1. Field of the Invention
The present invention relates to a microphone circuit that includes an external power supply circuit, and obtains a microphone output even in a case where an external power is supplied or in a case where the external power is not supplied, by automatically switching a circuit corresponding to the respective cases.
2. Related Background of the Invention
Microphones can be grouped into a dynamic microphone, a ribbon type microphone, a condenser microphone and the like according to the transducing form of a microphone unit as an electroacoustic transducing module. The dynamic microphone and the ribbon type microphone have the advantage of being capable of carrying out electroacoustic conversion without a power supply, but they have the drawback that the output level is low. Accordingly, the dynamic microphone or the ribbon type microphone has a problem in that if an output cable is extended, noise penetrates into an output cable, which is a transmission line of a sound signal, due to the low output level, thereby causing a significant degradation of S/N ratio of the output signal.
In order to solve such problem, an amplifier is incorporated in the microphone side to amplify a signal at the microphone side and thus increase the signal level for transmission. In order to operate the above-described amplifier at the microphone side, a power supply is required, and thus as a means for supplying power to the microphone side, an amplifier module that operates with a phantom power supply is commercialized, paying attention to the phantom power supply that is often used in a condenser microphone. When the microphone output needs to be amplified at the microphone side, the above-described amplifier module is connected between the microphone and the microphone cable and the phantom power supply is connected, thereby supplying a phantom power from the outside. By doing this way, the above-described amplifier module operates to amplify the microphone output and thus increase the output level, so that even if noise penetrates when transmitting the microphone output via the microphone cable, the degradation of S/N ratio can be reduced.
The above-described phantom power is supplied to the microphone via the output cable of the microphone. The microphone cable in this case is typically constructed as to be removably mounted to the microphone by a 3-pin microphone connector defined by EIAJ RC-5236 “a latch-lock round connector for an audio system.” In the above-described 3-pin microphone connector, typically, a first pin is used for grounding, a second pin used as the hot side of a signal, and a third pin used as the cold side of the signal. A ground line of the microphone cable, more specifically, a shielded line is connected to the first pin. A signal line at the hot side of the microphone cable is connected to the second pin, and a signal line at the cold side is connected to the third pin.
If the amplifier module is mounted between a dynamic microphone and the microphone cable, the dynamic microphone is physically coupled to the amplifier module, thus causing a problem that the microphone portion is enlarged. The above-described problem can be dissolved by interposing a cable between the dynamic microphone and the amplifier module. However, interposing of the above-described cable increases the number of connection points by a connector, thus increasing the factors to cause contact failure and the factors to cause noise penetration due to the presence of the connecting portion by to the connector.
A product made by incorporating the amplifier, which operates with a phantom power supply, into a ribbon type microphone is also commercialized. This ribbon type microphone with the built-in amplifier is however a product on condition that there is a phantom power supply, and thus without the phantom power supply it is impossible to obtain the output and thus this ribbon type microphone can not be used.
In addition, as a prior art related to the present invention, there is proposed a microphone power supply device including: a gain detector for detecting a gain of a microphone amplifier to which a microphone is connected; a gain determination unit that determines an apparatus, which is connected to the microphone amplifier, based on the gain which the gain detector detects; a power supply controller for controlling power supply to the microphone; and a power supply unit for supplying power to the microphone, wherein the power supply controller is controlled based on the gain of the microphone amplifier (e.g., see Patent Document 1: Japanese Patent Application Laid-open No. 2003-116193).
However, the invention described in Patent Document 1 is the one for automatically controlling the power supply controller based on the gain of the apparatus connected to the microphone amplifier, and as long as the automatically controlling of the power supply controller is concerned, the invention described in Patent Document 1 is related to the present invention, however, it differs from the present invention in the problem to be solved and in the means for solving the problem.
[Problem to be Solved by the Invention]
The present invention is intended to provide a microphone circuit that includes an amplifier and a circuit capable of supplying an external power, and obtains a microphone output even in a case where an external power is supplied or in a case where the external power is not supplied, by automatically switching a circuit corresponding to the respective cases.
[Means for Solving the Problem]
A main feature of the present invention is a microphone circuit including: an electroacoustic transducing module for receiving a sound wave to convert it into an electric signal; an amplifier for amplifying the electric signal output from the electroacoustic transducing module; an external power supply circuit capable of supplying power for driving at least the amplifier from the outside; a light source that is turned on when the external power is supplied through the external power supply circuit; and a photo relay having contacts that are turned on and off in response to blinking of the light source, wherein the contacts of the photo relay are connected so as to output an output signal of the amplifier as a microphone output when the light source is turned on and output an output signal of the electroacoustic transducing module as a microphone output when the light source is turned off.
[Advantages of the Invention]
The contacts of the photo relay are turned on and off depending on when the external power is supplied and when the external power is not supplied, respectively, and when the external power is supplied and the light source of the photo relay is turned on, the output signal of the amplifier is the microphone output and is output with a sufficiently high output level. When the external power is not supplied and the light source of the photo relay is turned off, the contacts of the photo relay cause the output signal of the electroacoustic transducing module to be output as the microphone output, and therefore, although the output level is low, it is possible to prevent a situation where the microphone output can not be taken.
Embodiments of a microphone circuit concerning the present invention will be described below with reference to the accompanying drawings.
The above-described ground line is a shielded line, and the shielded line wraps around the hot side signal line and the cold side signal line via an insulating coating. Each line of the above-described microphone cable is coupled to the microphone via a connector 30. The connector 30 is a 3-pin type connector, and the ground line of the microphone cord is connected to a first pin, which is grounded at the microphone side. The signal line at the hot side of the microphone cord is connected to a second pin of the connector 30, and the signal line at the cold side of the microphone cord is connected to a third pin of the connector 30. The second and third pins are connected to one end and the other end of the secondary winding of an output transformer 25 at the microphone side, respectively. The secondary winding of the output transformer 25 has a center tap 26, and the center tap 26 is connected to a power terminal of the amplifier 18 via a light source of a photo relay 20 and a regulated power supply 27. As is known, the phantom power is supplied in balance from the second and third pins of the connector 30 to join at the center tap 26 of the output transformer 25 and is supplied to the photo relay 20 and the amplifier 18.
The photo relay 20 includes: a light source that is turned on when the external power is supplied through the above-described phantom power supply circuit, which is an external power supply circuit; and contacts that are turned on and off in response to the blinking of the light source. For the photo relay 20, it is preferable to use a Photo-MOS relay including LEDs as the light source and MOS-FETs as the contacts that are turned on and off in response to the blinking of the LEDs. Moreover, for the MOS-FETs as the contacts, the ones including an a-contact that is turned on by turning on of the LEDs and is turned off by turning off of the LEDs, and a b-contact that is turned off by turning on of the LEDs and is turned on by turning off of the LEDs are used. The Photo-MOS relay with such configuration includes a Photo-MOS relay “TCLP4026G” made by Toshiba Corp., for example, and this is used in the embodiment. In
The output terminal of the amplifier 18 is connected to one end side of the primary winding of the output transformer 25 via an a-contact 22 of the photo relay 20 and a capacitor 28. The b-contact 24 of the photo relay 20 is connected so as to bypass the amplifier 18 and output an output signal of the dynamic microphone unit 11, which is the electroacoustic transducing module, as the microphone output. Specifically, one output terminal of the dynamic microphone unit 11 is connected to the input terminal of the amplifier 18 and is connected to one end side of the primary winding of the output transformer 25 via the serially-connected b-contact 24 and the capacitor 28, as described above. The other end side of the primary winding of the output transformer 25 is an earth terminal, and this earth terminal is grounded at the microphone side together with the other output terminal of the dynamic microphone unit 11, the first pin of the connector 10, an earth terminal of the amplifier 18, and an earth terminal of the regulated power supply 27.
As apparent from the embodiment shown in
When there is no phantom power supply or when phantom power is not supplied, power is not supplied to LEDs 21, 23 of the photo relay 20 and to the amplifier 18, so that LEDs 21, 23 are turned off and the amplifier 18 stops to operate. By turning off of LEDs 21, 23, the a-contact 22 of the photo relay 20 is turned off and the b-contact 24 is turned on. By turning on of the b-contact 24, the output signal of the dynamic microphone unit bypasses the amplifier 18 and is through the b-contact 24 and the capacitor 28, and is output from both terminals of the secondary winding of the output transformer 25 as the microphone output. In other words, it is possible to obtain an output as an ordinary microphone that does not incorporate the amplifier.
Assuming that there is no photo relay 20, then when external power is not supplied, the operation of the amplifier 18 stops and thereby the transmission of the output signal of the microphone unit 11 is cut off at the amplifier 18 and thus the microphone output can not be obtained. According to the embodiment shown in
Next, an embodiment shown in
Also in the embodiment shown in
Next, an embodiment shown in
A microphone unit is connected to the connector 14. When the microphone unit is a condenser microphone unit, as is known, phantom power flows in from the center tap 17 of the primary winding of the input transformer 16, and is divided into both sides of the primary winding to be supplied to the electrodes of the condenser microphone unit via the second and third pins of the connector 14. An output signal of the condenser microphone unit is input to the amplifier 18 via the connector 14 and the input transformer 16. By supplying of the phantom power, LEDs 21, 23 of the photo relay 20 are turned on and the contact 22 is turned on and the contact 24 is turned off, and the output signal of the amplifier 18 is output to the outside via the contact 22, the capacitor 28, the output transformer 25, and the connector 30.
Also when a dynamic type microphone unit or a ribbon type microphone unit is used as the electroacoustic transducing module, the output signal is input to the amplifier 18 from the second and third pins of the connector 14 via the input transformer 16. When phantom power is supplied, the output of the amplifier 18 is output to the outside via the contact 22, the capacitor 28, the output transformer 25, and the connector 30, similarly as the embodiments shown in
Among the microphones including a condenser microphone unit as the electroacoustic transducing module, there is the one that does not require a phantom power supply by including an internal power supply or the one consisting mainly of a phantom power supply and using a built-in power supply as backup. In such condenser microphone, when phantom power is not supplied, the output of the microphone unit itself is output to the outside without being amplified at the amplifier 18, as when a dynamic type microphone unit or a ribbon type microphone unit is used and the phantom power is not supplied.
Number | Date | Country | Kind |
---|---|---|---|
2006-141065 | May 2006 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
4567608 | Watson et al. | Jan 1986 | A |
20020186855 | Akino et al. | Dec 2002 | A1 |
20050232442 | Seknicka | Oct 2005 | A1 |
Number | Date | Country |
---|---|---|
2003-116193 | Apr 2003 | JP |
Number | Date | Country | |
---|---|---|---|
20070269058 A1 | Nov 2007 | US |