice bearing subcutaneous prostate tumors were generated over a period of one month following subcutaneous implantation of 3×106 PC3 human prostate cells.


MB-49 mouse bladder tumor cells were implanted in the C57 mouse bladder to produce animals with bladder tumors. To generate animals with breast cancer (Tian and DeLeon, submitted for publication), female nude mice were first implanted with 0.72 mg/90 day-release 17β-estradiol pellets (Innovative Research, Rockville, Md.) in the skin to facilitate breast tumor development and metastasis. One day after estrogen pellet implantation, 1×106 MCF-7 human breast carcinoma cells transformed with pro-IGF-II (Dull et al., Nature 310 (1984), 777-781) were implanted in the mammary fat pad For orthotopic transplants, tumors developed from implanted cells were resected and minced into 1-mm3 cubes for tissue transplantation into the mammary fat pad.


(H) Assay of Renilla luciferase in live animals. Mice were anesthetized with Nembutal (60 mg/kg body weight) before every Renilla luciferase assay. Renilla luciferase activities were determined after intravenous injection of a mixture of 5 μl of coelenterazine (0.5 μg/μl diluted ethanol solution) and 95 μl of luciferase assay buffer (0.5 M NaCl; 1 mM EDTA; and 0.1 M potassium phosphate, pH 7.4). Whole live animals were then imaged in a dark box using the Hamamatsu ARGUS100 low light video camera, and the images were recorded using Image Pro Plus 3.1 software (Media Cybernetics, Silver Spring, Md.). The pseudocolored photon emission image was superimposed onto the gray scale image of the animal in order to precisely locate the site of light emission.


(I) Detection of luminescence and fluorescence. Immediately before imaging, mice and rats were anesthetized with Nembutal® (60 mg/kg body weight). The animals were placed inside the dark box for photon counting and recording superimposed images (ARGUS 100, Hamamatsu, Hamamatsu, Japan). Photon collection was for one minute from ventral and dorsal views of the animals. A light image was then recorded and the low light image was then superimposed over the light image to record the location of luminescent activity.


Imaging of GFP expression in tumors of live animals was performed using a Leica MZ8 stereo fluorescence microscope equipped with a mercury lamp power supply and a GFP filter (excitation at 470 nm). Images were captured using a SONY DKC-5000 3CCD digital photo camera.


(J) Histology of tumor tissues. Under anesthesia, the animals were euthanized with an overdose of Nembutalg. The tissues of interest were removed, embedded in Tissue-Tek OCT compound (Miles Scientific, Naperville, Ill.) and immediately frozen in liquid nitrogen without fixation. Frozen sections were cut at −20° C. using a Reichert-Jung Cryocut 1800 cryostat. GFP fluorescence of the tissues was monitored under a Leica fluorescence microscope and the images were recorded using Photoshop software.


EXAMPLE 2
Results Obtained by Intravenous Injection of Recombinant Vaccinia Virus rVV-ruc-gfp into Mice
(A) Monitoring of Virus-Mediated Marker Gene Expression in Immunodeeicient Mice

Vaccinia virus (1×108 pfu) carrying the Renilla luciferase—GFP fusion expression cassette (rVV-ruc-gfp) was introduced intravenously into nude mice with no tumors. The animals were observed once every 3 days over a two-week time period under the low-light imager to monitor luciferase catalyzed light emission immediately after intravenous injection of coelenterazine, and under a fluorescence microscope to visualize GFP expression. Neither apparent luminescence nor green fluorescence was detected in the animals when imaged externally, except at certain locations that had small skin lesions. Such luminescence and fluorescence signals disappeared after a few days once the lesions had healed. Animals were sacrificed one week and two weeks after viral infection, and their organs were removed and examined for the presence of luminescence and GFP fluorescence signals. One week after viral injection, no luminescence or green fluorescence could be detected in brain, liver, lung, spleen, kidney or testis. These results indicated that the rVV-ruc-gfp virus did not show organ specificity after injection and that the virus seemed to be cleared from the animal by the immune system soon after systemic delivery via the bloodstream.


(B) Visualization of Vaccinia Virus-Mediated Marker Gene Expression in Glioma Tumors of Live Nude Mice

The distribution of injected Vaccinia virus in nude mice bearing subcutaneously implanted C6 glioma tumors was examined. Nude mice with tumors approximately 500 mm3 in size were injected intravenously with 1×108 pfu of the rVV-ruc-gfp virus. Seven days after virus injection, the animals were monitored for GFP expression under a fluorescence microscope to determine the presence of viral infection and multiplication in the tumors, which had grown to approximately 2500 mm3 in size. Surprisingly, green fluorescence was detected only in the tumor regions in live animals. Seven days after viral injection, the GFP fluorescence was very intensely localized in a patch-like pattern restricted to the tumor region (FIG. 1A-A″). These patches, often seen at the end of blood vessel branches, may have indicated local viral infection of tumor cells that surround the leaky terminals of capillary vessels. During real-time observation of the same tumors, the GFP signal from the center of these patches started to disappear, and new green fluorescent centers appeared in the form of rings at the periphery of the fading patches. The new sites of intense GFP fluorescence may have resulted from progression of the viral infection to nearby cells within the tumor during tumor growth and expansion. After careful examination of the mice, with the exception of the tumor region, no detectable green fluorescence was seen elsewhere on the body surface or in the dissected organs. This experiment clearly showed that a mature solid tumor could be easily localized by the labeled Vaccinia virus, based on light-emission, and it also demonstrated the affinity of virus particles for the tumor tissue.


To determine whether tumor size and vascularization are decisive factors for viral retention in tumors, nude mice were intravenously injected with 1×108 rVV-ruc-gfp Vaccinia virus particles one day after subcutaneous C6 cell implantation. Surprisingly, 4 days after viral injection GFP expression was seen in 5-day-old C6 tumors that had a volume of about 25 mm3 (FIG. 1B-B″). Examination of labeled Vaccinia virus tumor targeting by visualization of GFP expression in implanted tumors younger than 5 days was not feasible in live mice, since sufficient levels of marker gene expression required approximately 4 days to allow detection under a fluorescence microscope.


The finding that injection of the rVV-ruc-gfp Vaccinia virus into the bloodstream of the host resulted in GFP expression and accumulation in tumors suitable for non-invasive tumor detection allowed us to follow the entry and replication process of this virus in the same animal in real time (FIG. 1 C-C″, D-D″ and E-E″). A continuously increasing level of GFP fluorescence was observed in the same animal throughout 20 days following viral injection, which was the time scheduled before sacrificing the animals. Such an increase in detectable fluorescence was indicative of a very strong viral replication in the tumor tissue, the latter appearing to function as a protective immunoprivileged environment for viral replication. The viral replication in the tumors was verified by determining the viral titer and light emission of the isolated viral particles in cell cultures. Interestingly, the location of blood vessels and the neovascularization within the periphery of the enlarging tumor were readily visible and confirmed by external visualization against a bright green fluorescent background (FIGS. 1A-A″, D-D″, E-E″ and FIG. 2).


To determine the location of viral infection within the tumors, the animals were sacrificed and the skin over the tumor was carefully reflected to expose the tumor. In the exposed tumor, GFP fluorescence was found to be concentrated exclusively in the tumor tissue (FIGS. 3B-B″ and D-D″). The non-tumorous thigh muscles did not show any fluorescence of viral infection, as indicated by arrows in FIGS. 3D-D″. The skin overlying the tumor was also non-fluorescent (indicated by asterisks in FIGS. 3B-B″ and D-D″). Cross sections of the tumor, however, revealed that strong green fluorescent regions were mostly found as patches in the periphery of the tumor (double arrows in FIGS. 3C-C″) where the actively dividing tumor cells are presumably located.


To further examine the pattern of viral infection in C6 glioma tumors based on GFP expression, the tumor tissues were sectioned for microscopic analysis under the fluorescence microscope. Comparative analysis of various tissue sections revealed that GFP fluorescence was present in large clusters of cells within the tumor (FIG. 4), but no fluorescence was visible in normal tissues such as the heart, lung, liver, spleen, and kidney.


In addition to GFF, the recombinant rVV-ruc-gfp virus carried a second marker gene, which encoded the Renilla luciferase in the form of a fusion protein with GFP. Therefore we were able to directly superimpose the site of GFP fluorescence with light emission from Renilla luciferase in the tumors. Immediately after coelenterazine (substrate for Renilla luciferase) was delivered by intravenous injection, a very strong luciferase activity was recorded only in the tumor region under a low light video camera (FIG. 5). By lowering the sensitivity of the low light video camera to avoid saturation of light detection, we were able to identify the Renilla luciferase gene expression in localized patches in the periphery of the tumor. These patch-like patterns precisely correlated with the GFP signals.


(C) Affinity of Vaccinia Virus Delivered to the Bloodstream for Different Tumors Implanted into Animals

To determine whether the attraction of the Vaccinia virus was limited to glioma tumors or whether this attraction could be observed in other tumors, recombinant Vaccinia virus was recombinantly introduced into mice that carried different types of implanted tumors. One of these tumor models was a nude mouse with implanted subcutaneous PC-3 human prostate carcinoma. Although the PC3 implants from which tumors developed grew at a much slower rate than the implanted subcutaneous glioma tumors, these tumors showed the same dynamics with regards to Vaccinia virus infection when identical titers (1×108) were injected intravenously (FIGS. 6A-A″). Similar to our findings with glioia tumors, GFP expression was initially detected 4 days after virus injection, and the fluorescence lasted throughout the 3-week observation period.


Female nude mice with established breast tumors were also used for labeled Vaccinia injections. These breast tumors were allowed to grow for 6 months after the animals received implants of MCF-7 human breast carcinoma cells transformed with pro-IGF-11 cDNA. At the time of Vaccinia virus injection, the tumors had reached maximum growth and the tumor volume (about 400-500 mm3) did not change significantly during the experimental period. Similar to previous experiments, 6 days after intravenous delivery of 1×108 rVV-ruc-gfp virus particles, strong GFP expression was observed in the breast tumor region (FIGS. 6B-B″, FIGS. 7A-A″ and B-B″) and nowhere else in the body.


Examination of cross sections of virus-infected breast tumors revealed luminescent “islands” throughout the tumors without any indication of central or peripheral preference of infection (FIGS. 7C-C″). The MCF-7 tumor cells used in these breast tumor models are known to metastasize and in addition to the primary solid tumor, a smaller metastasized tumor found on the left side of the body showed GFP fluorescence (FIG. 7 D-D″, E-E″, and F-F″). Excised lung tissues were also examined for detection of metastases. Metastasized tumors as small as 0.5 mm in diameter on the surface of the lung were positive for GFP fluorescence (FIG. 7G-G″). The presence of a strong Renilla luciferase-mediated light emission confirmed the expression of the luciferase-GFP fusion protein in these breast tumors but nowhere else in the body when the substrate coelenterazine was injected intravenously into the live animals. These experiments showed that intravenously delivered Vaccinia virus particles were selectively accumulated to and replicated in primary and metastasized breast tumors in nude mice, likely as a result of the immunocompromised state of the tumor microenvironment.


To determine whether virus particles could move out of tumors and re-enter the circulation, we injected C6 glioma cells into the thigh of mice to form a second tumor in animals already carrying a breast tumor infected with labeled Vaccinia virus. If the virus particles were released from the tumor to re-enter the circulation in significant numbers, they would be able to colonize the newly implanted glioma tumor. Monitoring of these second tumors showed that no GFP signal was visible in the new glioma tumor 7 and 14 days after implantation of the glioma cells. To demonstrate that the newly implanted glioma tumors could be targeted by labeled Vaccinia virus, a second dose of rVV-ruc-gfp virus (1×108 pfu) was intravenously injected. Five days later, tumor-specific GFP expression was detected in the newly formed glioma tumor in addition to GFP expression seen in the original breast tumor. These findings suggested that the virus particles in infected tumors were either not released back into the circulation at all, or were not released in sufficient numbers to infect and replicate in a second tumor.


Two additional tumor models, including Lewis rats with intracranial C6 rat glioma tumors and C57 mice with ME-49 mouse bladder tumors in the bladder, were used for Vaccinia injections. To determine whether tumor-affinity of virus particles is a phenomenon limited to tumors in nude mice with a diminished T-lymphocyte function or whether it is a general protective property of tumors that may be demonstrated also in immunocompetent animals, Lewis rats with intracranial C6 rat glioma tumors and C57 mice with MB-49 mouse bladder tumors in the bladder were used. A total of 5×105 C6 glioma cells in a 100 μl volume were stereotactically implanted in the brains of 2 of 4 immunocompetent Lewis rats, and the tumors were allowed to grow for 5 days. The other 2 rats were injected intracranially with phosphate-buffered saline to serve as controls. On day six, all 4 rats were intravenously injected with rVV-ruc-gfp virus particles via the femoral vein. Five days after virus injection, all 4 animals were sacrificed, and their brains were carefully excised for analysis by fluorescence microscopy. GFP expression was detected in the brains with implanted intracranial tumors (FIG. 6C-C″) while no GFP expression was seen in the control brains. In parallel experiments, C57 mice, with or without bladder tumors, were divided into two groups. One group was injected intravenously with rVV-ruc-gfp Vaccinia virus (1×108 pfu) and the other with saline solution as control. Five days after virus injection, the animals were sacrificed and examined under the fluorescence microscope GFP expression was observed in the bladder tumor region in C 57 mice but not in control mice (FIG. 6D-D″).


Taken together, these experiments show that Vaccinia virus particles were selectively accumulated and retained in a variety of tumors, probably protected by the tumor microenvironment, and that they were not able to survive in the non-tumorous tissues of immunocompromised as well as immunocompetent animals. The tumor-targeting process by intravenously injected Vaccinia virus carrying the light-emitting dual marker gene demonstrated the ability of the Vaccinia virus system to detect primary and metastatic tumors in live animals.


EXAMPLE 3
Results of Intravenous Injection of Bacterial and Mammalian Light-Emitting Cells into Mice
(A) Visualization of Light Emitting Bacteria present in Whole Animals after Intravenous Injection

To determine the fate of intravenously injected luminescent bacteria in the animals, 107 bacteria carrying the pLITE201 plasmid in 50 μl were injected into the left femoral vein of mice under anesthesia. Following closure of the incision with sutures, the mice were monitored under the low light imager (ARGUS 100 Camera System, Hamamatsu, Hamamatsu, Japan) in real time and photons were collected for one minute. The imaging was repeated in two-day time intervals to determine the presence of light emission from a given animal. It was found that the distribution pattern of light emission following an intravenous injection of bacteria into mice was characteristic of the bacterial strains used. Injection of the attenuated V. cholera into the bloodstream resulted in light emission localized in the liver immediately. Injection of S. typhimurium, however, was widely disseminated throughout the body of the animal suggesting a difference in the interaction with host cell system (FIG. 8A-8D). Imaging the same animals 24 and 48 hours post-infection showed that all of the detectable light emission from the earlier time diminished rapidly and was eliminated completely from the injected animal. These findings suggest that light emitting bacteria injected into the bloodstream via the femoral vein are cleared. This process was confirmed by photon emission analysis of excised organs, which were found to lack light emission. Similar data were obtained in immunocompetent mice and rats suggesting that the removal of bacteria from the blood is efficient in both systems.


(B) Bacteria Home in to Glioma Tumors in Nude Mice

To determine if bacteria preferentially colonize tumorous tissues, nude mice with ten-day-old tumors (about 500 mm3) in the right hind leg were injected intravenously via the femoral vein with 107 S. typhimurium or 107 V. cholera in a 50 l volume of bacterial suspension. Following injection, the incision wounds were sutured and the animals were monitored for six days under the low light imager. At each observation time point, photons were collected for exactly one minute. In mice injected with S. typhimurium, luminescent bacteria were disseminated throughout the whole body of the animal similar to the findings in the non-tumorous mice (FIG. 9A). Nude mice injected with V. cholera, demonstrated luminescent activity only in the liver region during the early observation period (FIG. 9E). Regardless of the bacterial strain injected, two days after injection, luminescent activity was observed only in the tumor region (FIGS. 9B and 9F). Monitoring of the mice under the low light imager on days four and six post-injection showed decreased amounts of detectable luminescence in the tumors of animals injected with S. typhimurium (FIGS. 9C and 9D. This finding was in marked contrast with the findings in the tumors of mice injected with V. cholera, which demonstrated not only survival but also propagation of the bacteria in the tumor mass with a dramatic increase in light emission (FIGS. 9G and 9H).


Nude mice bearing subcutaneous human PC3 human prostate tumors in the right hind leg were intravenously injected with 107 attenuated L. monocytogenes transformed with psod-gfp plasmid DNA carrying the gfp cDNA. GFP fluorescence was observed under a fluorescence stereomicroscope. Twenty-seven hours after bacterial injection, GFP signal was detected only in the tumor region (FIG. 10). No GFP signal was observed in the rest of the animal.


(C) Determination of Minimum Size and Age of Glioma Tumors Necessary for Bacterial Infection

The purpose of this experiment was to determine whether the size of the tumor has any influence on its ability to be colonized by bacteria. Tumors were induced in the right hind leg of nude mice by subcutaneous injection of glioma cells as described. On days 0, 2, 4, 6, 8, and 10 of tumor induction, attenuated S. typhimurium and V. cholera with the pLITE201 plasmid were injected intravenously through the femoral vein Presence of luminescent bacteria in the tumor was determined by photon collection for exactly one minute under the low light imager two and four days post-infection. The tumor volume was also determined by measuring the dimensions with a digital caliper. The earliest time-point when luminescent activity was noted in the tumors was on day eight after tumor induction. Corresponding tumor volumes were approximately 200 mm3.


(D) Bacteria Home in to Breast Tumors of Nude Mice

In order to determine whether bacterial colonization of tumors is limited to glioma cells or whether this is a general phenomenon observed with all tumors, female nude mice bearing tumors in the right breast pad were intravenously injected with 107 V. cholera in a 50 μl volume of bacterial suspension. The animals were monitored within the first 10 minutes after inoculation under the low light imager for one minute and demonstrated the typical luminescent pattern in the liver region (FIG. 11A). Two days later, while the liver had become clear of luminescent bacteria, the breast tumor was colonized by the labeled V. cholera. In addition to the main tumor, a metastatic tumor in the left breast demonstrated luminescent activity (FIG. 11B). On day five, the animals had cleared the bacteria that colonized the incision wound, however, the tumors remained luminescent (FIG. 11C). FIG. 11D shows the continued colonization and propagation of the bacteria in the main tumor, while the metastatic, smaller tumor had become cleared. Luminescent activity continued for over 45 days in the right breast tumor. Similar experiments were conducted using E. coli to demonstrate that homing in of tumors by bacteria is not strain dependent (FIGS. 11E and 11F)


To determine whether the bacteria from the tumor enter the blood circulation in significant quantities to colonize other sites, a second tumor (C6 glioma) was induced in these animals in the right hind leg. The tumor was allowed to grow for 10 days. No luminescent activity was observed in the glioma tumor demonstrating the absence of a significant bacteria that would cause colonization of this tumor. However, when the animal was rechallenged with 107 attenuated V. cholera intravenously, the leg tumor showed strong luminescent activity.


The findings of these experiments demonstrate that larger tumors retain bacteria more effectively over time. Furthermore, the bacteria within the tumors do not escape into the blood in sufficient quantities to infect susceptible sites such as other tumors.


(E) Bacteria Home in to Bladder Tumors in Immunocompetent Mice

C57 mice were intravenously injected with 107 attenuated V. cholera transformed with pLITE201 encoding the lux operon. On day nine after bacterial delivery, luminescent activity was recorded by photon collection for one minute under the low light imager. Light emission way noted in the bladder region of the whole animal (FIG. 12A). The animals were sacrificed and an abdominal incision was made to expose the bladder. Luminescent activity was positively confirmed to be limited to the bladder (FIG. 12B). Upon removal of the bladder from the mice, luminescent activity was no longer visible anywhere in the animals, however, the excised bladders continued to demonstrate light emission (FIG. 12C). Based on the results of this experiment, bacteria can target tumors in immunocompetent as well as nude mice. Furthermore, the bacteria can also target smaller tumors.


(F) Bacteria Home in to Glioma Tumors in the Brain of Rats

Lewis rats with glioma tumors in the brain were intravenously injected with 108 attenuated V. cholera with the pLITE201 plasmid through the left femoral vein to determine if bacteria can cross the blood-brain barrier and target tumors in immunocompetent animals. The whole animals were monitored for one minute under the low light imager the following day and low levels of luminescent activity was observed through the skull. The rats were sacrificed and the brain tissue was removed in one piece in order to further evaluate the exact location of the luminescent bacteria. Visualization of the excised brain under the imager demonstrated strong luminescent activity in specific regions of the brain (FIG. 13A) Similar imaging of control rats without brains tumors, which were intravenously injected with the labeled bacteria, demonstrated absence of any luminescent activity (FIG. 13B).


(G) Transformed Human Fibrosarcoma Cells Home in to Subcutaneous Glioma Tumors in Nude Mice

Nude mice with human breast tumors were injected intravenously with 5×105 human fibrosarcoma cells, which were permanently transformed with retrovirus derived from pLEIN. Seven days post-injection, the animals were anesthetized with Nembutal, and monitored under a fluorescent stereomicroscope. Fluorescent cells were noted only in the tumor region of the whole mice through the skin (FIG. 14A1-3). Upon exposure of the tumor tissues by reflection of the overlying skin (FIG. 14B1-3), and in cross sections of the tumors (FIG. 14C1-3), fluorescent patches were visible in distinct, regions. Close examination of the organs of the mice showed the presence of small clusters of fluorescent cells in the lungs of the animals, demonstrating the affinity of the fibrosarcoma cells for the lungs in addition to the tumorous tissue.


EXAMPLE 4
Construction of Bacterial Plasmid Vectors that Carry the Light-Emitting Protein Encoding Expression Cassettes and the Therapeutic Gene Expression Constructs in cis Configuration
(A) Rationale

Using the light-emitting expression systems described above, tumors could be imaged based on light emission for up to 45 days in animals. These findings suggest a remarkable plasmid DNA stability in bacteria in the absence of selection. Therefore, by placing the therapeutic gene cassette in cis configuration with the light-emitting protein expression cassette on the same replicon, light emission can be used as an indicator of therapeutic construct presence and stability. In contrast to light-emitting proteins, the therapeutic proteins, endostatin and Pseudomonas exotoxin/TGF alpha fusion protein, are required to be secreted from the bacteria into the medium or into the cytosol of tumor cells for inhibition of tumor growth. To achieve protein secretion from the extracellularly replicating E. coli cells into the tumor, two constructs with different signal sequences can be designed. For secretion of endostatin, the ompF signal sequence can be placed upstream of the coding sequence of endostatin, which facilitates the secretion into the periplasmic space. To release the endostatin into the medium, an additional protein, the PAS protein, needs to be coexpressed with endostatin. PAS has been shown to cause membrane leakiness and the release of secreted proteins into the medium (Tokugawa et al., J. Biotechnol. 37 (1994), 33; Tokugawa et al., J. Biotechnol. 35 (1994), 69). The second construct for the secretion of Pseudomonas exotoxin/TGF alpha fusion protein from E. coli has the OmpA signal sequence upstream of the fusion gene and the release from the periplasmic space into the medium is facilitated by sequences present in domain II of the exotoxin (Chaudhary et al. PNAS 85 (1988), 2939; Kondo et al., J. Biol. Chem. 263 (1988), 9470; Kihara and Pastan, Bioconj. Chem. 5 (1994), 532). To promote secretion of endostatin and Pseudomonas exotoxin/TGF alpha fusion protein from L. monocytogenes, the signal sequence of listeriolysin (LLO) (Mengaud et al., Infect. Immun. 56 (1988), 766) can be placed upstream of each coding sequence.


For regulation of endostatin and Pseudomonas exotoxin/TGF alpha fusion protein expression levels in bacteria, vectors can be generated where the therapeutic protein encoding genes are under the control of the T7 promoter or the Pspac synthetic promoter (Freitag and Jacobs, Infect. Immun. 67 (1999), 1844). Without exogenous induction, the levels of the therapeutic proteins are low in E. coli and in L. monocytogenes. The minimal levels of therapeutic proteins in bacteria provide greater safety following intravenous injection of the engineered bacteria. In the following, the construction of six plasmid DNAs for constitutive and regulated expression of endostatin and Pseudomonas exotoxin/TGF alpha fusion protein in E. coli and L. monocytogenes is described. All plasmids to be transferred into E. coli will carry the constitutively expressed bacterial lux operon, and all the plasmids to be transferred into L. monocytogenes will carry the constitutively expressed sod-gfp cassette. Plasmids BSPT#1-ESi and BSPT#2-Pti are able to replicate in E. coli only, and plasmids BSPT*3, #4, #5, and #6 replicate in E. Coli and L. monocytogenes,


(B) Construction of Plasmid Vectors for Protein Expression and Secretion from E. coli

The construction of the endostatin secretion vector to be used in E. coli is as follows. The coding sequence of human endostatin (591 bp) will be amplified by PCR from the plasmid pES3 with the introduction of the required restriction sites on both ends, followed by ligation into a pBluescript (Clontech Corp., USA) cloning vector to generate pBlue-ES. The ompF signal sequence (Nagahari et al., EMBO J. 4 (1985), 3589) is amplified with Taq polymerase and inserted upstream in frame with the endostatin sequence to generate pBlue-ompF/ES. The expression cassette driven by the T7 promoter will be excised, and inserted into the pLITE201 vector described in Example 1(B), above, carrying the luxCDABE cassette, to produce the plasmid pLITE-ompF/ES. The sequence encoding the PAS factor (a 76 amino acid polypeptide) will be amplified from the chromosomal DNA of Vibrio alginolyticus (formerly named Achromobacter iophagus) (NCIB 11038) with Taq polymerase using the primers 5′-GGGAAAGACATGAAACGCTTA3-′ and 5′-AAACAACGAGTGAATTAGCGCT-3′, and inserted into the multiple cloning sites of pCR-Blunt (Clontech Corp., USA) to create the expression cassette under the control of the lac promoter. The resulting plasmid will be named pCR-PAS. The lac promoter linked to the pas gene will be excised from pCR-PAS and inserted into pLITEompF/ES to yield the final plasmid BSPT*1-ESI.


Plasmid pVC85 (Kondo et al., 1998, J. Biol. Chem. 263: 9470-9475) contains a T7 promoter, followed by an ompA signal sequence, and a sequence encoding domain II and III of Pseudomonas exotoxin (PE40). The DNA sequence encoding PE40 will be excised with restriction enzymes and replaced with a fragment of PE37/TGF alpha (Pseudomonas exotoxin A 280-613/TGF alpha) obtained from the plasmid CT4 (Kihara & Pastan, 1994, Bioconjug. Chem. 5: 532-538) to create the plasmid pVC85-PE37/TGF alpha. The expression cassette of ompAPE37/TGF alpha linked to the T7 promoter will be excised and inserted into pLITE201 to yield the final plasmid BSPT#2-PTI.


(C) Construction of Plasmid Vectors for Protein Expression and Secretion from L. monocytogenes

Genes encoding endostatin or PE37/TGF alpha will be inserted downstream of the listeriolysin (LLO) signal sequence in the plasmid pCHHI to generate pCHHI-ES and pCCHI-PE37/TGF alpha. Constitutive expression of the therapeutic proteins will be obtained by linking the above secretion cassettes to the listeriolysin promoter obtained from the pCHHI vector. The sod-gfp expression cassette, excised from the plasmid psod-gfp (Geötz et al. PNAS in press.) will be inserted into pCHHI-ES to generate BSPT#3-ESc, and into pCCHI-PE37/TGF alpha to generate BSPT#4-PTc. For the expression of the therapeutic proteins under the control of an IPTG inducible promoter, the listeriolysin promoter in BSPT#3-ESc and BSPT#4-PTc will be replaced with the Pspac promoter from the plasmid Pspac (Yansura and Henner, PNAS USA 81 (1984), 439) to generate BSPT#5-ESi and BSPT#6-PTi. Pspac is a hybrid promoter consisting of the Bacillus subtilis bacteriophage SPO-1 promoter and the lac operator. IPTG-induced GFP expression from the Pspac promoter has been documented in L. monocytogenes in the cytosol of mammalian cells.


EXAMPLE 5
Demonstration of the Expression of Luciferase and GFP in Bacteria and Verification of the Secretion of Endostatin and Recombinant Toxin/TGF Alpha Fusion Protein and their Function in Cell Culture Assays

To be able to detect the presence of E. coli and L. monocytogenes in tumor tissues in live animals, the levels of the constitutively expressed luciferase and GFP in bacteria need to be adequate. Therefore, after transformation of recipient E. coli or L. monocytogenes with the constructs described in Example 4, the colonies with the highest luciferase light emission or Gi fluorescence will be selected. In addition to characterizing light emission from each selected colony before intravenous injection, the ability of the selected transformants to secret endostatin and Pseudomonas exotoxin/TGF alpha fusion protein into the medium needs to be confirmed. The presence of endostatin and Pseudomonas exotoxin/TGF alpha fusion protein synthesized within E. coli and L. monocytogenes will be determined by extracting these proteins from the cell pellet. The secreted proteins in the medium will be concentrated and analyzed by gel separation and the quantity will be determined by Western blotting. It is imperative to determine the percentage of the newly synthesized proteins expressed from each plasmid construct in either E. coli or L. monocytogenes that is present in the medium. It is also essential to confirm, in addition to constitutive expression of endostatin and Pseudomonas exotoxin/TGF alpha fusion protein, that expression can be induced in E. coli and in L. monocytogenes upon the addition of IPTG to the bacterial, culture medium. For the design of future tumor therapy protocols, the relative amounts of protein secreted by the constitutive expression system needs to be compared to the induced expression levels for a defined time period first in bacterial cultures. It is equally essential to determine that both proteins when synthesized in E. coli and L. monocytogenes are biologically active if generated from the proposed constructs. Both proteins were synthesized previously in E. coli and were shown to be active.


The results of the experiments described below should confirm whether endostatin is successfully secreted from E. coli using the OmpF signal peptide in combination with PAS pore forming protein expression. These experiments will also show if the PE40/TGF alpha and PE37/TGF alpha fusion proteins are secreted from bacteria using the OmpA signal peptide in combination with domain II of PE. Further, the listeriolysin signal peptide may also facilitate the secretion of endostatin and the chimeric toxin/TGF alpha fusion protein into the medium as well as into the cytosol of infected tumor cells. Using the endothelial cell migration inhibition assay and the protein synthesis inhibition assay, it can be expected to determine that both proteins secreted into the medium are biologically active. The presence and quantities of these proteins may be regulated by replacing the constitutive promoters with promoters that can be induced by IPTG.


In addition to the secretion system described below, alternative secretion systems such as the E. coli HlyBD-dependent secretion pathway (Schlor et al., Mol. Gen. Genet. 256 (1997), 306), may be useful. Alternative secretion signals from other gram positive bacteria, such as the Bacillus sp. endoxylanase signal peptide (Choi et al., Appl. Microbiol. Biotechnol. 53 (20001, 640; Jeong and Lee, Biotechnol. Bioeng. 67 (2000), 398) can be introduced.


(A) Confirmation of Endostatin and Pseudomonas exotoxin/TGF Alpha Fusion Protein Secretion from Bacteria into Growth Medium


E. coli strains (DH5α and BL21(λDE3) will be transformed with BSPT#1-ESi and BSPT#2-PTi plasmid DNA. L. monocytogenes strain EGDA2 will be transformed with plasmids BSPT#3-ESc, BSPT#4-PTc, BSPT#5-ESi, and BSPT#6-PTi individually. After plating on appropriate antibiotic-containing plates, individual colonies will be selected from each transformation mixture. These colonies will be screened under a low light imager and fluorescence microscope for luciferase and GFP expression, respectively. Three colonies with the most intense light emission from each transformation batch will be chosen for further studies. To verify the secretion of endostatin and Pseudomas exotoxin/TGF alpha fusion protein from each selected transformant, the cells will be grown in minimal medium to log phase. After centrifuging down the bacteria, the supernatants will be passed through a 0.45-μm-pore-size filter, and the bacterium-free medium will be used for precipitation of the secreted proteins. The precipitates will be collected by centrifugation. Pellets will be washed, dried, and re-suspended in sample buffer for protein gel separation. Proteins from aliquots corresponding to 10 μl of bacterial culture will be compared to proteins from 200 μl of culture supernatant after separation in a 10% SDS-polyacrylamide gel. Western blot analysis will be performed using polyclonal antibody against endostatin (following the antibody production protocol described by Timpl, Methods Enzymol. 82 (1982), 472) and monoclonal antibody against TGF alpha (Oncogene Research Products, Cambridge, Mass., USA). The optimal growth conditions will be established for secretion by sampling the growth medium at different times during growth. A similar method has been used previously to analyze secreted proteins in Salmonella typhimurium culture supernatant (Kaniga et al., J. Bacteriol. 177 (1995), 0.3965). By use of these methods, the amount of secreted proteins in the bacterial culture medium generated by each of the constructs without induction will be established. To estimate the increase in the amount of secreted proteins in the medium, IPTG-dependent promoter activation experiments will be carried out by adding IPTG to the bacterial culture in log phase for 3 to 6 hours, and the secreted proteins will be assayed as above.


(B) Verification of the Biological Activity of Endostatin Secreted by E. coli and L. monocytogenes using a Migration Inhibition Assay

It has been shown that endostatin inhibits vascular endothelial growth factor (VEGF)-induced human umbilical vein endothelial cell (HUVEC) migration. Thus, the biological activity of endostatin secreted by bacteria can be tested using the HUVEC migration assay provided by Cascade Biologics, Portland, Oreg. The inhibition of cell migration will be assessed in 48-well chemotaxis chambers (Neuro Probe, Galthersburgs, Md.) (Polyerine et al., Methods Enzymol. 198 (1991), 440). Bacterium-free supernatant from each secretion construct will be added to HUVECs for preincubation for 30 min. After incubation, the HUVECs will be placed in the upper chamber. The migration of HUVECs into the lower chamber induced by VEGF165 (R&D Systems, Minneapolis, NIN) will be quantified by microscopic analysis. The concentration of functional endostatin in the medium will be directly proportional to the degree of inhibition of HUVEC migration.


(C) Testing the Cytotoxic Activity of Secreted Recombinant PE Toxin in Tumor Cell Cultures

The inhibitory activity of the chimeric toxin in mammalian cells will be measured based on inhibition of de novo protein synthesis by inactivating EF-2 (Carroll and Collier, J. Biol. Chem. 262 (1987), 8707). Aliquots of bacterium-free supernatants obtained from the expression of various recombinant PE secretion constructs in E. coli and in L. monocytogenes will be added to the C6 glioma cells or to HCTI 16 colon carcinoma cells. Following treatment with medium, the mammalian cells will be pulsed with [3H]-leucine, and the incorporation will be determined in the protein fraction. To determine the presence of secreted chimeric toxin proteins in L. monocytogenes-infected mammalian cells, the bacteria will be eliminated from the medium by gentamicin treatment. The mammalian cells containing L. monocytogenes in the cytosol will be lysed, and the released bacteria removed from the lysate by filtration. The mammalian cell lysate containing the secreted chimeric toxins will be assayed in protein synthesis inhibition experiments. The inhibition of [3H]-leucine incorporation in tumor cell culture will be directly proportional to the amount of the biologically active chimeric toxin protein in the medium and cell lysate.


EXAMPLE 6
Determination of the Entry, Localization and Distribution of Intravenously Injected Bacteria in Tumors of Live Animals
(A) Rationale

Since only a small number of intravenously injected bacteria escape the immune system by entering the tumor, their immediate localization is not possible due to limited light emission in live animals. Their location can only be verified by sectioning the tumor to identify the early centers of light emission. Looking at sections at a later time point, bacteria can be seen throughout the entire tumor due to rapid replication. To determine whether one or multiple bacteria enter through the same site, red fluorescent protein can be used to label the extracellularly replicating E. coli and green fluorescent protein for the intracellularly replicating L. monocytogenes. By visualizing the distribution of the red and green fluorescence in tissue sections, the entry sites as well as replication and localization of E. coli and L. monocytogenes can be determined individually and simultaneously in the central or peripheral regions of the tumor. It can be expected that the patterns of entry and distribution obtained in implanted tumors mimic those of spontaneous tumors, accordingly, the bacterium-based diagnosis and protein therapy will become a valid approach.


With the experiments described in section (B), below, the entry, replication, and distribution of light-emitting bacteria in spontaneous tumors can be compared to the distribution patterns in implanted tumors. Further, double-labeling experiments will allow the operator to precisely locate the extracellularly replicating E. coli and the intracellularly replicating L. monocytogenes in the same tumor sections. Lastly, it can be determined (subsequent to a five-day bacterial colonization) whether bacteria are distributed evenly in the tumors or preferential localization occurs in the periphery of the tumor or in the necrotic center. A possible reduction in bacterial entry into spontaneously occurring tumors due to the immunocompetence of these animals can be overcome by increasing the number of intravenously injected bacteria.


(B) Intravenous Injection of E. coli Expressing Red Fluorescent Protein and L. monocytogenes Expressing Green Fluorescent Protein into Nude Mice and into Rodents with Implanted and Spontaneous Tumors


E. coli (DH5α) carrying the DsRed (Matz et al., Nat. Biotech. 17 (1999), 969) expression cassette under the control of a constitutive promoter are used in this experiment, L. monocytogenes EGD strain derivatives with in-frame deletion in each of the virulence genes were individually labeled with the green fluorescent protein cassette driven by the constitutive SOD promoter.


The localization and intratumoral distribution of bacteria will first be studied in nude mice with implanted C6 glioma or HCT116 colon carcinoma tumors. C6 glioma or HCT116 colon carcinoma cells (5×105 in 100 μl) will be subcutaneously injected into the right hind leg of the animals. Twelve days after tumor cell injection, the animals will be anesthetized, and the left femoral vein surgically exposed. Light-emitting bacteria (1×106 cells re-suspended in 50 μl-of saline) will be intravenously injected, and the wound incision will be closed with sutures. Tumors will be measured three times a week using a caliper. Tumor volume will be calculated as follows: small diameter×large diameter×height/2.


The localization of bacteria in the tumor, based on GEP or RFP, will also be analyzed using cryosectioned tumor tissues. A reliable morphological and histological preservation, and reproducible GFP or RFP detection may be obtained using frozen sections after a slow tissue freezing protocol (Shariatmadari et al., Biotechniques 30 (2001), 1282). Briefly, tumor tissues will be removed from the sacrificed animals to a Petri dish containing PBS and dissected into the desired size. The samples will be mixed for 2 h in 4% paraformaldehyde (PFA) in PBS at room temperature. They will be washed once with PBS, and embedded in Tissue-Tek at room temperature, and then kept in the dark at 4° C. for 24 h and slowly frozen at −70° C. Before sectioning, the tissue will be kept at −20° C. for 30 min. Then, 10- to 50-μm-thick sections will be cut with a Reichert-Jung Cryocut 1800 cryostat and collected on poly-L-lysine (1%)-treated microscope slides. During sectioning, the material will be kept at room temperature to avoid several freezing and thawing cycles. Finally, the sections will be rinsed in PBS and mounted in PBS and kept in the dark at 4° C.


To monitor the entry of light emitting E. coli and L. monocytogenes from the blood stream into the tumor, 27 nude mice will be injected with C6 tumor cells, and 27 nude mice with HCT116 colon carcinoma cells. Twelve days after tumor development, 9 animals from the C6 group and 9 from the HCT116 group will receive an intravenous injection of E. coli with the RFP construct. Another 9 animals from each group will receive an intravenous injection of L. monocytogenes transformed with the GFP cDNA construct. The third group of 9 animals from each tumor model will receive both E. coli and L. monocytogenes (1×106 cells of each). Five hours, 25 hours, and 5 days after injection, three animals of each treatment group will be sacrificed, their tumors excised, and processed individually as described in the above cryosectioning protocol. After freezing, each tumor will be cut into two halves. One half of the tumor will be used for preparing thick sections (60-75 μm), which will be analyzed under a fluorescence stereomicroscope to observe the distribution of bacteria in the sections of tumors obtained from each time point of the experiment. The regions of interest will be identified, thin sectioned, prepared, and analyzed with laser scanning cytometry and under the confocal microscope followed by image reconstruction.


In parallel experiments, animals with spontaneous tumors, as listed in Table 6, will be obtained and used in intravenous injection experiments with E. coli carrying the bacterial lux operon. Two animals of each tumor model will be used, and the luciferase light emission monitored daily under the low light imager. It is expected that the spontaneously occurring tumors can be imaged similarly to the implanted tumors based on bacterial luciferase expression. Two of the spontaneous tumor models, mice with adenocarcinoma of the large intestine and mice with adenocarcinoma of the mammary tissue, will be used for bacterial localization experiments following intravenous injection of E. coli expressing RFP and L. monocytogenes expressing GFP as described above. It can be expected that these experiments will emphasize the significance of the bacterium-based diagnosis and protein therapy system.

TABLE 6Spontaneous tumor animal modelsAnimalTumorspeciesStrain namedescriptionSourceReferenceMouse129/Sv-SpontaneousJacksonZhu et al.,Madh3tmIparadenocarcinomaLaboratoriesCell 94ofBar Harbor,(1988), 703largeMEintestineMouseFVB/N-SpontaneousJacksonZhang etTgN(UPII-carcinomaLaboratoriesal., CancerSV40T)29Xrwof bladderBar Harbor,Res. 59withME(1999),metastasis3512to theliverMouseFVB-SpontaneousJacksonGuy et al.,neuN(N#202)adenocarcinomaLaboratoriesPNAS USAofBar Harbor,89 (1992),mammaryME10578tissueRatF344/CrCrlBRSpontaneousCharlesHosokawa etcarcinomaRiveral.,ofLaboratories,Toxicol.PatpituitaryWilmington,hol. 21MA(1993), 283


EXAMPLE 7
Verification of Bacterium-Mediated Tumor Targeting and Bacterium-Secreted Protein Therapy in Rodents with Implanted or Spontaneous Tumors
(A) Rationale

As shown in the previous examples, intravenous injection of light-emitting bacteria results in entry, replication, and accumulation only in the tumor regions in animals. This process can be monitored by imaging of light emission in tumors. Placing the endostatin and chimeric toxin expressing gene cassettes in cis configuration with a light-emitting gene cassette provides an indirect detection system in vivo for their temporal and spacial delivery via bacteria


The endostatin and chimeric toxin gene cassettes are linked to signal peptide encoding sequences, which facilitate the secretion of these proteins into the extracellular space in the tumor or into the cytosol of infected tumor cells. Both proteins secreted from bacteria into the extracellular space of the tumor are expected to function similarly to directly injected purified proteins. Both proteins secreted from L. monocytogenes into the cytosol of the infected tumor cells will resemble the viral delivery system reported earlier for endostatin. The bacterial systems can be used as a constitutive secretion system or as an exogenously added IPTG-activatable secretion system in the tumor. By regulating the expression levels of the therapeutic proteins in bacteria that colonize the tumor, the secreted amount of proteins inhibiting tumor growth can be determined. Without the addition of IPTG, the inhibitory protein secretion from the intravenously injected bacteria will be kept at minimum while in blood circulation. This will provide added safety to the recipient tumorous animals during delivery of bacteria. Using the BSPT system, the onset and duration of the therapy can be controlled by the addition of IPTG. Upon completion of the treatment, the bacterial delivery system can be eliminated by administration of antibiotics, similar to treating a bacterial infection.


(B) Determination of the Effect Of endostatin and Pseudomonas exotoxin/TGF Alpha Fusion Protein Secreted by E. coli and L. monocytogenes on Tumor Growth in Animals with Implanted Tumors

The inhibitory effect of endostatin and the cytotoxicity of the chimeric toxin secreted by E. coli and L. monocytogenes in tumors will be determined as follows. Thirty-five nude mice bearing 10-day-old C6 tumors will be injected with bacterial constructs as follows: (a) Five mice with E. coli engineered to secrete endostatin; (b) Five mice with E. coli engineered to secrete chimeric toxin; (c) Five mice with L. monocytogenes engineered to secrete endostatin; (d) Five mice with L., nionocytogeties engineered to secrete chimeric toxin; (e) Five mice with E. coli secreting endostatin and chimeric toxin; (f) control group: five mice injected with E. coli expressing bacterial luciferase alone, and five mice with L. monocytogenes expressing GFP. At the time of bacteria injection, each tumor volume will be determined. Three days after injection, the replication of bacteria in the tumors will be monitored under a low light imager or under a fluorescence stereomicroscope. The light emission and the tumor volume will be measured daily up to 20 days after bacterial injection. Ten days after injection, one animal from each group will be sacrificed and the levels of the secreted proteins present in the tumor tissue will be analyzed using Western blot analysis. These experiments will result in inhibition of tumor growth in endostatin treated animals or a more dramatic tumor regression in animals treated with chimeric toxin proteins. The tumor growth in control animals is not expected to be affected by the bacteria alone.


In a follow-up experiment, mice with spontaneous adenocarcinoma of mammary tissue (strain FVB-neuN(N#202), Table 6) will be used to study the effect of secreted proteins on tumor growth. An experimental scheme identical to that described for the C6 tumor analysis will be used. At the completion of tumor therapy, the presence of endostatin or chimeric toxin in the tumor tissue will be determined by Western blot analysis. An identical experimental design will be used to assay the effect of IPTG-induction of endostatin and chimeric toxin production in bacteria in C6 tumors as well as in the spontaneously occurring breast tumor mouse model. It is expected that multiple IPTG induction of protein expression in bacteria might be required for successful tumor therapy.


At any stage of tumor treatment, it may be required to remove the light emitting and therapeutic gene containing bacteria from the animal. To carry out this experiment, mice with 12-day-old C6 tumors will be intravenously injected with E. coli expressing the bacterial luciferase. Three days after injection, antibiotic therapy will be initiated by intraperitoneal administration of gentamicin (5 mg/kg body weight) twice daily, or the newly discovered clinafloxacin (CL960) (Nichterlein et al., Zentralbl. Bakteriol. 286 (1997), 401) This treatment will be performed for 5 days, and the effect of antibiotics on the bacteria will be monitored by imaging light emission from the animals daily.


By completing the above experiments, it is expected that endostatin and chimeric toxin proteins secreted into the tumors will cause the inhibition of tumor growth and measurable tumor regression. It is anticipated that tumor regression will be achieved in both groups of rodents with implanted tumors and with spontaneously occurring tumors. Experiments with simultaneous application of secreted endostatin and chimeric toxin proteins in tumor treatment may give the most promising results. The removal of the engineered bacteria from the tumor by administration of antibiotics is an added safety measure of the bacterium-secreted protein therapy (BSPT) of the present invention.

Claims
  • 1. A method for tumor imaging, monitoring therapeutic tumor treatment or therapeutically treating a tumor, the method comprising: preparing a composition comprising a microorganism or cell containing a DNA sequence encoding a detectable protein or a protein capable of inducing a detectable signal; and administering said composition to a subject in need thereof, wherein said microorganism or cell is capable of accumulating in the tumor and is recognized by the immune system of the patient.
  • 2. The method according to claim 1, wherein said microorganism or cell furthermore contains (a) DNA sequence(s) encoding (a) protein(s) suitable for tumor therapy and/or elimination of metastatic tumors.
  • 3. The method according to claim 1 or 2, wherein said protein capable of inducing a detectable signal is a luminescent and/or fluorescent protein.
  • 4. The method according to claim 2, wherein said protein is a cell receptor capable of binding a ligand.
  • 5. The method according to claim 4, wherein said composition further comprises a ligand which is a radionuclide-labelled ligand.
  • 6. The method according to claim 4, wherein said composition further comprises a ligand which is a paramagnetic- or superparamagnetic-metal-labelled ligand.
  • 7. The method according to claim 4, wherein said composition further comprises a ligand which is coupled to a toxin.
  • 8. The method according to claim 4, wherein said composition further comprises a ligand which is coupled to a therapeutic protein.
  • 9. The method according to claim 8, wherein said ligand is an antibody.
  • 10. The method according to claim 1, wherein said protein capable of inducing a detectable signal is a protein inducing a signal detectable by magnetic resonance imaging (MRI) or capable of binding a contrasting agent, chromophore or a ligand required for visualization of tissues.
  • 11. The method according to, wherein said microorganism is a bacterium or a virus.
  • 12. The method according to claim 11, wherein said bacterium is a magnetic bacterium.
  • 13. The method according to claim 11, wherein said virus is Vaccinia virus.
  • 14. The method according to claim 11, wherein said bacterium is attenuated Vibrio cholerae.
  • 15. The method according to claim 1, wherein said cell is a mammalian cell.
  • 16. The method according to claim 3, wherein said luminescent or fluorescent protein is luciferase, RFP or GFP.
  • 17. The method according to claim 16, wherein said microorganism or cell additionally contains a gene encoding a substrate for a luciferase.
  • 18. The method according to anyone of claims 1 to 17, wherein tumor-imaging or monitoring is carried out by MRI.
  • 19. The method according to claim 1 wherein said composition further comprises (a) an antimicrobial compound fused to a protein suitable for tumor therapy and/or elimination of metastatic tumors and/or (b) an antimicrobial compound fused to a detectable protein or a protein capable of inducing a detectable signal.
  • 20. The method according to claim 1, wherein said protein suitable for therapeutically treating a tumor is endostatin or recombinant chimeric toxin PE37/transforming growth factor alpha (TGF-alpha).
  • 21. The method according to claim 1, wherein said protein suitable for therapeutically treating a tumor is a protein capable of converting a nontoxic prodrug into a toxic drug which is cytotoxic to a tumor.
  • 22. The method according to claim 1, wherein said DNA sequence(s) is (are) on a BAC, MAC, cyber cell or cyber virus.
  • 23. The method according to claim 1, wherein said tumor is a bladder tumor, breast tumor, prostate tumor, glioma tumor, liver tumor, skin tumor, colon tumor, lung tumor, ovarial carcinoma or pancreatic carcinoma.
Priority Claims (2)
Number Date Country Kind
011184173 Jul 2001 EP regional
011259116 Oct 2001 EP regional
PCT Information
Filing Document Filing Date Country Kind
PCT/IB02/04767 7/31/2002 WO