Microorganisms and processes for producing L-glutamine

Information

  • Patent Grant
  • 7192760
  • Patent Number
    7,192,760
  • Date Filed
    Friday, July 15, 2005
    18 years ago
  • Date Issued
    Tuesday, March 20, 2007
    17 years ago
Abstract
The present invention provides novel microorganisms, Brevibacterium lactofermentum CJJA21 (Accession No. KCCM-10222), which is resistant to sodium azide, and Brevibacterium lactofermentum CJJA22 (Accession No. KCCM-10223), which is resistant to α-aminobutyric acid. These microorganisms are capable of producing L-glutamine in a higher yield than the known strains. The present invention further provides processes for producing L-glutamine using the microorganisms of the invention.
Description
BACKGROUND

L-glutamine is an amino acid widely used as medicines such as therapeutic agents of gastroenterologic disorders, potentiators of liver and brain functions, immuno-enhancement agents, and therapeutic agents of gastric ulcer and alcoholism, etc., cosmetics such as moisturizers, etc., and health foods such as sports nutrients and nutrients for patients, etc.


According to the prior art, L-glutamine was obtained from sulfaguanidine-resistant strains (Japanese Patent, Laid-Open No. Sho53-17675), azaserine-resistant strains (Japanese Patent Laid-Open No. Sho55-148094) penicillin-sensitive strains (Japanese Patent Laid-Open No. Hei04-088994), tyrosine-glutamic acid (tyr-glu)-resistant strains (Japanese Patent Laid-Open No. Hei02-186994) and the like.


SUMMARY OF THE INVENTION

The present invention relates to novel microorganisms producing L-glutamine and to processes for producing L-glutamine using the same. More specifically, the invention relates to Brevibacterium lactofermentum CJJA21 (KCCM-10222) resistant to sodium azide and Brevibacterium lactofermentum CJJA22 (KCCM-10223) resistant to D,L-α-amino-n-butyric acid: α-ABA), both of which are capable of producing L-glutamine in a higher yield than the known strains, and to processes for producing L-glutamine using the same.







DETAILED DESCRIPTION OF THE INVENTION

The present inventors performed extensive studies to develop novel strains, which are capable of producing L-glutamine in a high productivity. We contemplated that strains resistant to sodium azide, a respiratory inhibitor, or to α-aminobutyric acid, an analogue of an amino acid, isoleucine, would have the increased productivity of L-glutamine. Thus, we screened sodium azide or α-aminobutyric acid-resistant strains from an original strain Brevibacterium lactofermentum KFCC-10680 (Korean Patent Publication No. 91-7818). This strain was deposited as KFCC-10680 with the Korean Culture Center of Microorganisms on Oct. 8, 1989 for the purpose of patent procedures and described in Korean Patent No. 91-7818, issued on Oct. 2, 1991. As a result, we identified that the sodium azide resistant strain Brevibacterium lactofermentum CJJA21 strain KCCM-10222 or α-aminobutyric acid-resistant strain Brevibacterium lactofermentum CJJA21 strain KCCM-102232 produce L-glutamine in a higher yield than the known strains and thus, completes the present invention. The strains are high GC content, gram-negative cubacteria, which are nonsporeforming and are non-pathogenic. The strains are cysteine-demanding and aerobic, with an optimum temperature for cultivation of 30° C. and an optimum pH of 6.8.


The present invention provides microorganisms producing L-glutamine and processes for producing L-glutamine using the same. The microorganisms according to the present invention are Brevibacterium lactofermentum CJJA21 (KCCM-10222) having a resistance to sodium azide and Brevibacterium lactofermentum CJJA22 (KCCM-10223) having a resistance to α-aminobutyric acid, both of which produce L-glutamine in a high yield. Further, the processes for producing L-glutamine according to the present invention is characterized by the activation of Brevibacterium lactofermentum CJJA21 or Brevibacterium lactofermentum CJJA22 followed by the cultivation of the activated strains.


In the present invention, mutants were induced by the following methods. Brevibacterium lactofermentum KFCC-10680 was treated with N-methyl-N′-nitro-N-nitrosoguanidine (NTG), a conventional mutagen and then, spread on a minimal medium (Medium 1) containing 500 mg/l of sodium azide thereby to obtain strains having a resistance to 500 mg/l of sodium azide.


More specifically, Brevibacterium lactofermentum KFCC-10680, which had been previously activated by cultivation on an activation medium (Medium 2) for 16 hours, was cultivated for 14 hours on a seed medium (Medium 3) sterilized at 121° C. for 15 minutes. Then, 5 mL of the culture medium was washed with 100 mM citrate buffer and thereto was added NTG at a final concentration of 200 mg/l. After 20 minutes, the medium was washed with 100 mM phosphate buffer. The strains treated with NTG were spread on a minimal medium (Medium 1) and the death rate was measured. As a result, the death rate was 85%.


In order to obtain sodium azide-resistant mutants, the NTG-treated strains were spread on a minimal medium (Medium 1) containing sodium azide at a final concentration of 500 mg/l and then, cultivated at 30° C. for 6 days to obtain sodium azide-resistant strains. The obtained resistant mutants were cultivated in a shaking Erlenmeyer flask containing a glutamine production medium (Medium 4) for 72 hours thereby to select a sodium azide-resistant strain producing L-glutamine in a 10% or more higher yield than the original strain, Brevibacterium lactofermentum KFCC-10680. The obtained strain was designated as CJJA21. Brevibacterium lactofermentum CJJA21 was deposited under the Budapest Treaty to the Korean Culture Center of Microorganisms whose address is Hongje-dong, Seodaemun-gu, Seoul, on Oct. 20, 2000, with the Accession No. KCCM-10222.


In addition, Brevibacterium lactofermentum KFCC-10680 was activated and cultivated in the substantially same manner as above. It was subsequently treated with NTG in the substantially same manner as above. In order to obtain α-aminobutyric acid-resistant mutants, the NTG treated strains were spread on a minimal medium (Medium 1) containing α-aminobutyric acid at a final concentration of 15 g/1 and then, cultivated at 30° C. for 6 days to obtain α-aminobutyric acid-resistant strains. The obtained resistant mutants were cultivated in a shaking Erlenmeyer flask containing a glutamine production medium (Medium 4) for 72 hours thereby to select a α-aminobutyric acid-resistant strain producing L-glutamine in a 10% or more higher yield than the original strain, Brevibacterium lactofermentum KFCC-10680. The obtained strain was designated as CJJA22. Brevibactertium lactofermentum CJJA22 was deposited under the Budapest Treaty to the Korean Culture Center of Microorganisms whose address is Hongje-dong, Seodaemun-gu, Seoul, on Oct. 20, 2000, with the Accession No. KCCM-10223.


Culture media employed in the present invention have the following compositions:


Medium 1: Minimal medium


Glucose 1.0%, Ammonium Sulfate ((NH4)2SO4) 0.4%, Magnesium Sulfate (MgSO4. 7H2O) 0.04%, Potassium Dihydrogen Phosphate (KH2PO4) 0.1%, Urea 0.1%, Thiamine HCl 0.0001%, Biotin 200 μg/l, Agar, pH 7.0


Medium 2: Activation medium


Beef extract 1%, Polypeptone 1%, Sodium Chloride (NaCl) 0.5%, Yeast Extract 0.5%, Agar 2%, pH 7.2


Medium 3: Seed medium


Glucose 5%, Bactgpeptone 1%, Sodium Chloride (NH4Cl) 0.25%, Yeast Extract 1%, Biotin 3 μg/l, Urea 0.4%, pH 7.0


Medium 4: Glutamine production medium


Glucose 4.0%, Ammonium Chloride (NH4Cl) 3.0%, Soy Protein Acid Hydrolyzate 0.3%, Calcium Carbonate (CaCO3) 5%, Calcium Chloride (CaCl2) 0.1%, Magnesium Sulfate (MgSO4.7H4O) 0.05%, Potassium Dihydrogen Phosphate (KH2PO4) 0.15%, Potassium Monohydrogen Phosphate (K2HPO4) 0.15%, Urea 0.3%, Thiamine, HCl 2 mg/l, Biotin 5 μg/l, Ferric Sulfate (FeSO4.7H2O) 20 mg/l, Manganese Sulfate (MnSO4H2O) 20 mg/l, Zinc Sulfate (ZnSO4.7H2O) 12 mg/l, pH 6.8.


Sodium azide-resistance of Brevibacterium lactofermentum CJJA21 is shown in the following Table 1-1.












TABLE 1-1









Sodium azide concentration (mg/l)
















Strain
0
100
200
300
500
800







KFCC-
+++
+
+






10680



CJJA21
+++
+++
+++
+++
++








+: growth,



−: no growth, cultivation at 30° C. for 6 days






α-Aminobutyric acid-resistance of Brevibacterium lactofermentum CJJA22 is shown in Table 1-2.












TABLE 1-2









α-aminobutyric acid concentration (g/l)














Strain
0
1
5
10
15
20





KFCC-10680
+++
++
+





CJJA21
+++
+++
+++
+++
++






+: growth,


−: no growth, cultivation at 30° C. for 6 days






According to the present invention, L-glutamine can be obtained in a higher yield than the prior art. In some embodiments of the invention, about 10% more L-glutamine, more preferably about 15% more L-glutamine is produced by microorganisms of the invention than by wild-type strains grown under the same conditions. This improvement is illustrated by, inter alia, Examples 1–4. The obtained L-glutamine is useful for medicines such as therapeutic agents of gastroenterologic disorders, potentiators of liver and brain functions, immuno-enhancement agents, therapeutic agents of gastric ulcer and alcoholism, etc., cosmetics such as moisturizers, etc., and health foods such as sports nutrients and nutrients for patients, etc.


EXAMPLES

This invention will be better understood from the following examples. However, one skilled in the art will readily appreciate the specific materials and results described are merely illustrative of, and are not intended to, nor should be intended to, limit the invention as described more fully in the claims which follows thereafter.


Example 1

Strain: Brevibacterium lactofermentum CJJA21 Strain KCCM-10222


Fermentation Medium: Glucose 4.0%, Ammonium Chloride (NH4Cl) 3.0%, Soy Protein Acid Hydrolyzate 0.3%, Calcium Carbonate (CaCO3) 5%, Calcium Chloride (CaCl2) 0.1%, Magnesium Sulfate (MgSO4.7H2O) 0.05%, Potassium Dihydrogen Phosphate (KH2PO4) 0.15%, Potassium Monohydrogen Phosphate (K2HPO4) 0.15%, Urea 0.3%, Thiamine, HCl 2 mg/l, Biotin 5 μg/l, Ferric Sulfate (FeSO4.7H2O) 20 mg/l, Manganese Sulfate (MnSO4.H2O) 20 mg/l, Zinc Sulfate (ZnSO4.7H2O) 12 mg/l, pH 6.8 (the same as Medium 4).


Fermentation procedure and result: To a shaking Erlenmeyer flask of 250 mL was injected 20 mL of the fermentation medium. The medium was sterilized at 121° C. for 15 minutes. Thereto was inoculated 1 loopfull of strains activated by the cultivation on an activation medium (Medium 2) at 30° C. for 16 hours and then, cultivated while shaking at 30° C. for 48 hours. The L-glutamine concentration of the fermented broth is shown in Table 2.












TABLE 2







KFCC-10680
CJJA21



(Original Strain)
(Variant)




















Concentration of
12.6
14.5



glutamine (g/l)










Example 2

Strain: Brevibacterium lactofermentum CJJA21 Strain KCCM-10222


Fermentation medium: Glucose 10%, Ammonium Chloride (NH4Cl) 4.5%, Soy Protein Acid Hydrolyzate 0.5%, Calcium Carbonate (CaCO3) 5%, Calcium Chloride (CaCl2) 0.1%, Magnesium Sulfate (MgSO4.7H2O) 0.05%, Potassium Dihydrogen Phosphate (KH2HPO4) 0.15%, Potassium Monohydrogen Phosphate (K2HPO4) 0.15%, Urea 0.3%, Thiamin (Thiamine.HCl) 2 mg/l, Biotin 5 μg/l, Ferric Sulfate (FeSO4.7H2O) 20 mg/l, Manganese Sulfate (MnSO4.H2O) 20 mg/l, Zinc Sulfate (ZnSO4.7H2O) 12 mg/l, pH 6.8.


Fermentation procedure and result: To a shaking Erlenmeyer flask of 250 mL was injected 20 mL of the fermentation medium. The medium was sterilized at 121° C. for 15 minutes. Thereto was inoculated 1 loopfull of strains activated by the cultivation on an activation medium (Medium 2) at 30° C. for 16 hours and then, cultivated while shaking at 30° C. for 72 hours. The L-glutamine concentration of the fermented broth is shown in Table 3.












TABLE 3







KFCC-10680
CJJA21



(Original Strain)
(Variant)




















Concentration of
31.5
37.1



glutamine (g/l)










As shown in Table 3, Brevibacterium lactofermentum CJJA21 of the present invention produced L-glutamine in a 10% or more higher yield than the original strain, Brevibacterium lactofermentum KFCC-10680.


Example 3


Brevibacterium lactofermentum CJJA22 strain KCCM-10223 was cultivated according to the substantially same method as in Example 1. The L-glutamine concentration of the fermented broth is shown in Table 4.












TABLE 4







K-FCC-10680
CJJA22



(Original Strain)
(Variant)




















Concentration of
12.4
14.1



glutamine (g/l)










Example 4


Brevibacterium lactofermentum CJJA22 strain KCCM-10223 was cultivated according to the substantially same method as in Example 2. The L-glutamine concentration of the fermented broth is shown in Table 5.












TABLE 5







KFCC-10680
CJJA22



(Original Strain)
(Variant)




















Concentration of
31.1
36.5



glutamine (g/l)









Claims
  • 1. Isolated Brevibacterium lactofermentum CJJA21 strain KCCM-10222.
  • 2. The isolated Brevibacterium lactofermentum CJJA21 strain of claim 1 wherein said strain is resistant to sodium azide.
  • 3. Isolated Brevibacterium lactofermentum CJJA22 strain KCCM-10223.
  • 4. The isolated Brevibacterium lactofermentum CJJA22 strain of claim 3 wherein said strain is resistant to α-aminobutyric acid.
Priority Claims (2)
Number Date Country Kind
2000-68284 Nov 2000 KR national
2000-68285 Nov 2000 KR national
CROSS-REFERENCE TO RELATED APPLICATION

This application is a continuation of application Ser. No. 10/198,274 filed Jul. 17, 2002, now U.S. Pat. No. 6,984,506 which in turn is a continuation application of International Application Ser. No. PCT/KR01/01952 filed Nov. 15, 2001 and published as WO 02/40643, which claims priority to Korean Application Ser. No. 2000/68284 and Korean Application Ser. No. 2000/68285, both filed Nov. 17, 2000. Said applications are included herein in their entirety by reference.

US Referenced Citations (8)
Number Name Date Kind
3886039 Yoshinaga et al. May 1975 A
4411991 Hirakawa et al. Oct 1983 A
5521074 Katsumata et al. May 1996 A
6962805 Asakura et al. Nov 2005 B2
6984506 Park et al. Jan 2006 B2
20020137150 Ohtaki et al. Sep 2002 A1
20030096380 Park et al. May 2003 A1
20040152175 Nakamura et al. Aug 2004 A1
Foreign Referenced Citations (9)
Number Date Country
0379903 Aug 1990 EP
53-17675 Dec 1972 JP
54-062388 May 1979 JP
55-148094 Nov 1980 JP
56164792 Dec 1981 JP
60248195 Dec 1985 JP
02-186994 Jul 1990 JP
04-088994 Mar 1992 JP
91-8127 May 1991 KR
Related Publications (1)
Number Date Country
20050250187 A1 Nov 2005 US
Continuations (2)
Number Date Country
Parent 10198274 Jul 2002 US
Child 11182446 US
Parent PCT/KR01/01952 Nov 2001 US
Child 10198274 US