This application relates to acoustic devices and, more specifically, to barriers that prevent intrusion of contaminants within these devices.
MicroElectroMechanical System (MEMS) assemblies include microphones and speakers to mention two examples. These MEMS devices may be used in diverse applications such as within hearing aids and cellular phones.
In the case of a MEMS microphone, acoustic energy typically enters through a sound port in the assembly, vibrates a diaphragm and this action creates a corresponding change in electrical potential (voltage) between the diaphragm and a back plate disposed near the diaphragm. This voltage represents the acoustic energy that has been received. Typically, the voltage signal is then transmitted to an electric circuit (e.g., an integrated circuit such as an application specific integrated circuit (ASIC)). Further processing of the signal may be performed on the electrical circuit. For instance, amplification or filtering functions may be performed on the voltage signal by the integrated circuit.
As mentioned, sound typically enters the assembly through an opening or port. When a port is used, this opening also allows other unwanted or undesirable items to enter the port. For example, various types of contaminants (e.g., solder, flux, dust, and spit, to mention a few possible examples) may enter through the port. Once these items enter the assembly, they may damage the internal components of the assembly such as the MEMS device and the integrated circuit.
Previous systems have sometimes deployed particulate filters that prevent some types of debris from entering an assembly. Unfortunately, these filters tend to adversely impact the operation of the microphone. For instance, the performance of the microphone sometimes becomes significantly degraded when using these previous approaches. Microphone customers often elect to not use such microphones in their applications because of the degraded performance.
For a more complete understanding of the disclosure, reference should be made to the following detailed description and accompanying drawings wherein:
Skilled artisans will appreciate that elements in the figures are illustrated for simplicity and clarity. It will further be appreciated that certain actions and/or steps may be described or depicted in a particular order of occurrence while those skilled in the art will understand that such specificity with respect to sequence is not necessarily required. It will also be understood that the terms and expressions used herein have the ordinary meaning as is accorded to such terms and expressions with respect to their corresponding respective areas of inquiry and study except where specific meanings have otherwise been set forth herein.
Acoustic assemblies (e.g., microphone assemblies) are provided wherein environmental barriers are deployed to reduce or eliminate the infiltration of environmental contaminants into the interior of these assemblies. In this respect, the structures provided herein significantly reduce or eliminate the intrusion of harmful environmental contaminants (e.g., fluids and particulates) from the exterior of the assembly to the interior of the assembly, can be easily and economically manufactured, and do not significantly degrade microphone performance in terms of sensitivity (and in some cases improve some aspects of the performance of the microphone, for example, flat sensitivity response in the audio band).
In some of these embodiments, a microphone assembly includes a base and a cover that is connected to the base. An interior cavity is formed between the cover and the base in which is disposed a MEMS apparatus. Either the base or the cover has a port extending therethrough. A barrier is embedded in the base or the cover so as to extend across the port. The barrier prevents at least some contaminants from entering the interior of the assembly and damaging the components disposed therein such as the MEMS apparatus. In some aspects, the embedded barrier is a porous membrane, filter or mesh and in other aspects the barrier is a patterned flex circuit with openings disposed therethrough.
In still others of these embodiments, a microphone assembly includes a base and a cover. An interior cavity is formed between the cover and the base in which is disposed a MEMS apparatus. A second cavity is formed within the base. A first opening or hole in the base allows external sound to enter the second cavity from the exterior of the assembly and a second opening or hole in the base allows the sound to move from the second cavity to the MEMS apparatus that is disposed in the interior cavity of the assembly. The openings and the second cavity in the base form a baffle structure that is effective in preventing at least some contaminants from entering the interior of the assembly using an indirect path.
In yet others of these embodiments, a microphone assembly includes a base and a cover. An interior cavity is formed between the cover and the base in which is disposed a MEMS apparatus. A port extends through the base and the MEMS apparatus is disposed in the interior of the assembly and over the port. A barrier is also disposed over the port. In some aspects, the barrier includes a tunnel that forms a tortuous (e.g., twisting) path for sound entering the port to traverse before the sound is received at the MEMS apparatus. In other aspects, the barrier is constructed of a porous material and sound proceeds through the barrier to be received at the MEMS apparatus. However, the tortuous path is effective in preventing at least some contaminants from entering the interior of the assembly.
In yet others of these embodiments, a microphone assembly includes a base and a cover. An interior cavity is formed between the cover and the base in which is disposed a MEMS apparatus. A MEMS apparatus is disposed in the interior of the assembly within the cavity. In the assembly, the port hole is not a completely open hole. Instead, sound enters through portions of the lid. In one aspect, the lid includes a partially fused area through which sound enters the interior of the assembly and a highly fused area where sound does not enter the assembly. The non-fused portion of the lid is effective for preventing at least some contaminants from entering the interior of the assembly.
In still others of these embodiments, a microphone assembly includes a base and a cover. An interior cavity is formed between the cover and the base in which is disposed a MEMS apparatus. A MEMS apparatus is disposed in the interior of the assembly within the cavity and a port is formed in the assembly. The lid is formed with a metal mesh surrounded by an optional outer material thereby making the entire metal mesh lid the acoustic port. In cases, were an outer material is used, portions of the cover can be removed to create a port that exposes the metal mesh. Consequently, sound is allowed to enter the port, traverse through the mesh, and be received at the MEMS apparatus. At the same time, the metal mesh is effective to prevent at least some contaminants from entering the interior of the assembly while maintaining a significant degree of electromagnetic immunity.
In yet others of these embodiments, a microphone assembly includes a base and a cover. A port extends through the base and a MEMS apparatus is disposed at the base in the interior of the assembly and over the port. A membrane or passivation layer is attached to and extends across the base and over the port. The membrane or passivation layer includes openings through which expose metal solder pads on the base, effectively preventing solder bridging between the pads during reflow. The membrane that extends across the base (and port) is effective for preventing at least some contaminants from entering the interior of the assembly but at the same time allows sound to pass therethrough.
As used herein, “contaminants” refers to any type or form of undesirable material that could enter an assembly from the environment external to the assembly. For example, contaminants may include dust, dirt, water, vapor, to mention only a few examples.
Referring now to
Generally speaking and as described elsewhere herein, each of the lid 104 and base 102 are formed of one or more layers of materials. For example, these components may be constructed of one or more FR-4 boards, and may have various conductive and insulating layers arranged around these boards.
The port 106 extends through the base 102 and the MEMS apparatus 108 is disposed over the port. Conductive traces (not shown) couple the output of the integrated circuit 110 to conductive pads 116 on the base. A customer can make an electrical connection with the pads 116 for further processing of the signal that is received from the integrated circuit 110. Multiple vias, such as via 118, extend through the base 102 and allow electrical connections to be made between the integrated circuit 110 and the conductive pads 116.
The MEMS apparatus 108 receives acoustic energy which is transduced into electrical energy. In that respect, the MEMS apparatus 108 may include a diaphragm and a back plate. Acoustic energy causes movement of the diaphragm and this varies the voltage between the diaphragm and the back plate. The electrical signal that is produced represents the acoustic energy that has been received by the MEMS apparatus 108. The MEMS apparatus 108 is attached to the base by adhesive or any other appropriate fastening mechanism or approach.
The integrated circuit 110 is any kind of integrated circuit that performs any kind of processing function. In one example, the integrated circuit 110 is a buffer or an amplifier. Other examples of integrated circuits are possible. Although only one integrated circuit is shown in this example, it will be appreciated that multiple integrated circuits may also be deployed. And, as used herein, “integrated circuit (IC)” refers to any type of processing circuitry performing any type of processing function.
In the example assembly of
Referring now especially to
The base 102 in this example includes a first solder mask 152, a first metal layer 154, a first core layer 156, a second metal layer 158, a dielectric layer 160, a third metal layer 162, an adhesive layer 165, the barrier 112, another adhesive layer 167, a fourth metal layer 164, a second core layer 166, a fifth metal layer 168, and a second solder mask 170. The metal layers provide conductive paths for signals and may be constructed of copper clad in one example. The core layers may be FR-4 boards in one example. The port 106 extends through the base 102 but the barrier 112 extends across the port, permitting sound (indicated by air path 103) to enter the interior of the assembly but preventing contaminants from entering the assembly 100. The function of the dielectric layer 160 is to provide additional capacitance for improved electromagnetic immunity. It will be appreciated that the above-mentioned structure is only one possible structure and that other structures and configurations are possible. For instance, the dielectric layer (and the metal layers on either side of it) may be eliminated or additional PCB layers added.
Referring now to
The assembly 300 includes a base 302, a lid 304, a port 306, a Microelectromechanical System (MEMS) apparatus 308, and an integrated circuit 310. The barrier 312 is embedded in the base 302, or on one side of the base (top or bottom). Although shown as being on top of the base 302 (making the assembly 300 a bottom port device), it will be appreciated that the port 306 can be moved to the lid 304 (thereby making the device a top port device) and the barrier 312 can be embedded in the lid 304.
Generally speaking and as described elsewhere herein, each of the lid 304 and base 302 are formed of one or more layers of materials. For example, these components may be constructed of FR-4 boards and printed circuit boards, and may have various conductive and insulating layers arranged around these boards.
The port 306 extends through the base 302 and the MEMS apparatus 308 extends over the port. Conductive traces (not shown) couple the output of the integrated circuit 310 to conductive pads 316 on the base. A customer can make an electrical connection with the pads 316 for further processing of the signal that is received from the integrated circuit 310.
The MEMS apparatus 308 receives acoustic energy which is transduced into electrical energy. In that respect, the MEMS apparatus 308 may include a diaphragm and a back plate. Acoustic energy causes movement of the diaphragm and this varies the charge between the diaphragm and the back plate. The resulting electrical signal that is produced represents the acoustic energy that has been received by the MEMS apparatus 308. The MEMS apparatus 308 is attached to the base by adhesive or any other appropriate fastening mechanism or approach.
The integrated circuit 310 is any kind of integrated circuit that performs any kind of processing function. In one example, the integrated circuit 310 is a buffer or an amplifier. Other examples of integrated circuits are possible. Although only one integrated circuit is shown in this example, it will be appreciated that multiple integrated circuits may be deployed. And as mentioned, as used herein “integrated circuit (IC)” refers to any type of processing circuitry performing any type of processing function.
In the example of
The base 302 includes a first solder mask 352, a first metal layer 354, the barrier 312 (a flex layer), a second metal layer 358, adhesive 355, a third metal layer 362, a first core layer 356, a fourth metal layer 364, a dielectric layer 360, a fifth metal layer 368, a second core layer 366, a sixth metal layer 369, and a second solder mask 370. The metal layers provide conductive paths for signals. The core layers may be FR-4 boards in one example. The port 306 extends through the base 302. The barrier 312 extends across the port 306 with circular openings 380, 382, 384, and 386 permitting sound (indicated by air path 303) to enter the interior of the assembly 300 but preventing at least some contaminants from entering the assembly 300. It will be appreciated that the above-mentioned structure is only one possible structure and that other structures are possible.
It will be appreciated that the shape, number, placement or other characteristics of the openings 380, 382, 384, and 386 in the barrier 312 may be adjusted to filter certain types or sizes of contaminants. More specifically, specific sizes and/or shapes for the openings may be advantageous from preventing certain-sized particulates from entering the interior of the assembly 300. The placement of the openings relative to each other may also serve to filter some types and/or sizes of contaminants. It should also be noted that the surface of barrier 312 may be treated with a hydrophobic coating to inhibit the liquid water from entering the interior of assembly 300.
In another example, the flex material or flex board is completely removed from extending over the port. In this case, one of the metal layers of the base can be extended over the port and include one or more openings that filter the contaminants. It will be appreciated that any of the other layers may be utilized to perform this function or that combinations of multiple layers (each having openings) may also be used.
Referring now to
Each of the lid 604 and base 602 may be formed of one or more layers of materials. For example, these components may be constructed of FR-4 boards or printed circuit boards and may have various conductive and insulating layers arranged around these boards.
Conductive traces (not shown) couple the output of the integrated circuit 610 to conductive pads 616 on the base. A customer can make an electrical connection with the pads 616 for further processing of the signal that is received from the integrated circuit 610.
The MEMS apparatus 608 receives acoustic energy and which is transduced into electrical energy. In that respect, the MEMS apparatus 608 may include a diaphragm and a back plate. Acoustic energy causes movement of the diaphragm and this varies the voltage between the diaphragm and the back plate. The resulting electrical signal that is produced represents the acoustic energy that has been received by the MEMS apparatus 608. The MEMS apparatus 608 is attached to the base by adhesive or any other appropriate fastening mechanism or approach.
The integrated circuit 610 is any kind of integrated circuit that performs any kind of processing function. In one example, the integrated circuit 610 is a buffer or an amplifier. Other examples of integrated circuits are possible. Although only one integrated circuit is shown in this example, it will be appreciated that multiple integrated circuits may be deployed. And as mentioned, as used herein, “application specific integrated circuit (ASIC)” refers to any type of processing circuitry performing any type of processing function.
Referring now especially to
The hole or opening 662 communicates with the interior of the assembly 600 and is the sound inlet to the MEMS apparatus. The hole or opening 664 communicates with the exterior of the assembly 600 and is the acoustic port to a customer application. It will be appreciated that the holes or openings 662 and 664 are offset from each other and are in one aspect at opposite ends of the cavity 656. The placement of the holes or openings 662 and 664 in the cavity 656 provides a tortuous path for any contamination ingress into the open sound port of the microphone. After manufacturing of the substrate, the microphone assembly 600 is completed with the MEMS apparatus and integrated circuit attached, wire bonding, and lid attachment.
It will be appreciated that sound (indicated by the arrow labeled 603) will traverse the baffle structure. However, at least some environmental contaminants may “stick” or otherwise remain in the baffle structure (e.g., in the cavity 656) and be prevented from entering the interior of the assembly 600,
Referring now to
Each of the lid 904 and base 902 may be formed of one or more layers of materials. For example, these components may be constructed of FR-4 boards and may have various conductive and insulating layers arranged around these boards.
Conductive traces (not shown) couple the output of the integrated circuit 910 to conductive pads 916 on the base. A customer can make an electrical connection with the conductive pads 916 for further processing of the signal that is received from the integrated circuit 910.
The MEMS apparatus 908 receives acoustic energy which is transduced into electrical energy. In that respect, the MEMS apparatus 908 may include a diaphragm and a back plate. Acoustic energy causes movement of the diaphragm and this varies the charge between the diaphragm and the back plate. The resulting electrical signal that is produced represents the acoustic energy that has been received by the MEMS apparatus 908. The MEMS apparatus 908 is attached to the base by adhesive or any other appropriate fastening mechanism or approach.
The integrated circuit 910 is any kind of integrated circuit that performs any kind of processing function. In one example, the integrated circuit 910 is a buffer or an amplifier. Other examples of integrated circuits are possible. Although only one integrated circuit is shown in this example, it will be appreciated that multiple integrated circuits may be deployed. And as mentioned, as used herein, “integrated circuit (IC)” refers to any type of processing circuitry performing any type of processing function.
Referring now especially to
The holes or openings 962 and 963 are the sound inlets to the MEMS apparatus and the port hole 906 (disposed in the middle of the cavity 956) is the acoustic port to a customer application. The placement of the holes in the cavity provides a tortuous path for any contamination ingress into the open sound port of the microphone. After manufacturing of the substrate, the microphone assembly 900 is completed with the MEMS apparatus 908 and integrated circuit 910 attached, wire bonding, and lid attachment.
Referring now to
Referring now to
Generally speaking and as described elsewhere herein, each of the lid 1204 and base 1202 are formed of one or more layers of materials. For example, these components may be constructed of FR-4 boards and may have various conductive and insulating layers arranged around these boards.
The port 1206 extends through the base 1202 and the MEMS apparatus 1208 extends across the port. Conductive traces (not shown) couple the output of the integrated circuit 1210 to conductive pads 1216 on the base. A customer can make an electrical connection with these pads for further processing of the signal that is received from the integrated circuit 1210.
The MEMS apparatus 1208 receives acoustic energy which is transduced into electrical energy. In that respect, the MEMS apparatus 1208 may include a diaphragm and a back plate. Acoustic energy causes movement of the diaphragm and this varies the voltage between the diaphragm and the back plate. The resulting electrical signal that is produced represents the acoustic energy that has been received by the MEMS apparatus 1208. The MEMS apparatus 1208 is attached to the base by die attach adhesive 1211 or any other appropriate fastening mechanism or approach.
The integrated circuit 1210 is any kind of integrated circuit that performs any kind of processing function. In one example, the integrated circuit 1210 is a buffer or an amplifier. Other examples of integrated circuits are possible. Although only one integrated circuit is shown in this example, it will be appreciated that multiple integrated circuits may be deployed.
The barrier 1212 is in one aspect a silicon piece that extends across and over the port 1206 and within (under) the MEMS apparatus 1208. The barrier 1212 has an elongated tunnel 1214 with turns that acts as a particulate filter in the assembly 1200. The tunnel 1214 is an extended hollow opening (i.e., in the shape of a tube) through which sound traverses and can be created using a variety of different approaches such as stealth laser dicing and chemical etching. A path for sound is indicated by the arrow labeled 1226 and this follows and proceeds through the tunnel 1214. The barrier 1212 is disposed in the front volume 1215 and not the back volume 1217. Particulates will be trapped within, adhere with, or become lodged within the tunnel 1214 (e.g., at turns within the tunnel 1214) and thereby be prevented from entering the interior of the assembly 1200 but not completely obstructing the tunnel. This disposition of the barrier 1212 under the MEMS apparatus 1208 may improve the acoustic performance of the assembly 1500 by decreasing the front volume 1215 that would otherwise be present.
The barrier 1212 can have a wide variety of dimensions. In one illustrative example, the barrier 1212 is approximately 0.5 mm long by approximately 0.5 mm wide by approximately 0.15 mm thick. The tunnel 1214 can also have a variety of different shapes and dimensions.
Referring now to
Generally speaking and as described elsewhere herein, each of the lid 1504 and base 1502 are formed of one or more layers of materials. For example, these components may be constructed of FR-4 boards and may have various conductive and insulating layers arranged around these boards.
The port 1506 extends through the base 1502 and the MEMS apparatus 1508 extends across the port 1506. Conductive traces (not shown) couple the output of the integrated circuit 1510 to conductive pads 1516 on the base. A customer can make an electrical connection with these pads for further processing of the signal that is received from the integrated circuit 1510.
The MEMS apparatus 1508 receives acoustic energy which is transduced into electrical energy. In that respect, the MEMS apparatus 1508 may include a diaphragm and a back plate. Acoustic energy causes movement of the diaphragm and this varies the charge between the diaphragm and the back plate. The resulting electrical signal that is produced represents the acoustic energy that has been received by the MEMS apparatus 1508. The MEMS apparatus 1508 is attached to the base by die attach adhesive 1511 or any other appropriate fastening mechanism or approach.
The integrated circuit 1510 is any kind of integrated circuit that performs any kind of processing function. In one example, the integrated circuit 1510 is a buffer or an amplifier. Other examples of integrated circuits are possible. Although only one integrated circuit is shown in this example, it will be appreciated that multiple integrated circuits may be deployed.
The barrier 1512 is in one aspect a silicon piece that extends across and over the port 1506 and within (under) the MEMS apparatus 1508. The barrier 1512 includes a tunnel 1520 (that can be a curved tunnel or a straight tunnel). Communicating with the tunnel 1520 is a first trench 1522 and a second trench 1524. A sound path (the arrow with the label 1526) is shown for sound entering the port 1506, passing through the first trench 1522, moving through the horizontal tunnel 1520, moving through the second trench 1524, and then being received at the MEMS apparatus 1508. The tunnel 1520 can be created by various approaches, for example, by stealth laser dicing or chemical etching. The trenches 1522 and 1524 can be created, for instance, by dry etching approaches. The long path created as sound traverses the trenches and tunnel acts as a particle filter. This disposition of the barrier 1512 beneath the MEMS apparatus 1508 may improve the acoustic performance of the assembly 1500 by decreasing the front volume that would otherwise be present.
The barrier 1512 can have a wide variety of dimensions. In one illustrative example, the barrier 1512 is approximately 0.5 mm long by approximately 0.5 mm wide by approximately 0.15 mm thick.
Referring now to
Generally speaking and as described elsewhere herein, each of the lid 1804 and base 1802 are formed of one or more layers of materials. For example, these components may be constructed of FR-4 boards and may have various conductive and insulating layers arranged around these boards.
The port 1806 extends through the base 1802 and the MEMS apparatus 1808 extends across the port. Conductive traces (not shown) couple the output of the integrated circuit 1810 to conductive pads 1816 on the base. A customer can make an electrical connection with these pads for further processing of the signal that is received from the integrated circuit 1810.
The MEMS apparatus 1808 receives acoustic energy which is transduced into electrical energy. In that respect, the MEMS apparatus 1808 may include a diaphragm and a back plate. Acoustic energy causes movement of the diaphragm and this varies the voltage between the diaphragm and the back plate. The resulting electrical signal that is produced represents the acoustic energy that has been received by the MEMS apparatus 1808. The MEMS apparatus 1808 is attached to the base by die attach adhesive 1811 or any other appropriate fastening mechanism or approach.
The integrated circuit 1810 is any kind of integrated circuit that performs any kind of processing function. In one example, the integrated circuit 1810 is a buffer or an amplifier. Other examples of integrated circuits are possible. Although only one integrated circuit is shown in this example, it will be appreciated that multiple integrated circuits may be deployed.
The barrier 1812 is in one aspect a silicon piece that extends across and over the port 1806 and within (under) the MEMS apparatus 1808. The barrier 1812 has a first trench 1822 and a second trench 1824. A sound path 1826 is shown for sound. The trenches 1822 and 1824 are etched in silicone in an intersecting pattern. So, as air hits the bottom of the silicone barrier 1812 it exits out the side.
The trenches 1822 and 1824 can be created, for example, by dry etching approaches. The long path created acts as a particle filter. The barrier 1812 is in the front volume 1815 and not the back volume 1817. This disposition of the barrier 1812 beneath the MEMS apparatus 1808 may improve the acoustic performance of the assembly 1800 by decreasing the front volume that otherwise would be present.
The barrier 1812 can have a wide variety of dimensions. In one illustrative example, the barrier 1812 is approximately 0.5 mm wide by approximately 0.5 mm long by approximately 0.15 mm thick. When used in top port devices, the same material may provide an acoustic resistance that is used to flatten the frequency response of the top port device.
Referring now to
Generally speaking and as described elsewhere herein, each of the lid 2104 and base 2102 are formed of one or more layers of materials. For example, these components may be constructed of FR-4 boards and may have various conductive and insulating layers arranged around these boards.
The port 2106 extends through the base 2102 and the MEMS apparatus 2108 extends across the port. Conductive traces (not shown) couple the output of the integrated circuit 2110 to conductive pads 2116 on the base. A customer can make an electrical connection with these pads 2116 for further processing of the signal that is received from the integrated circuit 2110.
The MEMS apparatus 2108 receives acoustic energy and converts the acoustic energy into electrical energy. In that respect, the MEMS apparatus 2108 may include a diaphragm and a back plate. Acoustic energy causes movement of the diaphragm and this varies the voltage between the diaphragm and the back plate. The resulting electrical signal that is produced represents the acoustic energy that has been received by the MEMS apparatus 2108. The MEMS apparatus 2108 is attached to the base by die attach adhesive 2111 or any other appropriate fastening mechanism or approach.
The integrated circuit 2110 is any kind of integrated circuit that performs any kind of processing function. In one example, the integrated circuit 2110 is a buffer or an amplifier. Other examples of integrated circuits are possible. Although only one integrated circuit is shown in this example, it will be appreciated that multiple integrated circuits may be deployed.
In one aspect, the barrier 2112 is a piece of porous ceramic material with approximately 1-100 micrometer pore sizes or more preferably 2-20 micrometer pore sizes that are effective as a particle filter. In other words, sound can pass through the pores, but larger particulates are prevented from passing. The barrier 2112 can have a wide variety of dimensions. In one illustrative example, the barrier 2112 is approximately 0.5 mm long by approximately 0.5 mm wide by approximately 0.25 mm thick placed under the MEMS apparatus 2108 in the cavity over the port 2106. It will be appreciated that the barrier 2112 is in the front volume 2115 and not the back volume 2117. This disposition of the barrier 2112 beneath the MEMS apparatus 2108 may improve the acoustic performance of the assembly 2100 by decreasing the front volume that would otherwise be present.
In one example, a thin impervious layer constructed, for example, from sprayed on lacquer or stamp transferred adhesive that is added to the upper surface of the barrier 2112 so that a vacuum can handle the pieces as it provides a sealing surface which vacuum tooling can latch onto. The thin impervious layer is advantageously viscous during application so not to wick into the porous ceramic.
Referring now to
Generally speaking and as described elsewhere herein, each of the lid 2404 and base 2402 are formed of one or more layers of materials. For example, these components may be constructed of FR-4 boards and may have various conductive and insulating layers arranged around these boards or ceramics or metals
Conductive traces (not shown) couple the output of the integrated circuit 2410 to conductive pads 2416 on the base. A customer can make an electrical connection with these pads 2416 for further processing of the signal that is received from the integrated circuit 2410.
The MEMS apparatus 2408 receives acoustic energy and transduces it into electrical energy. In that respect, the MEMS apparatus 2408 may include a diaphragm and a back plate. Acoustic energy causes movement of the diaphragm and this varies the voltage between the diaphragm and the back plate. The resulting electrical signal that is produced represents the acoustic energy that has been received by the MEMS apparatus 2408. The MEMS apparatus 2408 is attached to the base by die attach adhesive 2411 or any other appropriate fastening mechanism or approach.
The integrated circuit 2410 is any kind of integrated circuit that performs any kind of processing function. In one example, the integrated circuit 2410 is a buffer or an amplifier. Other examples of integrated circuits are possible. Although only one integrated circuit is shown in this example, it will be appreciated that multiple integrated circuits may be deployed.
The lid 2404 includes a fused portion 2420 and a partially fused portion 2422. The fused portion 2420 includes a sealing surface 2426 that provides an acoustic seal with the base 2402. The partially fused portion 2422 provides an acoustic portion. That is, the partially fused portion 2422 allows sound to pass but prevents particulates from entering. By “fused,” it is meant the media is melted to the point of complete coalescence containing no voids. By “partially fused,” it is meant that the media is melted to the point of partial coalescence containing voids. The partially fused (or sintered) structure provides a tortuous path making debris and liquid ingress into the interior of the assembly difficult or impossible.
It will be appreciated that the porosity of the material used to construct the lid 2402 can be modified to flatten (via dampening) the frequency response of the microphone assembly. The lid 2402 can be constructed of metal to provide protection against radio frequency interference (RFI). As mentioned, it will be appreciated that this approach does not include a port hole or opening that necessarily extends entirely through either the base or the lid; rather, this approach includes a porous, tortuous path for entry of sound into the assembly. In addition, the lid 2402 can be coated with a hydrophobic coating to increase its resistance to liquid water penetration.
Referring now to
Generally speaking and as described elsewhere herein, each of the lid 2704 and base 2702 are formed of one or more layers of materials. For example, these components may be constructed of FR-4 boards and may have various conductive and insulating layers arranged around these boards.
Conductive traces (not shown) couple the output of the integrated circuit 2710 to conductive pads 2716 on the base. A customer can make an electrical connection with the pads 2716 for further processing of the signal that is received from the integrated circuit 2710.
The MEMS apparatus 2708 receives acoustic energy and transduces it into electrical energy. In that respect, the MEMS apparatus 2708 may include a diaphragm and a back plate. Sound energy causes movement of the diaphragm and this varies the charge between the diaphragm and the back plate. The resulting electrical signal that is produced represents the sound energy that has been received by the MEMS apparatus 2708. The MEMS apparatus 2708 is attached to the base by die attach adhesive 2711 or any other appropriate fastening mechanism or approach.
The integrated circuit 2710 is any kind of integrated circuit that performs any kind of processing function. In one example, the integrated circuit 2710 is a buffer or an amplifier. Other examples of integrated circuits are possible. Although only one integrated circuit is shown in this example, it will be appreciated that multiple integrated circuits may be deployed.
The lid 2704 is constructed from mesh metal 2721. The mesh metal 2721 is optionally covered with an epoxy 2723 (or some similar material) and allowed to harden to obtain a solid part. During manufacturing, the mask (or portion) of the epoxy 2723 that actually covers the port hole is selectively patterned or etched away leaving a mesh-covered port 2706 or opening and a solid lid. In some aspects, the mesh 2721 functions as a faraday cage, thereby providing radio frequency (RF) protection to the components of the assembly 2700. Enhanced RF protection may also be provided over previous approaches due to the port being covered by mesh. Particle ingress protection is provided by small (e.g., approximately 50 um or less) holes or openings in the mesh that defines the port hole 2706. It will be appreciated that the lid 2704 may be constructed completely with a mesh (it covers the entire lid) or partially with mesh (e.g., the mesh is utilized only at the top of the lid 2704). The metal mesh 2721 can also be coated with hydrophobic material to increase its resistance to liquid water penetration.
Referring now to
Generally speaking and as described elsewhere herein, each of the lid 3004 and base 3002 are formed of one or more layers of materials. For example, these components may be constructed of FR-4 boards and may have various conductive and insulating layers arranged around these boards.
Conductive traces (not shown) couple the output of the integrated circuit 3010 to conductive pads 3016 on the base. A customer can make an electrical connection with the pads 3016 for further processing of the signal that is received from the integrated circuit 3010.
The MEMS apparatus 3008 receives acoustic energy which is transduced into electrical energy. In that respect, the MEMS apparatus 3008 may include a diaphragm and a back plate. Acoustic energy causes movement of the diaphragm and this varies the charge between the diaphragm and the back plate. The resulting electrical signal that is produced represents the acoustic energy that has been received by the MEMS apparatus 3008. The MEMS apparatus 3008 is attached to the base by die attach adhesive (not shown) or any other appropriate fastening mechanism or approach.
The integrated circuit 3010 is any kind of integrated circuit that performs any kind of processing function. In one example, the integrated circuit 3010 is a buffer or an amplifier. Other examples of integrated circuits are possible. Although only one integrated circuit is shown in this example, it will be appreciated that multiple integrated circuits may be deployed.
The passivation or membrane layer 3015 replaces the solder mask layer of bottom port microphone assemblies. The layer 3015, for example, is a mechanically attached (e.g., using ultrasonic welding) insulating porous membrane (e.g., ePTFE) as the layer. The layer acts as a passivation layer to prevent solder flow between solder pads 3016 (which are defined by the ultrasonic weld/cut edge 3009). The layer 3015 provides protection against ingress foreign materials, both liquid and solid particulates, into the acoustic port since it covers the acoustic port 3006. The end result is a welded pattern film of porous polymer with openings for the solder pad but covering the port 3006 in the area 3007 that is not ultrasonically welded.
Referring now to
Ultrasonic energy and pressure is applied to the horn 3306 and the horn 3306 transfers energy through the PCB panel 3300 causing the tooling 3308 to weld and simultaneously cut the porous polymer membrane 3305 to the panel 3300. In other words the tool 3308 cuts out/removes areas for solder pads but covers the port area. It will be appreciated that other manufacturing methods can also be employed.
Preferred embodiments of this invention are described herein, including the best mode known to the inventors for carrying out the invention. It should be understood that the illustrated embodiments are exemplary only, and should not be taken as limiting the scope of the invention.
This patent claims benefit under 35 U.S.C. §119 (e) to U.S. Provisional Application No. 61/681,685 entitled “Microphone Assembly with Barrier to Prevent Contaminant Infiltration” filed Aug. 10, 2012, the content of which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3192086 | Gyurk | Jun 1965 | A |
3381773 | Schenkel | May 1968 | A |
3539735 | Marchand | Nov 1970 | A |
3567844 | Krcmar | Mar 1971 | A |
3735209 | Saddler | May 1973 | A |
3735211 | Kapnias | May 1973 | A |
4127840 | House | Nov 1978 | A |
4222277 | Kurtz et al. | Sep 1980 | A |
4277814 | Giachino et al. | Jul 1981 | A |
4314226 | Oguro et al. | Feb 1982 | A |
4430593 | Gohlert et al. | Feb 1984 | A |
4456796 | Nakagawa et al. | Jun 1984 | A |
4533795 | Baumhauer et al. | Aug 1985 | A |
4558184 | Busch-Vishniac et al. | Dec 1985 | A |
4628740 | Ueda et al. | Dec 1986 | A |
4643935 | McNeal et al. | Feb 1987 | A |
4691363 | Khanna | Sep 1987 | A |
4737742 | Takoshima et al. | Apr 1988 | A |
4776019 | Miyatake | Oct 1988 | A |
4825335 | Wilner | Apr 1989 | A |
4891686 | Krausse, III | Jan 1990 | A |
4908805 | Sprenkels et al. | Mar 1990 | A |
4910840 | Sprenkels et al. | Mar 1990 | A |
4984268 | Brown et al. | Jan 1991 | A |
5099396 | Barz et al. | Mar 1992 | A |
5101543 | Cote et al. | Apr 1992 | A |
5101665 | Mizuno | Apr 1992 | A |
5146435 | Bernstein | Sep 1992 | A |
5151763 | Marek et al. | Sep 1992 | A |
5153379 | Guzuk et al. | Oct 1992 | A |
5159537 | Okano | Oct 1992 | A |
5178015 | Loeppert et al. | Jan 1993 | A |
5202652 | Tabuchi et al. | Apr 1993 | A |
5216278 | Lin et al. | Jun 1993 | A |
5237235 | Cho et al. | Aug 1993 | A |
5241133 | Mullen, III et al. | Aug 1993 | A |
5252882 | Yatsuda | Oct 1993 | A |
5257547 | Boyer | Nov 1993 | A |
5313371 | Knecht et al. | May 1994 | A |
5357807 | Guckel et al. | Oct 1994 | A |
5394011 | Yamamoto et al. | Feb 1995 | A |
5400949 | Hirvonen et al. | Mar 1995 | A |
5408731 | Berggvist et al. | Apr 1995 | A |
5449909 | Kaiser et al. | Sep 1995 | A |
5452268 | Bernstein | Sep 1995 | A |
5459368 | Onishi et al. | Oct 1995 | A |
5477008 | Pasqualoni et al. | Dec 1995 | A |
5490220 | Loeppert | Feb 1996 | A |
5506919 | Roberts | Apr 1996 | A |
5531787 | Lesinski et al. | Jul 1996 | A |
5545912 | Ristic et al. | Aug 1996 | A |
5592391 | Muyshondt et al. | Jan 1997 | A |
5593926 | Fujihira | Jan 1997 | A |
5611129 | Yoshimoto et al. | Mar 1997 | A |
5659195 | Kaiser et al. | Aug 1997 | A |
5712523 | Nakashima et al. | Jan 1998 | A |
5736783 | Wein et al. | Apr 1998 | A |
5740261 | Loeppert et al. | Apr 1998 | A |
5748758 | Measco, Jr. et al. | May 1998 | A |
5761053 | King et al. | Jun 1998 | A |
5776798 | Quan et al. | Jul 1998 | A |
5783748 | Otani | Jul 1998 | A |
5789679 | Koshimizu et al. | Aug 1998 | A |
5818145 | Fukiharu | Oct 1998 | A |
5831262 | Greywall et al. | Nov 1998 | A |
5838551 | Chan | Nov 1998 | A |
5852320 | Ichihashi | Dec 1998 | A |
5870482 | Loeppert et al. | Feb 1999 | A |
5886876 | Yamaguchi | Mar 1999 | A |
5889872 | Sooriakumar et al. | Mar 1999 | A |
5895229 | Carney et al. | Apr 1999 | A |
5898574 | Tan et al. | Apr 1999 | A |
5901046 | Ohta et al. | May 1999 | A |
5923995 | Kao et al. | Jul 1999 | A |
5939784 | Glenn | Aug 1999 | A |
5939968 | Nguyen et al. | Aug 1999 | A |
5949305 | Shimamura | Sep 1999 | A |
5976912 | Fukutomi et al. | Nov 1999 | A |
5977626 | Wang et al. | Nov 1999 | A |
5981314 | Glenn et al. | Nov 1999 | A |
5999821 | Kaschke | Dec 1999 | A |
6003381 | Kato | Dec 1999 | A |
6012335 | Bashir et al. | Jan 2000 | A |
6052464 | Harris et al. | Apr 2000 | A |
6066882 | Kato | May 2000 | A |
6078245 | Fritz et al. | Jun 2000 | A |
6088463 | Rombach et al. | Jul 2000 | A |
6093972 | Carney et al. | Jul 2000 | A |
6108184 | Minervini et al. | Aug 2000 | A |
6117705 | Glenn et al. | Sep 2000 | A |
6118881 | Quinlan et al. | Sep 2000 | A |
6119920 | Guthrie et al. | Sep 2000 | A |
6136419 | Fasano et al. | Oct 2000 | A |
6140144 | Najafi et al. | Oct 2000 | A |
6147876 | Yamaguchi et al. | Nov 2000 | A |
6150748 | Fukiharu | Nov 2000 | A |
6157546 | Petty et al. | Dec 2000 | A |
6163071 | Yamamura | Dec 2000 | A |
6178249 | Hietanen et al. | Jan 2001 | B1 |
6191928 | Rector et al. | Feb 2001 | B1 |
6201876 | Niemi et al. | Mar 2001 | B1 |
6228676 | Glenn et al. | May 2001 | B1 |
6242802 | Miles et al. | Jun 2001 | B1 |
6262477 | Mahulikar et al. | Jul 2001 | B1 |
6282072 | Minervini et al. | Aug 2001 | B1 |
6282781 | Gotoh et al. | Sep 2001 | B1 |
6308398 | Beavers | Oct 2001 | B1 |
6324067 | Nishiyama | Nov 2001 | B1 |
6324907 | Halteren et al. | Dec 2001 | B1 |
6339365 | Kawase et al. | Jan 2002 | B1 |
6352195 | Guthrie et al. | Mar 2002 | B1 |
6388887 | Matsumoto et al. | May 2002 | B1 |
6401542 | Kato | Jun 2002 | B1 |
6403881 | Hughes | Jun 2002 | B1 |
6404100 | Chujo et al. | Jun 2002 | B1 |
6428650 | Chung | Aug 2002 | B1 |
6437412 | Higuchi et al. | Aug 2002 | B1 |
6439869 | Seng et al. | Aug 2002 | B1 |
6441503 | Webster | Aug 2002 | B1 |
6472724 | Matsuzawa et al. | Oct 2002 | B1 |
6479320 | Gooch | Nov 2002 | B1 |
6483037 | Moore et al. | Nov 2002 | B1 |
6512834 | Banter et al. | Jan 2003 | B1 |
6521482 | Hyoudo et al. | Feb 2003 | B1 |
6522762 | Mullenborn et al. | Feb 2003 | B1 |
6526653 | Glenn et al. | Mar 2003 | B1 |
6534340 | Karpman et al. | Mar 2003 | B1 |
6594369 | Une | Jul 2003 | B1 |
6621392 | Volant et al. | Sep 2003 | B1 |
6664709 | Irie | Dec 2003 | B2 |
6675471 | Kimura et al. | Jan 2004 | B1 |
6781231 | Minervini | Aug 2004 | B2 |
6859542 | Johannsen et al. | Feb 2005 | B2 |
6876052 | Tai | Apr 2005 | B1 |
6928718 | Carpenter | Aug 2005 | B2 |
6936918 | Harney et al. | Aug 2005 | B2 |
6962829 | Glenn et al. | Nov 2005 | B2 |
7003127 | Sjursen et al. | Feb 2006 | B1 |
7080442 | Kawamura et al. | Jul 2006 | B2 |
7092539 | Sheplak et al. | Aug 2006 | B2 |
7142682 | Mullenborn et al. | Nov 2006 | B2 |
7166910 | Minervini | Jan 2007 | B2 |
7215223 | Hattanda et al. | May 2007 | B2 |
7221767 | Mullenborn et al. | May 2007 | B2 |
7242089 | Minervini | Jul 2007 | B2 |
7280855 | Hawker et al. | Oct 2007 | B2 |
7381589 | Minervini | Jun 2008 | B2 |
7382048 | Minervini | Jun 2008 | B2 |
7434305 | Minervini | Oct 2008 | B2 |
7436054 | Zhe | Oct 2008 | B2 |
7439616 | Minervini | Oct 2008 | B2 |
7501703 | Minervini | Mar 2009 | B2 |
7537964 | Minervini | May 2009 | B2 |
RE40781 | Johannsen et al. | Jun 2009 | E |
7927927 | Quan et al. | Apr 2011 | B2 |
8018049 | Minervini | Sep 2011 | B2 |
8103025 | Mullenborn et al. | Jan 2012 | B2 |
8121331 | Minervini | Feb 2012 | B2 |
20020048839 | Miller et al. | Apr 2002 | A1 |
20020067663 | Loeppert et al. | Jun 2002 | A1 |
20020102004 | Minervini | Aug 2002 | A1 |
20030052404 | Thomas | Mar 2003 | A1 |
20030133588 | Pedersen | Jul 2003 | A1 |
20040032705 | Ma | Feb 2004 | A1 |
20040120540 | Mullenborn et al. | Jun 2004 | A1 |
20040184632 | Minervini | Sep 2004 | A1 |
20050018864 | Minervini | Jan 2005 | A1 |
20050069164 | Muthuswamy et al. | Mar 2005 | A1 |
20050185812 | Minervini | Aug 2005 | A1 |
20050218488 | Matsuo | Oct 2005 | A1 |
20060157841 | Minervini | Jul 2006 | A1 |
20060177085 | Izuchi et al. | Aug 2006 | A1 |
20070189568 | Wilk et al. | Aug 2007 | A1 |
20070295663 | Iraneta | Dec 2007 | A1 |
20080247585 | Leidl et al. | Oct 2008 | A1 |
20100264499 | Goodelle et al. | Oct 2010 | A1 |
20110096945 | Furst et al. | Apr 2011 | A1 |
Number | Date | Country |
---|---|---|
2315417 | Feb 2001 | CA |
10303263 | Aug 2004 | DE |
0 077 615 | Apr 1983 | EP |
0 534 251 | Mar 1993 | EP |
0 682 408 | Nov 1995 | EP |
0 774 888 | May 1997 | EP |
981413 | Dec 1999 | FI |
63275926 | Nov 1988 | JP |
01169333 | Jul 1989 | JP |
07-099420 | Apr 1995 | JP |
09-107192 | Apr 1997 | JP |
09-306934 | Nov 1997 | JP |
09-318650 | Dec 1997 | JP |
10-062282 | Mar 1998 | JP |
2000-165999 | Jun 2000 | JP |
2000-199725 | Jul 2000 | JP |
2000-277970 | Oct 2000 | JP |
2000-316042 | Nov 2000 | JP |
2000-340687 | Dec 2000 | JP |
2001-102469 | Apr 2001 | JP |
2001-308217 | Nov 2001 | JP |
2002-324873 | Nov 2002 | JP |
2002-334951 | Nov 2002 | JP |
2005-235377 | Sep 2005 | JP |
2006-283561 | Oct 2006 | JP |
2010021225 | Jan 2010 | JP |
0042636 | Jul 2000 | WO |
0119133 | Mar 2001 | WO |
0120948 | Mar 2001 | WO |
0141497 | Jun 2001 | WO |
0215636 | Feb 2002 | WO |
0245463 | Jun 2002 | WO |
2006020478 | Feb 2006 | WO |
2006061058 | Jun 2006 | WO |
Entry |
---|
International Search Report and Written Opinion for PCT/US2013/054139, dated Nov. 25, 2013, 34 pages. |
Applied Porous Technologies, Inc., “Metal Filter Products and the LC System,” p. 1-4, 2004. |
Mott Corporation, “Porous Metal Frits in Liquid Chromatography,” p. 1-5, printed Jun. 2, 2011. |
U.S. Appl. No. 60/209,692, filed Jun. 6, 2000, Carpenter. |
U.S. Appl. No. 60/450/569, filed Feb. 28, 2003, Minervini. |
U.S. Appl. No. 09/886,854, filed Jun. 21, 2001, Minervini. |
U.S. Appl. No. 10/921,747, filed Aug. 19, 2004, Minervini. |
U.S. Appl. No. 60/253,543, filed Nov. 29, 2000, Minervini. |
U.S. Appl. No. 11/741,881, filed Apr. 30, 2007, Minervini. |
Grieg, William, “Integrated Circuit Packaging, Assembly and Interconnections” (2007). |
“Pressure Transducer Handbook,” pp. 4-2 to 4-5, 12-1 to 12-5, National Semiconductor Corp., USA (1977). |
Rosenberger, M.E., “Absolute Pressure Transducer for Turbo Application”, pp. 77-79 (1983). |
Smith, K., An Inexpensive High Frequency High Power VLSI Chip Carrier, IEPS. |
Card, D., How ETA Chose to Make a Megaboard for its Supercomputer, pp. 50-52, Electron. Bus. (1988). |
Speerschneider, C.F. et al., “Solder Bump Reflow Tape Automated Bonding”, pp. 7-12, Proceedings 2nd ASM International Electronic Materials and Processing Congress (1989). |
Tummala and Rymaszewski, “Microelectronics Packaging Handbook” (1989). |
Minges, Merrill, L., “Electronics Materials Handbook, vol. 1 Packaging” (1989). |
Pecht, Michael G., “Handbook of Electronic Package Design” (1991). |
Petersen, Kurt et al., “Silicon Accelerometer Family; Manufactured for Automotive Applications” (1992). |
Gilleo, Ken, “Handbook of Flexible Circuits” (1992). |
Scheeper, P.R. et al., “A Review of Silicon Microphones”, Sensor and Actuators Actuators, A 44, pp. 1-11 (1994). |
Lau, John, ed., “Ball Grid Array Technology”, McGraw Hill, Inc., USA (1995). |
Khadpe, S., “Worldwide Activities in Flip Chip, BGA and TAB Technologies and Markets”, pp. 290-293, Proceedings 1995 International Flip Chip, Ball Grid Array, TAB and Advanced Packaging Symposium (1995). |
Alvarez, E. and Amkor Technology, Inc., “CABGA Optional Process Description” (Apr. 1997). |
Dizon, C. and Amkor Technology, Inc., “CABGA Control Plan” (Dec. 1997). |
Bever, T. et al., “BICMOS Compatible Silicon Microphone Packaged as Surface Mount Device”, Sensors Expo (1999). |
Torkkeli, Altti et al., “Capacitive Silicon Microphone,” Physica Scripta vol. T79, pp. 275-278 (1999). |
Pecht et al., “Electronic Packaging Materials and their Properties” (1999). |
Premachandran, C.S. et al,, “Si-based Microphone Testing Methodology and Noise Reduction,” Proceedings of SPIE, vol. 4019 (2000). |
Torkkeli, Altti et al., “Capacitive microphone with low-stress polysilicon membrane and high-stress polysilicon backplate,” Sensors and Actuators (2000). |
“Harper, Charles ed., McGraw Hill, “Electronic Packaging and Interconnection Handbook” (2000)”. |
JEDEC Standard Terms, Definitions, and Letter Symbols for Microelectronic Devices (2000). |
Institute of Electrical and Electronics Engineers, IEEE 100 The Authoritative Dictionary of IEEE Standards Terms Seventh Edition (2000). |
Arnold, David Patrick, “A MEMS-Based Directional Acoustic Array for Aeoacoustic Measurements,” Master's Thesis, University of Florida (2001). |
Henning, Albert K. et al., “Microfluidic MEMS for Semiconductor Processing,” IEEE Transaction on Components, Packaging, & Mfg. Tech., Part B, pp. 329-337, vol. 21, No. 4 (Nov. 1998). |
Giasolli, Robert, “MEMS Packaging Introduction” (Nov. 2000). |
Gale, Bruce K., “MEMS Packaging,” Microsystems Principles (Oct. 2001). |
Amkor Technology, Inc., “Control Plan—CABGA” (Apr. 2012). |
Puttlitz & Totta, “Area Array Interconnection Handbook” (2001). |
International Search Report for Application No. PCT/US05/021276 (Oct. 21, 2005). |
European Search Report for Application No. 07702957.4 (Jul. 19, 2007). |
Chung, K., et al., “Z-Axis Conductive Adhesives for Fine Pitch Interconnections”, ISHM Proceedings, pp. 678-689 (1992). |
Masuda, N., IEEE/CHMT Japan IEMT Symposium, pp. 55-58, (1989). |
Kristiansen, H. et al., “Fine Pitch Connection of Flexible Circuits to Rigid Substrates Using Non-Conductive Epoxy Adhesive”, IEPS, pp. 759-773 (1991). |
Sakuma, K., et al., “Chip on Glass Technology with Standard Aluminized IC Chip”, ISHM, pp. 250-256 (1990). |
Katopis, G.A., “Delta-I Noise Specification for a High Performance Computing ‘Machine’”, Proc. IEEE, pp. 1405-1415 (1985). |
Davis, E.M., et al., “Solid Logic Technology: Versatile High-Performance Microelectronics”, IBM J. Res. Devel., 8(2), pp. 102-114 (1964). |
Lloyd, R.H.F., “ASLT: An Extension of Hybrid-Miniaturization Techniques”, IBM J. Res. Develop., 11(4), pp. 86-92 (1967). |
Fox, P.E,. et al., “Design of Logic-Circuit Technology for IBM System 370 Models 145 and 155”, IBM J. Res. Devel. 15(2), pp. 384-390 (1971). |
Gedney, R.W., “Trends in Packaging Technology”, 16th Annual Proceedings of Reliability Physics, pp. 127-129 (1978). |
Schwartz, B. et al., “Ceramics and the Micromodule”, RCA Eng., 5(4), p. 56-58 (1960). |
Lomeson, .R.B, “High Technology Microcircuit Packaging”, International Electronic Packaging Society Proceedings, pp. 498-503 (1982). |
Balde, J.W., “Status and Prospects of Surface Mount Technology”, Solid State Technol., 29(6), pp. 99-103 (1986). |
Lau, John, “Chip Scale Package Design, Materials, Process, Reliability, and Applications”, McGraw-Hill(1999). |
Notice of Investigation, Inv. No. 337-TA-629, in the Matter of “Certain Silicon Microphone Packages and Products Containing the Same”, United States International Trade Commission, issued Jan. 3, 2008. |
Arnold, David P. et al., “MEMS-Based Acoustic Array Technology,” 40th AIAA Aerospace Sciences Meeting & Exhibit, Jan. 14-17, 2000, American Institute of Aeronautics and Astronautics, Reston, Virginia. |
Kress, H.J. et al, “Integrated Silicon Pressure Sensor for Automotive Application with Electronic Trimming,” SAE International, International Congress and Exposition, Detroit, Michigan (Feb. 27, 1995-Mar. 2, 1995). |
Wiley Electrical and Electronics Engineering Dictionary, p. 275, IEEE Press (2004). |
Initial Determination on Violation of Section 337 and Recommended Determination on Remedy and Bond, In the Matter of Certain Silicon Microphone Packages and Products Containing the Same, ITC Inv. No. 337-TA-695 (Nov. 22, 2010). |
Notice of Commission Determination to Review in Part an Initial Determination, In the Matter of Certain Silicon Microphone Packages and Products Containing the Same, ITC Inv. No. 337-TA-695 (Jan. 21, 2011). |
Initial Determination on Violation of Section 337 and Recommended Determination on Remedy and Bond, In the Matter of Certain Silicon Microphone Packages and Products Containing the Same, ITC Inv. No. 337-TA-629 (Jan. 12, 2009). |
Commission Opinion, In the Matter of Certain Silicon Microphone Packages and Products Containing the Same, ITC Inv. No. 337-TA-629 (Aug. 18, 2009). |
Federal Circuit Court of Appeals Opinion, Mems Technology Berhad v International Trade Commission and Knowles Electronics LLC, Case No. 2010-1018 (Jun. 3, 2011). |
Initial Determination Terminating Investigation Based on Settlement Agreement, In the Matter of Certain Silicon Microphone Packages and Products Containing the Same, ITC Inv. No. 337-TA-825 (Mar. 12, 2013). |
Joint Stipulation of Dismissal, Knowles Electronics, LLC v. Analog Devices, Inc., United States District Court for the Northern District of Illinois, Civil Action No. 1:11-cv-06804 (Mar. 12, 2013). |
Notification of Docket Entry, Knowles Electronics, LLC v. Analog Devices, Inc., United States District Court for the Northern District of Illinois, Civil Action No. 1:11-cv-06804 (Mar. 13, 2013). |
Notice of a Commission Determination Not to Review an Initial Determination Terminating Investigation Based on a Settlement Agreement; Termination of the Investigation, In the Matter of Certain Silicon Microphone Packages and Products Containing the Same, ITC Inv. No. 337-TA-825 (Apr. 8, 2013). |
Corrected Conditional Rebuttal Expert Report of Wilmer Bottoms Regarding Validity, Public Version, In the Matter of Certain Silicon Microphone Packages and Products Containing the Same, ITC Inv. No. 337-TA-825 (Mar. 7, 2013). |
Initial Post-Hearing Brief of Complainant Knowles Electronics, LLC, Public Version, In the Matter of Certain Silicon Microphone Packages and Products Containing the Same, ITC Inv. No. 337-TA-825 (Mar. 7, 2013). |
Reply Post-Hearing Brief of Complainant Knowles Electronics, LLC, Public Version, In the Matter of Certain Silicon Microphone Packages and Products Containing the Same, ITC Inv. No. 337-TA-825 (Mar. 7, 2013). |
Expert Report of Prof. Michael G. Pecht, Public Version, In the Matter of Certain Silicon Microphone Packages and Products Containing the Same, ITC Inv. No. 337-TA-825 (Mar. 7, 2013). |
Initial Post-Hearing Brief of Respondents Analog Devices, Inc., Amkor Technology, Inc. & Avnet, Inc., Public Version, In the Matter of Certain Silicon Microphone Packages and Products Containing the Same, ITC Inv. No. 337-TA-825 (Mar. 7, 2013). |
Reply Post-Hearing Brief of Respondents Analog Devices, Inc., Amkor Technology, Inc. & Avnet, Inc., Public Version, In the Matter of Certain Silicon Microphone Packages and Products Containing the Same, ITC Inv. No. 337-TA-825 (Mar. 7, 2013). |
Opinion and Order, Motion for Reconsideration of the Court's Claim Construction Ruling, Knowles Electronics, LLC v. Analog Devices, Inc., United States District Court for the Northern District of Illinois, Civil Action No. 1:11-cv-06804 (Feb. 19, 2013). |
Rulings on Claim Construction, Knowles Electronics, LLC v. Analog Devices, Inc., United States District Court for the Northern District of Illinois, Civil Action No. 1:11-cv-06804 (May 30, 2012). |
Opinion and Order, Motion for Partial Summary Judgment, Knowles Electronics, LlC v. Analog Devices, Inc., United States District Court for the Northern District of Illinois, Civil Action No. 1:11-cv-06804 (Mar. 7, 2013). |
A. Dehe et al., Silicon Micromachined Microphone Chip at Siemens, 137th Regular Meeting of the Acoustical Society of America, Mar. 16, 1999, US. |
A. J. Sprenkels, J.A. Voorthuryzen, and P. Bergveld, “A theoretical analysis of the electric airgap field-effect structure for sensors applications,” 1986, US. |
A.J. Sprenkels, W. Olthius, and P. Bergveld, “The application of silicon dioxide as an elecret materials”, Proc. 6th Int. Symp. Electrets, ISE 6, p. 164-169, 1988, UK. |
E.H. Pederson et al., “Flip-Chip Hermetic Packaging for MEMS”, Proceedings of Eurosensors XIV, Copenhagen, Denmark, Aug. 27-30, 2000 US. |
J.A. Voorthuyzen and P. Bergveld, “Semiconductor-based electret sensor for sound and pressure”, IEEE Trans. Dielect, Elect. Insulation, 1989, p. 267-276. |
J.A. Voorthuyzen and P. Bergveld, “The PRESSFET: An integrated electret-MOSFET based pressure sensor”, Sens Actuators, 1988, p. 349-360. |
Joint Electron Device Engineering Council, “JEDEC Standard, Descriptive Designation System for Semiconductor-Device Packages, JESD3O-B, Elec. Indus. Ass'n” Apr. 1995, US. |
Kourosh Amiri Jam et al., “Design Methodology of Modular Microsystems”, Mar. 29, 2001, Germany. |
M. Schuenemann et al., “A highly flexible design and production framework for modularized microelectromechanical systems”, Oct. 7, 1998, pp. 153-168. |
Malshe et al., “Challenges in the Packaging of MEMS”, 1999, p. 41-47, US. |
Pecht et al., Plastic-Encapsulated Microelectronics, 1995, p. 460, US. |
Prasad, Ray P., “Surface Mount Technology: Principles and Practices” 2nd Edition, 1997, p. 3-50, 129-135, 149-203, 339-597, 747-757, US. |
Tummala, Rao R., “Microelectronics Packaging Handbook: Semiconductor Packaging Part II”, 1997, pp. 1-42; Ch. 7 p. 11-3 to 11-128; Ch. 8.3 p. 11-136 to 11-185; Ch. 9 p. 11-284 to 11-393; Section 11.5 p. 11-516 to 11-527; Section 11.6 p. 11-528 to 11-533; Ch. 14 p. 11-873 to 11-927; Glossary pp. 11-931 to 11-976, USA. |
Tummala, Rao R., “Fundamentals of Microsystems Packaging”, 2001, p. 2-42, 65-68, 81-119, 120-183, 265-294, 297-340, 543-578, 580-610, 659-693, 695-747, 678-682, 924-944, US. |
Respondents' Notice of Prior Art, In the Matter of Certain Silicon Microphone Packages and Products Containing the Same, ITC Inv. No. 337-TA-888 (Oct. 23, 2013). |
Construing Terms of Asserted Claims of Patents at Issue & Denying Complainants' Motion to Supplement Its Proposed Claim Constructions, Inv. No. 337-TA-888, U.S. Int'l Trade Commission, Apr. 15, 2014. |
Respondents Goertek, Inc.'s, and Goertek Electronics, Inc.'s Petition for Review of Initial and Recommended Determinations, Inv. No. 337-TA-888, U.S. Int'l Trade Commission, Sep. 17, 2014. |
Respondents Goertek, Inc.'s, and Goertek Electronics, Inc.'s Response to Complainant Knowles Electronics LLC's Contingent Petition for Review of Final Initial Determination, Inv. No. 337-TA-888, U.S. Int'l Trade Commission, Sep. 29, 2014. |
Complainant Knowles Electronics, LLC's Contingent Petition for Review of Final Initial Determination, Inv. No. 337-TA-888, U.S. Int'l Trade Commission, Sep. 17, 2014. |
Complainant Knowles Electronics, LLC's Response to Petition for Review of Respondents Goertek Inc. and Goertek Electronics, Inc., Inv. No. 337-TA-888, U.S. Int'l Trade Commission, Sep. 29, 2014. |
Complainant Knowles Electronics, LLC's Statement on the Public Interest Pursuant to 19 C.F.R. § 210.50(a)(4), Inv. No. 337-TA-888, U.S. Int'l Trade Commission, Oct. 2, 2014. |
Summary of Complainant Knowles Electronics, LLC's Response to Petition for Review of Respondents Goertek Inc. and Goertek Electronics, Inc., Inv. No. 337-TA-888, U.S. Int'l Trade Commission, Sep. 29, 2014. |
Notice Regarding Issuance of Public Version of Final Initial Determination and Recommended Determination on Remedy and Bond, Inv. No. 337-TA-888, U.S. Int'l Trade Commission, Oct. 15, 2014. |
Number | Date | Country | |
---|---|---|---|
20140044297 A1 | Feb 2014 | US |
Number | Date | Country | |
---|---|---|---|
61681685 | Aug 2012 | US |