This application is a U.S. National Phase Application of PCT International Application Number PCT/EP2014/070385, filed on Sep. 24, 2014, designating the United States of America and published in the English language, which is an International Application of and claims the benefit of priority to European Patent Application No. 13185668.4, filed on Sep. 24, 2013. The disclosures of the above-referenced applications are hereby expressly incorporated by reference in their entireties.
The present invention relates to a microphone, such as a lavalier microphone, or clip microphone, in particular to a microphone assembly comprising a rigid tube with a bend for guiding a conductor and positioning the microphone.
Actors, TV hosts, performers or users alike, want their voice to be recorded or amplified in high sound quality while seeking a microphone which is as invisible as possible to not take away the focus of the viewer.
In order to attain and maintain a high quality sound recording, the microphone needs to maintain a very precise location in respect to the mouth of the user.
A lavalier microphone is a small microphone that is mounted to the user, e.g. to a shirt, in order to allow hands-free operation. A lavalier microphone is most commonly provided with a small clip for attaching the microphone to collars, ties, or other clothing. The cord may be hidden by clothes and wired to an auxiliary device such as a radio frequency transmitter kept in a pocket or clipped to a belt, or wired directly to a mixer or a recording device.
However, several problems arise in known assemblies of lavalier microphones. First of all, the clip may be bulky, lack precise attachment, and/or may damage the clothes to which it attaches. Secondly at least part of the conducting cable extending from the microphone may not be properly hidden. Lastly the microphone, cable and clip assembly may be subject to noise e.g. from the cable scratching against the clothes near the microphone, or the clothes scratching directly on the microphone.
DE 10 2008 005 109 A1 discloses a clip-on microphone wherein the microphone cable is provided in a clamp and having a microphone cable running within an arm of the clamp on a rear side and behind a piece of clothing of a person. However, the clip-on microphone in accordance with DE 10 2008 005 109 provides a clamp visible for an observer. Furthermore, a microphone in accordance with DE 10 2008 005 109 is prone to noise due to its position, and a wire provided in a clamp may be subject to failure.
Accordingly and despite the known solutions there is still a need for a lavalier microphone which, in a simple and effective way, hides cables and other bulky parts, while attaining a high quality sound and reducing possible causes of noise.
Accordingly, a microphone assembly is provided, the microphone assembly comprising a microphone for converting an acoustic signal to an electrical microphone signal; and a rigid tube with a first tube end and a second tube end, wherein the microphone is attached at the first tube end, the rigid tube enclosing at least a part of a first conductor for conducting the microphone signal. The rigid tube has a first tube part extending along a first axis, and the rigid tube has a first bend, e.g. between the first tube end and the first tube part.
Also disclosed is a microphone assembly comprising a microphone for converting an acoustic signal to an electrical microphone signal, a rigid tube with a first tube end and a second tube end, wherein the microphone is attached at the first tube end, the rigid tube enclosing at least a part of a first conductor for conducting the microphone signal, and a clamp member mounted on the rigid tube, wherein the clamp member is configured for clamping the microphone assembly to a piece of clothing placed between a clamping section of the rigid tube and a clamping section of the clamp member, wherein the rigid tube has a first tube part extending along a first axis, and wherein the rigid tube has a first bend between the first tube end and the first tube part.
It is an advantage of the present disclosure that means are provided for positioning the microphone distant from sources of scratching noise. Further, it is an important advantage of the microphone assembly that means for hiding and guiding the conducting parts of the microphone assembly are provided.
Further, the microphone assembly provides for easy and convenient positioning of the microphone assembly, such that the microphone assembly may be fast and easily attached, to e.g. a guest in a TV-studio, in a manner reducing potential sources of noise.
Possible noise sources may e.g. be clothes scratching against the microphone, or cables scratching against clothes in proximity to the microphone.
The above and other features and advantages of the present invention will become readily apparent to those skilled in the art by the following detailed description of exemplary embodiments thereof with reference to the attached drawings, in which:
The figures are schematic and simplified for clarity, and they merely show details which are essential to the understanding of the invention, while other details have been left out. Throughout, the same reference numerals are used for identical or corresponding parts. It is to be noted that the wording “first” and “second” are used for separating elements of similar function. Thus, a “second” element does not necessarily require the presence of a “first” element.
The rigid tube is rigid, or stiff, in the sense resembling a typical metal where the physical form of the rigid tube is maintained if the microphone assembly is used as preferred, i.e. during preferred use plastic deformation will be none or at least limited, and yield strength and proportionality limit are largely equal.
The rigid tube may be made of a material having an elastic modulus larger than a first threshold value, such as 50 GPa. The rigid tube may be made of a material having an elastic modulus larger than a first threshold value of 100 GPa. The rigid tube may be made of stainless steel.
The rigid tube may be made of an electrically conductive material, such as a metal or an alloy comprising one or more metals. The rigid tube may be made of a composite material, e.g. comprising one or more polymers. The composite material may comprise a metal. The rigid tube may form a channel accommodating at least a part of the first conductor. An insulator may insulate the first conductor from the rigid tube.
The rigid tube may have a length larger than 1 cm and/or less than 10 cm. The length of the rigid tube may be between 1 cm and 8 cm, such as between 2 cm and 6 cm, such as between 3 cm and 5 cm. The first tube part may have a length in the range from 1 cm to 5 cm, such as from 2 to 3 cm. The length of the first tube part may be sufficiently long to allow for a first clamping section on the first tube part. On the other hand the length of the first tube part may be limited in order to provide a microphone assembly that is hard to see when attached e.g. on a shirt.
The tube may have a diameter of less than 5 mm, such as less than 3 mm, such as less than 2 mm, e.g. 1.2 mm. The tube diameter may be larger than 0.5 mm to provide a sufficiently rigid tube.
Generally, the microphone assembly or at least the visible parts should be as small as possible in order to be as invisible as possible. On the other hand, the microphone assembly should be large enough to be easy to handle and allowing proper attachment to the piece of clothing. The microphone assembly of the present invention has small visible parts and enables hiding of a clamp member.
The microphone may be a directional or an omni-directional microphone. The microphone may be orientated on the microphone assembly having a direction towards the mouth of the user, especially if a directional microphone is used. The microphone may be orientated on the microphone assembly having a universal direction to account for different clothing and positioning of the microphone assembly
The microphone assembly may comprise a second conductor connected to the microphone, e.g. for providing a ground electrode. The rigid tube may be a conductive tube forming at least a part of the second conductor. In exemplary microphone assemblies, the rigid tube encloses at least a part of the second conductor.
The second tube end may be attached to a cable, and thus the cable may enclose a part of the first conductor. In exemplary microphone assemblies, the rigid tube may comprise a connector with first and second terminals attached to the second tube end for connecting the microphone assembly to an electrical cable or external device comprising a corresponding connector. The first terminal may be connected to the first conductor. The second terminal may be connected to the second conductor.
The rigid tube comprises one or more bends or bend sections, such as a first bend and/or a second bend.
The first bend may position the microphone away from the clothing, thus reducing noise from various sources. The first bend may bend the rigid tube in an angle in the range from 30 degrees to 270 degrees. In exemplary microphone assemblies, the first bend bends the rigid tube in an angle in the range from 45 degrees to 135 degrees, e.g. from 80 degrees to 100 degrees. The first bend may be arc-shaped. The first bend may be a 90 degrees bend forming an L-shaped first bend, or a 180 degrees bend forming a U-shaped first bend. The first bend may have a first radius of curvature less than 10 mm, such as in the range from 1 to 5 mm, e.g. 2 mm.
A first tube end axis extends in a longitudinal direction of a section of the rigid tube at the first tube end. A first angle between the first tube end axis and the first axis may be larger than 30 degrees, such as in a range from 30 degrees to 150 degrees, such as in a range from 60 degrees to 120 degrees, such as in a range from 80 degrees to 100 degrees, such as 90 degrees or approximately 90 degrees.
The rigid tube may comprise a second bend. The second bend may be between the first tube part and the second tube end. The second bend may bend the rigid tube in an angle in the range from 30 degrees to 270 degrees. In exemplary microphone assemblies, the second bend bends the rigid tube in an angle in the range from 45 degrees to 135 degrees, e.g. from 80 degrees to 100 degrees. In exemplary microphone assemblies, the second bend bends the rigid tube in an angle in the range from 135 degrees to 270 degrees, e.g. from 170 degrees to 240 degrees. The second bend may be arc-shaped. The second bend may comprise one or more straight parts, e.g. a first straight part between two sharp L-shaped bends thus forming a 180 degrees bend. The second bend may be a 90 degrees bend forming an L-shaped second bend or a 180 degrees bend forming a U-shaped second bend. The second bend may have a second radius of curvature less than 10 mm, e.g. in the range from 2 mm to 6 mm, such as 4 mm.
The second bend may direct conducting parts of the microphone assembly around an edge of a piece of clothing, such as to hide a cable, a cable connector and other bulky parts behind the piece of clothing. For example, the microphone assembly may be attached to the front opening of a buttoned shirt, the second bend will guide the conducting parts to the rear side of the clothing, i.e. the side of the clothing opposite the side presenting the microphone.
A second tube end axis extends in a longitudinal direction of a section of the rigid tube at the second tube end. A second angle between the second tube end axis and the first axis may be larger than 30 degrees, such as in a range from 30 degrees to 150 degrees, such as in a range from 60 degrees to 120 degrees, such as in a range from 80 degrees to 100 degrees, such as 90 degrees or approximately 90 degrees. The second tube end axis and the first axis may be parallel for example when the rigid tube comprises a second bend, e.g. a U-shaped second bend. The second angle between the second tube end axis and the first axis may be less than 30 degrees.
The first tube part may be a straight tube part, e.g. having a length in the range from 5 mm to about 50 mm or longer.
The rigid tube part may comprise a second tube part. The second tube part may be between the second bend and the second tube end. The second tube part may be a straight tube part, e.g. having a length in the range from 5 mm to about 50 mm or longer. The second tube part may be arched. The rigid tube part may comprise a third tube part. The third tube part may be between the first bend and the first tube end. The third tube part may be a straight tube part, e.g. having a length in the range from 5 mm to about 50 mm or longer.
The rigid tube may comprise one or more clamping sections. A clamping section of the rigid tube facilitates clamping of the microphone assembly to a piece of clothing placed between two clamping sections, e.g. between a first clamping section and a second clamping section of the rigid tube and/or between a clamping section of the rigid tube and a clamping section of a clamp member. The first tube part may comprise a first clamping section on the first tube part and/or a second clamping section on the second tube part.
A clamping section of the rigid tube, e.g. the first clamping section and/or the second clamping section, may be covered or at least partly covered with a material, e.g. silicone or other rubber material, for providing increased friction compared to the rigid tube material.
The microphone assembly may comprise a clamp member mounted on the rigid tube. The clamp member may be configured for clamping the microphone assembly to a piece of clothing placed between a clamping section of the rigid tube and a clamping section of the clamp member. The clamp member may comprise a resilient member, such as a leaf spring. The clamp member may comprise one or more support elements, e.g. a first support element and/or a second support element. A part of the clamp member may be covered with a material, e.g. silicone or other rubber material, for providing increased friction compared to the clamp member material. The first tube part may comprise a first clamping section of the rigid tube. The second tube part may comprise a second clamping section of the rigid tube.
The clamping section of the clamp member is at least the part of the clamp member that provides a clamping pressure towards a clamping section of the rigid tube. Thus, a clamping section of the rigid tube is located opposite the clamping section of the clamp member.
The clamp member may assist in affixing the microphone assembly to a piece of clothing. The piece of clothing may be placed between the clamping sections, and tube parts or the clamp member and the rigid tube may in combination provide a pressure on the piece of clothing. Thereby friction between the piece of clothing and the rigid tube and/or the clamp member may affix the microphone assembly to the piece of clothing. Providing the clamp member with a resilient member, such as a leaf spring, may provide an ability to affix the microphone assembly to clothing of different thicknesses, e.g. a thin shirt or a thick jacket.
The clamp member may be attached to the rigid tube at an attachment point. The attachment point may be on the first tube part or on the second tube part. The attachment point may be on the second bend. The clamp member may be attached to the rigid tube at a first attachment point and a second attachment point.
A distance from the second tube end to a plane perpendicular to the rigid tube in the clamping section may be less than 5 mm in order to reduce undesired pulling forces from a cable attached to the microphone assembly.
Small accidental jerks of a cable connected to the second tube end of the microphone assembly may produce a pulling force on the microphone assembly at the second tube end. By limiting the distance from the clamping section, the pulling force provides a reduced torque, or at least the torque is limited leading to a more stable affixing of the microphone assembly.
The first axis 50 and the first tube end axis 52, span a first angle 54. Accordingly, the first angle 54 is the angle of the first bend 16. The first angle 54 may be in the range from 30 to 180 degrees, wherein 180 degrees corresponds to the first axis 50 and the first tube end axis 52 being parallel with a U-shaped first bend. The first angle 54 may be any angle larger than 30 degrees, such as larger than 50 degrees, such as larger than 70 degrees such as 90 degrees corresponding to an L-shaped first bend. In the depicted exemplary microphone assembly 2 as illustrated in
The first bend 16 may be arc shaped, with a first radius of curvature 56 along a longitudinal center axis of the rigid tube 6. The first radius of curvature is less than 10 mm, e.g. as illustrated about 2 mm. The first bend 16 may effectively be L-shaped or another shape connecting the first tube end 8 with the first tube part 14 of the rigid tube 6.
The second bend 18 provides guiding of the first conductor 12 around an edge of a piece of clothing (not shown). Hence, wiring is guided behind clothes and thus cables, connecting the microphone assembly 2 with e.g. an auxiliary device (not shown), are hidden. The rigid tube 6, as depicted in
If the microphone assembly 2 is to be mounted on a piece of clothing comprising an overlap, such as a buttoned shirt, the first tube part 14 can be hidden behind an outer most part of the overlap. The microphone assembly 2 can then be attached to an inner part of the overlap placed between the first tube part 14 and the second tube part 19. Hereby, the part of the microphone assembly extending in front of the shirt is minimized, possibly only the microphone 4.
The clamping of a piece of clothing relies on obtaining a frictional force between any of the clamping sections 22, 24 and the piece of clothing, wherein the frictional force is of a sufficient magnitude to maintain the microphone assembly 2 in the desired position. In order to increase the frictional force, the clamping section 22 of the rigid tube 6 and/or the clamping section 24 of the clamp member 20 may be at least partly covered by a material, e.g. silicone or other rubber material, increasing the friction comparing to the material of the rigid tube 6 and the clamp member 20 respectively.
If the microphone assembly 2 is to be mounted on a piece of clothing comprising an overlap, such as a buttoned shirt, the first tube part 14 can be hidden behind an outer most part of the overlap. The microphone assembly 2 can then be attached to an inner part of the overlap placed between clamping sections 22, 24. Hereby the part extending in front of the shirt is minimized, and possibly only the microphone 4 is visible.
Number | Date | Country | Kind |
---|---|---|---|
13185668 | Sep 2013 | EP | regional |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2014/070385 | 9/24/2014 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2015/044211 | 4/2/2015 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4893344 | Trägardh et al. | Jan 1990 | A |
6178251 | Luchs | Jan 2001 | B1 |
6934461 | Strub et al. | Aug 2005 | B1 |
20060182301 | Medveczky | Aug 2006 | A1 |
20060285713 | Lin | Dec 2006 | A1 |
20080253599 | Banks | Oct 2008 | A1 |
20100083470 | Murata | Apr 2010 | A1 |
20100226512 | Sykes | Sep 2010 | A1 |
20120314131 | Kamin-Lyndgaard | Dec 2012 | A1 |
20140126740 | Charles | May 2014 | A1 |
Number | Date | Country |
---|---|---|
303145 | Nov 1972 | AT |
201995107 | Sep 2011 | CN |
2052442 | Dec 1971 | DE |
3911068 | Oct 1989 | DE |
41 13 101 | Oct 1992 | DE |
41 26 724 | Feb 1993 | DE |
10 2005 055 762 | May 2007 | DE |
10 2008 005 107 | Jul 2009 | DE |
10 2008 005 109 | Jul 2009 | DE |
2001-268678 | Sep 2001 | JP |
2004-254262 | Sep 2004 | JP |
WO 9631994 | Oct 1996 | WO |
Entry |
---|
Extended European Search Report for EP 13 18 5668 dated Dec. 20, 2013. |
International Search Report for PCT/EP2014/070385 dated Nov. 25, 2014. |
Number | Date | Country | |
---|---|---|---|
20160241944 A1 | Aug 2016 | US |