Information
-
Patent Grant
-
6590988
-
Patent Number
6,590,988
-
Date Filed
Monday, March 12, 200123 years ago
-
Date Issued
Tuesday, July 8, 200321 years ago
-
Inventors
-
Original Assignees
-
Examiners
Agents
- Fulwider Patton Lee & Utecht, LLP
-
CPC
-
US Classifications
Field of Search
US
- 381 313
- 381 355
- 381 356
- 381 357
- 381 358
- 381 359
- 381 360
- 381 FOR 128
- 381 FOR 135
- 381 FOR 147
- 381 FOR 148
- 381 FOR 151
-
International Classifications
-
Abstract
There is provided a microphone apparatus with an adjusting mechanism that prevents wind noise generated at a sound absorbing hole from perceptively inputted in the structure having a microphone built-in at the back of a panel with a sound absorbing hole. A sound box is structured between a sound absorbing hole of a panel and a sound perceptible portion of a microphone, and a movable piece that slidably moves in the sound box is formed. A screw rod is annexed to the movable piece, and a disk screwed with the screw rod is restricted and interposed between a tubular portion, serving as an outer frame of the sound box, and a support portion formed at the lower portion. A part of the disk is exposed to the front surface side from a slit of the panel, and the disk is rotated to move the movable piece, whereby changing a resonant frequency of a ventilation space of the sound box and a ventilation cross.
Description
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a microphone apparatus, and more particularly to an acoustic structure, which is applied to a radio apparatus, a recording apparatus and the like in which a microphone is built in a microphone case or a main housing, for resolving the problem in which clarity of voice information to be absorbed is lost by a phenomenon in which transmitting voice with a strong sound pressure or under strong wind, wind noise or prosodic features of voices based on various kinds of languages and individual differences are generated.
2. Description of the Related Art
Conventionally, in a mobile-use radio apparatus, a microphone is built in a microphone case, which is cable-connected to a main body. In a handy-type transceiver, a microphone is built in a housing.
In accordance with miniaturization and supersensitization of the microphone, there has been recently adopted a system wherein a small sound absorbing hole is formed on a microphone case or a housing panel and the microphone is held on the back thereof and a sound perceptible portion of the microphone is fixed to the sound absorbing hole to be opposed thereto in this manner.
However, in the apparatuses used outdoors such as the radio receiver and a transceiver, the following problems occur.
More specifically, a speaker must put one's mouth close to the sound absorbing hole and utter a loud voice. Moreover, since a strong current of air occurs along the front surface of the panel under the strong wind, a space, which is formed between the absorbing hole of the panel and the sound perceptible portion, functions as a column of air or a sound box and a so-called “wind noise” is inputted into the microphone, and this makes it difficult for a receiver side to hear the transmitting sound.
Furthermore, a linear sound guide channel is formed between the absorbing hole of the panel and the sound perceptible portion. Accordingly, when the speaker puts one's mouth close to the sound absorbing hole as mentioned above, a strong sound pressure caused by breath directly acts on the sound perceptible portion even in an unvoiced state and a breath sound is voice-outputted, thereby grating on a receiver's ear.
As measures against these problems, the following systems are adopted:
(1) A system in which a portion close to the sound absorbing hole of the panel surface is louvered and the current of air is scattered to prevent occurrence of resonance;
(2) A system in which a sponge or like is interposed between the sound absorbing hole and the sound perceptible portion to eliminate an element such as a column of air or the sound box in order to prevent the sound pressure caused by breath from being directly applied to the sound perceptible portion; and
(3) The size of the sound absorbing hole is formed as small as possible, and the sound guide channel is bent at the right angle twice to be guided to the sound perceptible portion of the microphone.
However, since various resonant conditions and sound pressure propagation conditions may be established depending on the state of the sound pressure caused by the uttered sound close to the panel surface and the direction of the wind, univocal louver formation as adopted in measures (1) cannot solve the aforementioned problems. In addition, it is almost impossible to form an ideal louver.
Measures (2) are substantially useful for the wind noise, breath sound and the like. However, this reduces sensitivity as a sound absorbing system and particularly attenuates high frequency components of voice frequency considerably, thereby deteriorating the reception quality on the receiver side.
Measures (3) are useful for the breath sound since the reduction in the sound absorbing hole lowers the sound absorbing efficiency. However, there is no effect on the wind noise since the sound guide channel functions as an element of the column of air.
In the radio apparatus used outdoors, conditions such as the state of noise, direction of the wind, wind force, and the like are frequently changed, and a microphone use environment is variously considered. It is naturally desired that high-quality transmission system be always maintained in any condition.
In addition, the voices represent a great variety of prosodic features based on kinds of languages such English, French, and so on and individual differences in pronunciation characteristics. There has been experimentally known a problem in which the transmission system does not match a voice with a specific prosodic feature and particularly consonants, which belong to the high frequency, become unclear. Microphone apparatuses that are adaptable to such individual circumstances are most desirable.
The aforementioned problems and demands are not limited to the radio apparatuses, and the same can be applied to the portable recording apparatuses.
In consideration of the aforementioned problems, it is an object of the present invention to provide a microphone apparatus, which can easily adjust a transmission system from a panel front surface side in response to circumstances, whereby making it possible to input a high quality voice having neither wind noise nor a breath sound generated and to implement the input of clear voice against various kinds of prosodic features of the voice.
SUMMARY OF THE INVENTION
According to the first aspect of the present invention, there is provided a microphone apparatus, which guides a wave form to a perceptible portion of a microphone from a sound absorbing hole formed on a panel through a sound guide channel, comprising an adjusting mechanism, the adjusting mechanism having: a sound box interposed between two inner wall surfaces parallel to the panel in the sound guide channel; a movable piece moving in slidably contact with each inner wall surface as ensuring a ventilation channel between the sound absorbing hole and the sound perceptible portion in the interior of the sound box; a screw rod installed in a standing manner in a direction parallel to the panel with respect to the movable piece, the screw rod passed through a hole formed on a frame wall portion of the sound box to be projected outside; a screw hole formed at a central portion into which the screw rod is screwed; a disk having a part of a side peripheral surface exposed to the front surface from a window formed on the panel; and a support portion for restricting and supporting the disk to be prevented from being moved in a direction parallel to the panel.
According to this invention, the part of the disk exposed to the front surface of the panel is rotated by a manual operation with an operator's finger, whereby making it possible to move the movable piece, which is integral with the screw rod up and down in the sound box based on the pair of the disk restricted by the support portion and the screw rod.
As a result, the sound box functions as a variable sound filter, and the resonant frequency of the sound guide system is changed by the adaptable rotating operation of the disk, whereby making it possible to adjust the variable sound filter to prevent wind noise and the breath sound and the like from being inputted into the microphone.
Additionally, the adjustment of the variable sound filter can structure the optimal sound input system, which is adaptable to even various kinds of prosodic features of the voice.
According to the second aspect of the present invention, there is provided a microphone apparatus, which guides a wave form to a perceptible portion of a microphone from a sound absorbing hole formed on a panel through a sound guide channel, comprising an adjusting mechanism, the adjusting mechanism having: a sound box interposed, as a disk space, between two inner wall surfaces parallel to the panel in the sound guide channel, the sound box having holes, which are guided from the sound absorbing hole and the sound perceptible portion, formed at non-opposite positions with respect to each wall surface, and the sound box including a rim portion and a central plate portion wherein the rim portion has a plane shape formed by partially cutting a disk, a side portion and an outer peripheral surface being in slidably contact with each inner wall surface and inner peripheral surface and the central plate portion is formed at the inner side thereof; a rotation piece serving as an inner gear element with tooth formed on the inner peripheral side surface of the rim portion; a small gear, placed between the central plate portion of the rotation piece and the inner wall surface of the panel side, for meshing with an inner gear of the rim portion; and a round axial rod installed about the small gear in a standing manner to be passed through around hole formed on the panel.
According to this invention, the sound box functions as a variable sound filter similar to the first invention. However, the resonant frequency of the sound guide system is changed when the rotation piece is rotated in the sound box. In other words, the respective holes, which are guided from the sound absorbing hole and the sound perceptible portion, are formed at non-opposite positions, and the shape of the ventilation channel formed between the respective holes is changed by the angle of rotation of the rotation piece. As a result, the resonant frequency of the entirety of the sound guide system is changed, so as to obtain the similar effect.
The adjustment of the rotation piece is carried out by rotating the round axial rod passed through the round hole of the panel. Then, the rotation piece is rotated in the sound box based on the meshing relationship between the small gear, which rotates with the round axial rod, and the inner gear of the rotation piece side.
Additionally, as the rotating operation system of the round axial rod, there can be adopted a system in which a slit is formed on the tip end of the round axial rod and is rotated by a driver and the like and a system in which the round axial rod is projected from the panel surface and a knob is attached thereto and the knob is operated.
BRIEF DESCRIPTION OF THE DRAWINGS
These objects and other objects and advantages of the present invention will become more apparent upon reading of the following detailed description and the accompanying drawings in which:
FIG. 1
is a structural diagram of a microphone apparatus according to a first embodiment of the present invention, (A) is a cross-sectional view, (B) is a perspective cross-sectional view taken substantially along line Y—Y of (A), and (C) is a bottom view;
FIG. 2
is a front view seeing the microphone apparatus according to the first embodiment from a front surface side of a panel;
FIG. 3
is a cross-sectional view (corresponding to (B) of
FIG. 1
) showing an adjusting state of the microphone apparatus according to the embodiment of the present invention;
FIG. 4
is a structure diagram of a microphone apparatus according to a second embodiment of the present invention, (A) is a cross-sectional view, (B) is a perspective cross-sectional view taken substantially along line Y
1
—Y
1
of (A), (C) is a perspective cross-sectional view taken substantially along line Y
2
—Y
2
of (A), and (D) is a bottom view;
FIG. 5
is a front view seeing the microphone apparatus according to the second embodiment from a front surface side of a panel; and
FIG. 6
is a cross-sectional view (corresponding to (C) of
FIG. 4
) showing an adjusting state of the microphone apparatus according to the second embodiment of the present invention.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
Preferred embodiments of the microphone apparatus of the present invention will be specifically explained with reference to the drawings.
(First embodiment)
First,
FIG. 1
is a structure diagram illustrating a state in which a microphone is attached to a panel of a microphone case of a mobile-use radio apparatus, (A) is a cross-sectional view, (B) is a perspective cross-sectional view taken substantially along line Y—Y of (A), and (C) is a bottom view.
In each view, reference numeral
1
denotes a panel, and reference numeral
2
denotes a microphone. A sound absorbing hole
3
is formed on the panel and a tubular portion
4
with substantially a D-shaped cross section is integrally formed at a back surface side of the sound absorbing forming region. The microphone
2
is attached to the tubular portion
4
on the panel
1
through an adapter
5
.
A slot
4
a
with a fixed width is formed from a rear end side at a lower side wall portion of the tubular portion
4
of the panel
1
.
A support plate
6
is integrally provided at the lower side of the tubular portion
4
of the panel
1
to have a given distance. The support plate
6
is installed in a standing manner to be parallel with the tubular portion
4
, and has a slit
6
a
having the same width as that of the slit
4
a
of the tubular member
4
.
The adapter
5
comprises a tubular portion
5
a
into which the microphone
2
is internally fitted, a front surface plate
5
c
having a hole
5
b
formed at a position corresponding to a sound perceptible portion
2
a
of the microphone
2
, and a flange
5
d
formed on a rear surface of the tubular portion
5
a
to be directed outwardly. An inner peripheral side of the tubular portion
5
a
is circular in agreement with the tube-shape of the microphone
2
, and its outer peripheral side is substantially D-shaped in agreement with the internal shape of the tubular portion
4
of the panel
1
.
It is noted that the microphone
2
is attached to the tubular portion
5
a
of the adapter
5
by means such as pressing or adhering, and that the adapter
5
is attached to the tubular portion
4
of the panel
1
by means such as pressing or screwing.
In a state that the microphone
2
is attached to the tubular portion
4
of the panel through the adapter
5
, a sound box
7
is formed between the back surface of the panel
1
and the front surface plate
5
c
of the adapter
5
as shown in FIG.
1
(A). However, a movable piece
8
whose plane is substantially D-shaped is internally fitted/loaded into the sound box
7
.
The height of the plane shape of the movable piece
8
is smaller than that of the internal shape of the tubular portion
4
of the panel
1
. A rim portion
8
a
is formed along a peripheral edge corresponding to a D-shaped arc side. Only the rim portion
8
a
slidably contacts a frame wall surface of the sound box
7
, the back surface of the panel
1
and the front surface plate
5
c
of the adapter
5
, and other plane regions are formed to be thinner than the rim portion
8
a.
Moreover, strip felts
9
a
and
9
b
are adhered along the inner side of the rim portion
8
a
of the movable piece
8
. The strip felts
9
a
and
9
b
are designed to slide as generating suitable friction between the back surface of the panel
1
and the front surface plate
5
c
of the adapter
5
in a state that they are slightly compressed respectively.
Then, a screw rod
10
is screwed/fixed to the lower side of the movable piece
8
in a vertical direction. The screw rod
10
is passed through the inner side of the slit
6
a
formed in the support portion
6
through the slit
4
a
formed in the tubular portion
4
of the panel
1
. The screw rod
10
is screwed into a screw hole formed about a disk
11
, which is interposed between the tubular portion
4
of the panel
1
and the support portion
6
. In a state that the disk
11
is interposed therebetween as mentioned above, a part of the disk
11
is formed to have a radius such that the disk
11
projects to the front surface side of the panel
1
through a horizontal slit
12
, which is preformed in the panel
1
. The disk
11
also has an uneven portion of a triangular wave on the side peripheral surface thereof.
Accordingly, at the time of assembling the microphone apparatus, the screw rod
10
is screwed/fixed to the movable piece
8
and passed through the disk
11
in advance. Then, in a state that the screw rod
10
of the assembly is put into the inner side of the slit
4
a
of the tubular portion
4
of the panel
1
, the movable piece
8
is internally fitted into the tubular portion
4
and the disk
11
is placed into the slit
12
of the panel
1
. After that, the adapter
5
to which the microphone
2
is attached is internally fitted into the tubular portion
4
from the back, whereby completing the structure of FIG.
1
.
Seeing from the front surface side of the panel
1
, the part of the disk
11
is exposed from the slit
12
formed at the lower side of the sound absorbing hole
3
.
According to the structure of this microphone apparatus, when the exposed portion of the disk
11
is rotated from the front surface of the panel
1
by a manual operation with an operator's finger, movement of the disk
11
in up and down directions is restricted between the tubular
4
of the panel
1
and the support portion
6
. For this reason, the screw rod
10
and the movable piece
8
can be moved in up and down directions by the pair of the disk
11
and the screw rod
10
. This makes it possible to variably adjust the volume of a ventilation space formed between the sound absorbing hole
3
of the panel
1
and the sound perceptible portion
2
a
of the microphone
2
in the sound box
7
.
Namely, in the sound box
7
, the portion of the movable piece
8
other than the rim portion
8
a
and the strip felts
9
a
and
9
b
is concaved. For this reason, unless the movable piece
8
is moved up to the maximum upward limit, a ventilation channel can be ensured between the sound absorbing hole
3
and the sound perceptible portion
2
a.
However, when the movable piece
8
is moved in up and down directions by the rotating operation of the disk
11
, the volume of a cross section
13
of the ventilation channel and that of the ventilation space are changed, and this makes it possible to attenuate the sound pressure in a case where the sound pressure acting on the sound perceptible portion
2
a
is excessively high. This also makes it possible to adjust a resonant frequency of a ventilation system leading to the sound perceptible portion
2
a
from the sound absorbing hole
3
.
In addition, the movable piece
8
moves in a state that the rim portion
8
a
is in slidable contact with the back surface of the panel
1
and the front surface plate
5
c
of the adapter
5
, and suitable friction is imparted by the felts
9
a
and
9
b.
As a result, the movable piece
8
is not wobbled by a dimensional tolerance and the like in the sound box
7
, and is surely fixed at a position set by the adjustment of the disk
11
.
Accordingly, in a case where wind noise and breath sound are absorbed from the sound absorbing hole
3
of the panel
1
, it is possible to adjust and set these sounds not to be inputted into the microphone
2
by the rotating operation of the disk
11
. Even in a case where the transmitting voice is a foreign language having a special prosodic feature or a speaker's vocalization is inputted with an unclear voice based on the individual difference, flexible adjustment may be carried out to ensure sufficient clearness.
Then, this embodiment has explained the case that is applied to the microphone case of the mobile-use radio apparatus. This simply relates to the microphone mounting structure, and the entirety of the apparatus can be structured in an extremely compact form, so that this can be used as a mechanical structure of the voice input section in a transceiver, a cellular phone, and so on.
(Second embodiment)
As in the case of the first embodiment, this embodiment will explain, as an example, the microphone apparatus that relates to the microphone case of the radio apparatus.
In
FIG. 4
, (A) is a cross-sectional view of the microphone, (B) is a perspective cross-sectional view taken substantially along line Y
1
—Y
1
of (A), (C) is a perspective cross-sectional view taken substantially along line Y
2
—Y
2
of (A), and (D) is a bottom view.
In each view, reference numeral
21
denotes a panel,
22
: a microphone,
23
: a sound absorbing hole,
24
: a tubular portion, which is integral with the panel
21
, and
25
: an adapter for attaching the microphone
22
to the tubular portion.
Here, the tubular portion
24
is formed at the back surface side of the area where the sound absorbing hole
23
is formed in the panel
21
. The basic structure, in which the microphone
22
is attached to the tubular portion
24
through the adapter
25
, is the same as the first embodiment.
Additionally, this embodiment is different from the first embodiment in the points that the tubular portion
24
is cylindrically shaped and that no slit is formed therein.
Moreover, the first embodiment has been explained using the structure in which the sound absorbing hole
3
and the sound perceptible portion
2
a
of the microphone
2
are not on the same straight line as shown in FIGS.
1
(A) and
2
, but they may be on the same straight line. In the second embodiment, the point, in which the sound absorbing hole
23
and the sound perceptible portion
22
a
of the microphone
22
are not on the same straight line, is an indispensable condition. Namely, the second embodiment also differs from the first embodiment in view of this point. Moreover, in the second embodiment, the support portion
6
is not formed at the back surface of the panel
1
unlike in the first embodiment. Namely, the tubular portion
24
is merely integrally formed at the back surface of the panel
21
.
Similar to the first embodiment, according to this embodiment, when the microphone
22
is attached to the tubular portion
24
, a sound box
27
is formed between the back surface of the panel
21
and a front surface plate
25
c
of the adapter
25
. However, a rotation piece
28
, which has a plane shaped by partially cutting the disk, is internally fitted into the sound box
27
.
This rotation piece
28
has the plane shape and a rim portion
28
a
formed along an arc of the outer periphery. Only the rim portion
28
a
slidably contacts an inner peripheral wall surface of the sound box
27
, the back surface of the panel
21
and the front surface plate
25
c
of the adapter
25
, and other plane regions are formed to be thinner than the rim portion
28
a.
Teeth are formed on an inner peripheral side of the rim portion
28
a
of the rotation piece
28
abutting against the side of the panel
21
in a predetermined module. The portion of the rim
28
a
facing to the side of the panel
21
serves as an inner gear
28
b.
Further, in this embodiment, a small gear
29
meshing with the inner gear
28
b
of the rotation piece
28
is formed, and a round axial rod
30
is installed in a standing manner. Then, the round axial rod
30
is internally fitted into a hole
31
formed on the panel
21
. Then, its tip end surface with a groove for a (−) driver is exposed to the front surface side of the panel
21
through the hole
31
.
Accordingly, at the time of assembling this microphone apparatus the round axial rod
30
is first inserted into the hole
31
of the panel
21
to attach the small gear
29
thereto. Next, the rotation piece
28
is installed into the tubular portion
24
of the panel
21
such that the inner gear
28
b
of the rim portion
28
a
is meshed with the small gear
29
. After that, the adapter
25
to which the microphone
22
attached is internally fitted into the tubular portion
24
of the panel, whereby completing the structure of FIG.
4
.
Then, seeing from the front surface side of the panel
21
, the tip end of the round axial rod
30
is exposed from the hole
31
, which is formed at the lower side of the sound absorbing hole
23
as illustrated in FIG.
5
.
Additionally, a spot facing hole is formed at an abutting surface side against the rotation piece
28
in the small gear
29
. A felt plate
32
is internally fitted into the same spot facing hole in a state that it is slightly compressed. As a result, the small gear
29
and the rotation piece
28
are designed to slide as generating suitable friction.
In the above-structured microphone apparatus, when the tip of the driver is put into the groove of the tip end of the round axial rod
30
exposed to the front surface of the panel
21
and it is rotated, the rotation piece
28
rotates in the sound box
27
based on the meshing relationship between the small gear
29
and the inner gear
28
b
of the rotation piece
28
.
As a result, the shape and the volume of a ventilation space, which is formed between the sound absorbing hole
23
of the panel
21
and the sound perceptible portion
22
a
of the microphone
22
in the sound box
27
, are unchanged. However, the relative position to the sound absorbing hole
23
and the sound perceptible portion
22
a
is moved in the peripheral direction.
Namely, in the sound box
27
, the rotation piece
28
always ensures a ventilation channel between the sound absorbing hole
23
and the sound perceptible portion
22
a.
However, when the rotation piece
28
is rotated by the rotating operation of the round axial rod
30
, the ventilation channel is also rotated and changed. This makes it possible to attenuate the sound pressure to some degree in a case where the sound pressure acting on the sound perceptible portion
22
a
is excessively high. This also makes it possible to adjust a resonant frequency of a ventilation system leading to the sound perceptible portion
22
a
from the sound absorbing hole
23
.
As a result, the same effect as that of the microphone apparatus of the first embodiment can be implemented. Particularly, this is useful to prevent wind noise from being generated at the sound absorbing hole
23
in a specific direction of the wind.
In addition, the rotation piece
28
rotates in a state that the rim portion
28
a
is in slidably contact with the back surface of the panel
21
and the front surface plate
25
c
of the adapter
25
, and fixed friction is imparted to the portion between the small gear
29
and the rotation piece
28
by the felt plate
32
. As a result, the rotation piece
28
is not wobbled by a dimensional tolerance and the like in the sound box
27
, and it is surely fixed at an angle set by the rotation adjustment of the round axial rod.
The microphone apparatus of the present invention comprises the aforementioned structure and presents the following effects:
In the microphone apparatus that guides a sound wave to the sound perceptible portion of the microphone from the sound absorbing hole through the sound guide channel, it is assumed that such a microphone is used when a user speaks with a strong voice having a high sound pressure under high noise circumstances or it is used in the open where wind is strong. In this case, there occurs a problem in which wind noise generated at the sound absorbing hole is inputted into the microphone. According to the present invention, this problem can be easily solved by changing the ventilation space in a sound box by a simple adjusting operation from a control section provided at the front surface of the panel.
When the speaker must put one's mouth close to the microphone apparatus and utter a vocal sound under high noise circumstances, the breath sound is absorbed by the microphone even in the unvoiced state. The present invention is useful for such a state.
Moreover, when the transmitting voice is a foreign language having a special prosodic feature or the speaker's vocalization is inputted with an unclear voice based on the individual difference, a correction using an electrical filter is almost impossible. According to the adjusting system of the variable sound filter based on the present invention, an optimal voice inputting system can be implemented with respect to various kinds of input states, and voice information with a high degree of clarity can be always transmitted and recorded.
Then, the microphone apparatus relating to each claim can perform adjustment appropriately in response to the use circumstances of equipment with a voice input, and the structure can be obtained in an extremely compact manner. Accordingly, the microphone apparatus of the present invention is suitable for the mobile-use radio apparatus such as the transceiver having the microphone case and the microphone built therein and further the portable recording apparatus.
Various embodiments and changes may be made thereunto without departing from the broad spirit and scope of the invention. The above-described embodiments are intended to illustrate the present invention, not to limit the scope of the present invention. The scope of the present invention is shown by the attached claims rather than the embodiments. Various modifications made within the meaning of an equivalent of the claims of the invention and within the claims are to be regarded to be in the scope of the present invention.
Claims
- 1. A microphone apparatus, which guides a wave form to a perceptible portion of a microphone from a sound absorbing hole formed on a panel through a sound guide channel, comprising an adjusting mechanism, said adjusting mechanism having:a sound box interposed between two inner wall surfaces parallel to said panel in said sound guide channel; a movable piece moving in slidably contact with each inner wall surface as ensuring a ventilation channel between said sound absorbing hole and said sound perceptible portion in the interior of said sound box; a screw rod installed in a standing manner in a direction parallel to said panel with respect to said movable piece, said screw rod passed through a hole formed on a frame wall portion of said sound box to be projected outside; a screw hole formed at a central portion into which said screw rod is screwed; a disk having a part of a side peripheral surface exposed to the front surface from a window formed on said panel; and a support portion for restricting and supporting said disk to be prevented from being moved in a direction parallel to said panel.
- 2. A microphone apparatus, which guides a wave form to a perceptible portion of a microphone from a sound absorbing hole formed on a panel through a sound guide channel, comprising an adjusting mechanism, said adjusting mechanism having:a sound box interposed, as a disk space, between two inner wall surfaces parallel to said panel in said sound wave channel, said sound box having holes, which are guided from said sound absorbing hole and said sound perceptible portion, formed at non-opposite positions with respect to each wall surface, and said sound box including a rim portion and a central plate portion wherein said rim portion has a plane shape formed by partially cutting a disk, a side portion and an outer peripheral surface being in slidably contact with each inner wall surface and inner peripheral surface and said central plate portion is formed at the inner side thereof; a rotation piece serving as an inner gear element with teeth formed on the inner peripheral side surface of said rim portion; a small gear, placed between the central plate portion of said rotation piece and the inner wall surface of said panel side, for meshing with an inner gear of said rim portion; and a round axial rod installed about said small gear in a standing manner to be passed through a round hole formed on said panel.
Priority Claims (1)
Number |
Date |
Country |
Kind |
2000-072333 |
Mar 2000 |
JP |
|
US Referenced Citations (1)
Number |
Name |
Date |
Kind |
4170721 |
Ishibashi et al. |
Oct 1979 |
A |