The disclosure relates to a microphone, more particularly to a microphone having an airtight back chamber.
Referring to
However, by virtue of its mechanical characteristic, the dynamic microphone 1 is very sensitive to low frequency vibration ranging from 50 to 300 Hz. Mechanical vibration generated by rubbing with the outer casing 11 when holding the dynamic microphone 1, or mechanical vibration generated by internal line impact caused by shaking, or mechanical vibration generated by the stage will still pass through the outer casing 11 and transmitted to the capsule 12 through the first and second shock absorbing seats 13, 14. Thus, there is still room for improvement of the aforesaid dynamic microphone 1.
Therefore, an object of the present disclosure is to provide a microphone having an airtight back chamber that is capable of alleviating at least one of the drawbacks of the prior art.
According to this disclosure, a microphone includes an outer casing, a capsule unit, an airtight unit and a damping material. The outer casing includes an inner surface surrounding an axis and defining a chamber. The capsule unit includes a carrier disposed in the chamber, and a sound receiving module connected to the carrier for receiving sound. The carrier has a through hole opposite to the sound receiving module along the axis. The airtight unit includes a shock absorber connected to the inner surface of the outer casing and the carrier, and an airtight member spaced apart from the shock absorber and contacting the inner surface of the outer casing in an airtight canner. The airtight member, the shock absorber, the inner surface of the outer casing and the carrier cooperatively define an airtight back chamber. The airtight back chamber is configured to generate a pneumatic wave when a mechanical vibration wave is transmitted to the outer casing. The damping material closes the through hole in the carrier and is configured to change the phase of the pneumatic wave when the pneumatic wave passes therethrough such that the pneumatic wave and the mechanical vibration wave can offset each other when the pneumatic wave and the mechanical vibration wave are transmitted to the sound receiving module.
Other features and advantages of the disclosure will become apparent in the following detailed description of the embodiment with reference to the accompanying drawings, of which:
Referring to
The outer casing 2 includes an inner surface 21 surrounding an axis (X) and defining a chamber 20.
The capsule unit 3 includes a carrier 31 disposed in the chamber 20, and a sound receiving module 32 connected to the carrier 31 for receiving sound.
The carrier 31 includes a surrounding wall 311 surrounding the axis (X) and defining a cavity 310, and a connecting wall 312 connected to one end of the surrounding wall 311 that is opposite to the sound receiving module 32. The surrounding wall 311 has two connecting portions 313 formed on an outer surface thereof. The connecting wall 312 has a through hole 314 extending therethrough along the axis (X) and communicating with the cavity 310. In this embodiment, each connecting portion 313 is a ring-shaped groove. The through hole 314 has a hole diameter ranging from 1 mm to 17 mm, and a hole area ranging from 0.79 mm2 to 227 mm2.
The airtight unit 4 includes a shock absorber 41 connected to the inner surface 21 of the outer casing 2 and the carrier 31, and an airtight member 12 spaced apart from the shock absorber 41 and contacting the inner surface 21 of the outer casing 2 in an airtight manner.
The shock absorber 41 has an outer peripheral surface 411 contacting the inner surface 21 of the outer casing 2 in an airtight manner, and two coupling portions 412 respectively coupled to the connecting portions 313. In this embodiment, each coupling portion 412 is a ring-shaped protrusion coupled to a respective one of the grooves or connecting portions 313.
It should be noted herein that each connecting portion 313 is not limited to a groove, and may be a protrusion, while each coupling portion 412 is not limited to a protrusion, and may be a groove for matching the protrusion. Moreover, the numbers of the connecting portions 313 and the coupling portions 412 are not limited to two, and may be one or more in other variations of this embodiment.
The airtight member 42, the shock absorber 41, the inner surface 21 of the outer casing 2 and the carrier 31 cooperatively define an airtight back chamber 420. The airtight back chamber 420 communicates with the through hole 314, and has a volume ranging from 5000 mm3 to 36000 mm3.
The damping material 5 is disposed on the connecting wall 312 of the carrier 31, and closes the through hole 314 in the carrier 31. In this embodiment, the damping material 5 may be a breathable paper, a breathable cloth, a felt, or a nylon cloth.
When mechanical vibration acts on the outer casing 2, apart from generating mechanical vibration waves, as shown by solid arrows in
Since the vibration source of the pneumatic wave is also the mechanical vibration, its frequency will also range from 50 Hz to 300 Hz. When the pneumatic wave passes through the damping material 5, the phase and the amplitude of the pneumatic wave will change due to the sound resistance of the damping material 5. Through this, when the pneumatic wave and the mechanical vibration waves are transmitted to the sound receiving module 32, because their phases are different but their amplitudes are approximately the same, they can offset each other, so that the influence of the mechanical vibration to the sound receiving module 32 can be suppressed, thereby achieving the purpose of noise reduction.
Since the technical principle of the aforementioned shock absorbing is based on mutual offsetting between the airflow vibration and the mechanical vibration for achieving the effect of suppressing the vibration (theoretically called destructive interference), the parameters of the hole diameter and the hole area of the opening 313 or the parameter of the volume of the airtight back chamber 420 will all affect the amplitude and the phase of the pneumatic wave. When the foregoing parameters exceed the scope disclosed in this disclosure, the pneumatic wave and the mechanical vibration wave will not effectively offset each other, so that the effect of suppressing the vibration is lost. It is even possible to create phase overlap (constructive interference) so as to amplify the vibration.
Referring to
Similarly, referring to
Referring to
From the forgoing, the advantages of the embodiment can be summarized as follows:
1) Through the disposition of the airtight back chamber 420 and the airtight member 42, this disclosure can generate a pneumatic wave that is opposite to the mechanical vibration phase, so that the mechanical vibration wave and the pneumatic wave can offset each other when they are transmitted to the sound receiving module 32, thereby effectively reducing noise.
2) This disclosure can increase acoustic compliance in acoustic properties, so that the frequency response curve thereof has a strong directivity at low frequency.
While the disclosure has been described in connection with what is considered the exemplary embodiment, it is understood that this disclosure is not limited to the disclosed embodiment but is intended to cover various arrangements included within the spirit and scope of the broadest interpretation so as to encompass all such modifications and equivalent arrangements.
Number | Date | Country | Kind |
---|---|---|---|
108116573 | May 2019 | TW | national |
This application claims priority to Taiwanese Patent Application No. 108116573, filed on May 14, 2019.