Embodiments of the invention relate to detecting a current or a predicted future failure of microphone circuitry of a headset attached to a mobile device, transmitting a failure notification from the mobile device to a remote supply management system.
Mobile devices, such as laptop computers, tablet computers, MP3 players, and mobile phones (e.g., cell phones) are becoming increasingly common. Some of these mobile devices have grown more complex over time, incorporating many features, including, for example, MP3 player capabilities, web browsing capabilities, capabilities of personal digital assistants (PDAs) and the like. Mobile devices include charging and/or control jacks into which a charge cable, a power cable, and/or an interface cable to another device (e.g., a desktop computer or home entertainment system), may be plugged so as to charge the battery of the “host device” or transfer data between the host device and the external device. These devices may also include device (e.g., audio) jacks into which a headset or headphones may be plugged. In some cases, the headsets include, in addition to earphones for listening to output of the host device, a microphone to provide input to the host device over a microphone signal line. The later is biased with a DC voltage provided by the host device to operate the microphone.
Embodiments of the invention include methods, apparatus, and systems for detecting a malfunction (also referred to as a “failure”) of a microphone circuit of a headset attached to a mobile device, based on a measured microphone bias signal or a measured microphone bias line temperature of the headset. After the failure is detected, a failure notification may be sent from the mobile device to a remote supply management system. The failure notification may be transmitted to the remote supply management system, using a network interface. This may alert a distributor or manufacturer of the mobile device or headset to send a replacement headset to the user.
A failure detection unit or circuit may be located in the headset and/or in the mobile device housing. It may detect the failure based on a decrease of a microphone bias signal, or increase of a bias line temperature over time. Upon detection of the failure, it may transmit a signal identifying the failure to a controller of the mobile device. The failure may be a predicted future failure, or it may be current failure of a microphone circuit of the headset; the failure may be caused by organic matter buildup creating a signal path or short circuit across the microphone circuitry, where one should not exist.
As the matter first builds up, a parasitic high resistance may be detected. This detection may indicate a predicted future failure of the microphone or headset. As the matter continues to build up, a lower resistance or even a “short circuit” may be detected. This detection may indicate a current failure of the microphone or headset.
In some cases, the failure may be detected based on an increase of a microphone bias signal over time. These cases may be caused by organic matter buildup (e.g., causing corrosion), or mechanical separation, destroying a signal path or creating an open circuit in the microphone circuitry, where a signal path should exist. In these cases, as the matter (or corrosion) first builds up, or separation first begins, a low resistance may be detected, such as by detecting an additional resistance on an existing signal line. This detection may indicate a predicted future failure of the microphone or headset. As the matter (or corrosion) continues to build up, or separation continues, a higher resistance or even an “open circuit” may be detected on the signal line. This detection may indicate a current failure of the microphone or headset.
The mobile device may establish a network interface data connection to a remote supply management system server, to enable a failure notification be sent from the mobile device to a remote supply management system. After receiving the signal indicating the failure, mobile device may then transmit a failure notification to the remote supply management system. Thus, the supply management system can send the mobile device owner a new headset and/or a notification of the failure. Other embodiments are also described and claimed.
The present embodiments are illustrated by way of example and not limitation in the figures of the accompanying drawings in which like references indicate similar elements.
Various embodiments and aspects of the inventions will be described with reference to details discussed below, and the accompanying drawings will illustrate the various embodiments. The following description and drawings are illustrative of embodiments of the invention and are not to be construed as limiting the invention. Numerous specific details are described to provide a thorough understanding of various embodiments of the invention. However, in certain instances, well-known or conventional details are not described in order to provide a concise discussion of embodiments of the inventions.
To provide a proper and efficient operation of mobile device headsets, microphone headset failure detecting and reporting mechanisms or circuitry are provided for determining whether a predicted future failure or a current failure of a microphone of a headset has occurred. Such a failure may be caused by organic matter buildup creating a signal path or short circuit across the microphone's circuitry, causing the microphone to malfunction. For example, as a headset is used over time, organic matter (e.g., dendrite, skin, hair, oil, sweat, and the like) may build up within the headset, such as matter that drops off of or is shed by a user of the device. As this matter builds up, it may eventually create a signal path where one should not exist, in circuitry of the headset. This may then cause a problem for the microphone functionality in the headset (e.g., circuitry in the headset to fail or become unusable for converting verbal input by the user into electronic audio signals). The headset may be connected to a mobile device. The mobile device may use a network interface (e.g., wireless, wired, computer network, email, text message, and the like) that can transmit a message (e.g., to send a failure notification) message to a remote supply management system, such as a computer server. The headset or the mobile device has a failure detection unit or circuit to detect the failure based on a decrease of a microphone bias signal or increase bias line (or headset) temperature over time; and upon detection of the failure, transmits a signal to a controller of the mobile device. The mobile device may then transmit a failure notification to the remote supply management system, such as to report the predicted future or current failure detected of the audio microphone headset. For instance, the mobile device may transmit the notification at the next opportunity, when entering a WiFi hotspot (using wireless technology), or when being docked via a USB cable with a networked desktop computer. The notification may cause the server to send the mobile device owner a new headset.
In some cases, the failure may be caused by organic matter buildup (e.g., causing corrosion of a signal line, wire or trace), or mechanical separation, destroying a signal path or creating an open circuit in the microphone circuitry, causing the microphone to malfunction. The failure detection unit detects the failure based on a increase of a microphone bias signal or decrease bias line (or headset) temperature over time; and upon detection of the failure, transmits the signal to a controller of the mobile device.
Device 100 also can be equipped with built-in speaker 108, built-in microphone 110, and headset jack 112. Jack 112 may be a device jack that can interface to a headset having an audio microphone and microphone circuit; audio equipment and players; and video equipment and players. Herein, the tennis “headset” and “headphone” may be used interchangeably, such as to describe an audio microphone headset having a microphone circuit.
Microphone button or switch 121 of headset 116 can be used to control the output of microphone 120 received at jack 112 and/or to control the behavior of device 100, such as by causing the device to change between two behaviors or actions. For example, actuating the switch sends a signal that instructs the host device to disconnect or hang up an ongoing phone call. Button 121 is optional and excluded in some of embodiments of device 100. Built-in speaker 108 can output audible sound to a user, while built-in microphone 110 can accept audible sound from the user. Headset jack 112 can accept plug 114 from headset 116. When headset plug 114 is properly inserted into headset jack 112, device 100 can be configured to output audible sound from earphones 118 rather than speaker 108; and to accept audible sound from headset microphone 120 rather than microphone 110. Thus, for some embodiments, device 100 may be described as a host device, such as a host to headset 116.
In some embodiments, device 100 may represent any one or more of the various electronic devices having jack 112, as described herein. Similarly, headset 116 may represent one or more accessory components having plug 114 connected to one end of a cable, such as also described further below. For instance, mobile device 100 may be a portable device, MP3 player (such as the iPod, by Apple, Inc. of Cupertino, Calif.), mobile phone (e.g., cell phones, such as the iPhone, by Apple, Inc.), and the like. For example,
Device 100 includes Vmicbias providing a direct current (DC) voltage bias signal through resistor 134 onto the microphone bias line of the device MHD. Line MHD may be electrically connected to the microphone bias line of the headset MH through node N1. For example, node N1 may represent a 100 percent (or nearly) conductive electrical and thermal connection between contact 124a of jack 112 and contact M of plug 114 (e.g., by physical contact). Similarly, device 100 includes ground GND providing a ground signal on ground line of the device GHD. Line GHD is coupled to the ground line of the headset GH through node N2. Node N2 may represent contact 124b of jack 112 having a 100 percent (or nearly) conductive electrical (and optionally thermal) connection to contact G of plug 114 (e.g., by physical contact).
Headset 116 includes microphone 120, button 121, microphone bias line MH, ground signal line GH, and possibly parasitic resistance RP and/or RPOC. Resistances RP and RPOC will be discussed further below. Microphone 120 may be used to converting verbal input by the user into electronic audio signals. Microphone 120 may use a field effect transistor or amplification system to amplify a sensed signal in the audio range, such as from a human voice. Button 121 may be a switch electronically coupled across the input and output of microphone 120.
For instance, microphone bias line MH provides a bias voltage to one end of the microphone, button, and possibly parasitic resistance. The other end of the microphone, button and parasitic resistance are coupled to ground signal line GH. In other words, the signal on line MHD may send to line MH, microphone bias DC voltage MV to be applied to the microphone circuit 140, where circuit 140 is electrically between voltage MV and ground GND. Thus,
In embodiments having circuit 129A in device 100, circuit 129A includes an electrical connection between line MHD and comparator 139A, and an electrical connection between Vref 135A and comparator 139A. Thus, comparator 139A can compare the signal or voltage level of line MHD to that of Vref 135A. As will be shown in
In embodiments having circuit 129B and headset 116, circuit 129B includes an electrical connection between line MH and comparator 139B, and an electrical connection between Vref 135B and comparator 139B. Thus, comparator 139B can compare the signal or voltage level of line MH to that of Vref 135B. Also, as shown in
Using circuits 129A and/or 129B, the headset and/or the mobile device can detect organic matter build up within the microphone or microphone circuit of the headset as the matter causes a signal path (e.g., parasitic resistance RP) where one should not exist. Such a path may be between traces of a printed circuit board or other circuitry of the microphone or microphone circuit. For instance, the path may form a parasitic resistance or impedance across the microphone signal path.
As the matter first builds up, a parasitic resistance may be detected (such as by detecting an increase or decrease in voltage MV) on the microphone bias line where an open circuit or no connection should exist. In some cases, an increase in operating temperature may be detected on the microphone bias line or plug. This detection may indicate a predicted future failure of the microphone or headset caused by the organic matter.
As the matter continues to build up, the parasitic resistance may lower to a lower resistance or relatively short circuit. This may also be detected to indicate a current failure of the microphone or headset caused by the organic matter. For instance, the lower parasitic resistance may cause the microphone to fail or become unusable for converting verbal input by the user into electronic audio signals. Thus, the headset is unusable for communicating by phone, or making audio recordings.
In some cases, circuits 129A and/or 129B can be used by the headset and/or the mobile device to detect corrosion (e.g., caused by organic matter buildup), or mechanical separation of a signal line, wire or trace within the microphone or microphone circuit of the headset destroying a signal path (e.g., creating parasitic resistance RPOC) where a path should exist. Such a path may be traces of a printed circuit board; signal wires or lines of the headset; electronic connections between circuitry and wires; or other circuitry of the microphone or microphone circuit. For instance, a parasitic resistance or impedance may form serially or in-line with the microphone, along the microphone signal path.
As the corrosion or mechanical separation begins, a parasitic resistance or increase in resistance may be detected on the microphone bias line where only a short circuit, a near zero resistance signal path, or only the microphone impedance should exist. This detection may indicate a predicted future failure of the microphone or headset caused by the organic matter, or mechanical separation.
As the corrosion (and/or organic matter buildup) or mechanical separation increases, the parasitic resistance may increase to a greater resistance or relatively open circuit. This may also be detected to indicate a current failure of the microphone or headset caused by the organic matter, or mechanical separation. For instance, the higher parasitic resistance may cause the microphone to fail or become unusable for converting verbal input by the user into electronic audio signals. Thus, the headset is unusable for communicating by phone, or making audio recordings. These concepts apply to a combination of corrosion and mechanical separation causing an aggregate parasitic resistance (e.g., such as represented by RPOC).
It is noted that voltage MV represents a DC bias voltage, although operation of microphone 120 may provide an audio signal modulated on or included within voltage MV. However, detect circuitry 129A and 129B (or other circuitry coupled to line MH and MDH) may include a filter (e.g., a low pass filter or a rectifier) so that the DC component of voltage MV may be measured, detected and compared, without being influenced by the audio signal. In addition, a filter or processor (e.g., controller 130) may be used by circuitry 129A and 129B to exclude changes in voltage MV caused by button 121, if present.
In some embodiments, circuit 129A receives or compares operating temperature MT to determine whether there is a predicted future failure or a current failure. In this case, the signal on line MHD may represent a signal or voltage converted (e.g., by a thermistor) from and representing the level of temperature MT on line MH, such as detected at node N1 by device 100. For example, circuitry or a converter existing in device 100 may convert the temperature detected at node N1 (e.g., at jack 112) to a voltage having a level representing that temperature. This way, circuit 129A may detect failures using temperature MT, similar to detecting failures using voltage MV as described above. A similar arrangement can be used to convert temperature MT to a voltage input to circuit 129B for comparison. For example, the temperature MT may be converted to a signal level or voltage by circuitry or a converter of headset 116, and sent on line MHD to circuit 129A.
Thus, comparator 139A or 139B can compare the voltage signal representing temperature MT of line MH to that of Vref 135A or 135B. As shown in
For embodiments that do not include circuit 129A but do include circuit 129B, notification NSB is sent to controller 130, such as through any one or more of the electrical connections between (e.g., contacts of) plug 114 and jack 112. For example, notification NSB may be sent as a signal on line MH to line MHD for receipt by controller 130. In some cases, headset 116 may have additional circuitry or a processor for sending notification NSB or another signal based on notification NSB to be received by controller 130.
Although circuits 129A and B are shown and described as example structures here, it can be appreciated that other circuitry designs can be used to perform the same function. It is also contemplated that the function of those circuits may be performed by hardware circuitry in combination with, programmable hardware logic, software and/or other control (e.g., controller 130).
Device 100 includes controller 130, such as a controller to receive notification signal NSA, and/or NSB. In response to or caused by receiving the notification signal, controller 130 may send a failure notification signal or message to or through network interface 117. For example, failure notification 150 may be sent or transmitted to remote supply management system 160. In some cases, notification 150 may be transmitted by various wireless (e.g., cell), wired, computer network, Internet, or other communication mediums. For example, notification 150 may be transmitted by interface 117 via or by WiFi 152 (e.g., wireless local area network), GSM 154 (e.g., Global System for Mobile Communications, such as a cell connection), network computer 156, a computer peripheral bus connection (e.g., USB) and/or Internet 158 to system 160. Charging and/or control jack 111 may be an instance of network interface 117.
Notification 150 may identify a predicted future or a current failure of the microphone circuit and/or headset. The notification may identify a failure level or scale of the failure, such as further described below for
Notification 150 may alert a distributor or manufacturer of the mobile device or headset to send a replacement headset to the user. For example, notification 150 may cause remote supply management system 160 (e.g., a computer or computer server) to send a message to an owner or user of the mobile device that describes the failure (e.g., predicted future or current failure, and/or a level of failure such as further described below for
In some cases, notification 150 may request, instruct or cause the remote supply management system (e.g., a computer server) to cause another headset to be sent (e.g., mailed) to an owner or user of the mobile device. The replacement may be a new or refurbished headset. The replacement may be covered under a warrantee, may be free or may have to be paid for by the owner. The remote supply management system may be (or may instruct another system or location that is) a distributor, distribution center, or other entity that sends the replacement.
As the headset (and microphone) are used over time and organic matter begins to create a signal path in the microphone circuit where one should not exist, voltage MV decreases due to current flowing through parasitic resistance created by the matter. For example, the organic matter buildup may create parasitic resistance RP between line MH and line GH, where one should not exist. For example, the organic matter may include dendrite, skin, hair, oil, sweat, and the like that have dropped off of or been shed by the user (and possibly caught by the headset cord and dropped onto the microphone circuit through the microphone opening, switch opening or other opening to an interior of the headset). The organic matter may also include dirt, dust, and the like that accumulates with, on, or due to the organic matter buildup.
For instance enough matter (e.g., length and thickness) may build up on circuitry, traces, and/or a printed circuit board of the microphone circuitry to conduct electricity. Thus, resistance RP may form across microphone 120, button 121 if present, and/or other circuitry or traces of microphone circuit 140. Specifically, the path may form a parasitic resistance or impedance across the microphone signal path. As the matter first builds up, a parasitic resistance (as compared to the impedance of the microphone) may be detected where an open circuit or no connection should exist. For example, the microphone line bias voltage could be used to detect a future or current failure, caused by resistance RP, such as by detecting resistance RP from a decrease in voltage MV or increase in temperature MT.
As organic matter continues to build up (e.g., increases in buildup), thicken and/or spread out, it may lower parasitic resistance RP. For instance, the parasitic resistance may lower to a lower resistance or relatively short circuit (as compared to resistance of the microphone) that may be detected where no connection should exist. Although this path may not be a direct short to ground, it is substantially lower in impedance than that of a headphone microphone.
As the organic matter begins to create a signal path in the microphone circuit, temperature MT increases due to current flowing through the parasitic resistance RP between line MH and line GH.
As organic matter continues to build up and the parasitic resistance lowers to a lower resistance or relatively short circuit, temperature MT further increases due to increased current flowing through the lower parasitic resistance RP between line MH and line GH.
In some embodiments, notification signal NSA or NSB can identify a level or scale of the predicted future failure or a current failure. For example, based on the waveforms of
Concepts similar to those described above for
The organic matter (e.g., as described herein) may be caught by the headset cord and dropped onto a joint or connection (e.g., physical and/or electrical) between line MH or GH (or both) and the plug, the microphone circuit board, the switch, the microphone, or any combination of the above. For instance, enough matter (e.g., length, width and thickness) may build up on circuitry, traces, lines, and/or a printed circuit board of the microphone circuitry to cause corrosion (e.g., corrosion and/or rust caused by or resulting from existence of the matter) that reduces conduction of electricity. This parasitic resistance RPOC may form along line MH line GH, microphone 120, button 121 if present, and/or other circuitry or traces of microphone circuit 140. Specifically, the corrosion may form a parasitic resistance or impedance along the microphone signal path. As the matter and/or corrosion first builds up, a parasitic resistance (e.g., as compared to the impedance of a signal line or the microphone) may be detected where only a signal line, or the resistance of the microphone should exist.
Also, mechanical separation (e.g., as described herein) may be created in a joint or connection between line MH or GH (or both) and the plug, the microphone circuit board, the switch, the microphone, or any combination of the above. For instance, enough mechanical separation (e.g., length and thickness of separation between one or more connections) may build up between circuitry, traces, lines and/or a printed circuit board of the microphone circuitry to reduce conduction of electricity. This parasitic resistance RPOC may form between line MH, line GB, microphone 120, button 121 if present, and/or other circuitry or traces of microphone circuit 140. Specifically, the mechanical separation may form a parasitic resistance or impedance along the microphone signal path. As the mechanical separation first separates (e.g., in length and thickness of one or more connections), a parasitic resistance (e.g., as compared to the impedance of a signal line or the microphone) may be detected where only a signal line, or the resistance of the microphone should exist. In some embodiments, resistance RPOC represents an aggregate of all resistance caused by organic matter, corrosion, and/or mechanical separation in the microphone signal path, where none should exist (e.g., with respect to the design specification). For example, the microphone line bias voltage could be used to detect a future failure, caused by resistance RP, such as by detecting resistance RP from a decrease in voltage MV or increase in temperature MT.
As parasitic resistance RPOC increases, it may increase to a greater resistance or relatively open circuit that may be detected where only a short circuit, or the resistance of the microphone should exist. For instance, although resistance RPOC may not be an open circuit, it is substantially higher in impedance than that of a headphone microphone.
In an example where the headset plug is properly inserted into the jack of the device, and a normal or nominal microphone bias line voltage MV is approximately 1.8 to 2.1 volts (here Vmicbias may be approximately 2.7 volts), the following may apply. Threshold TVU may be approximately 1.8 volts, or may be a minimum value at which the bias voltage is in a “normal” range as indicated by a design specification. Also, threshold TVL may be approximately 1.56 volts, or may be a minimum value at which the microphone circuit is able to provide functionality and/or acoustic quality as indicated by a design specification. In addition, threshold TOL may be approximately 2.65 volts or may be a voltage within approximately 50 millivolts below from Vmicbias.
Thus, in the context of an example where a normal DC signal for voltage MV is 1.8 to 2.1 volts, if the measured voltage MV is less than threshold TVL (such as 1.56 volts) the failure detection circuit may conclude that there is a short circuit across microphone circuit 140; while if the DC bias signal MV is above threshold TOL (approximately 2.65 volts) the failure detection circuit may conclude that there is an open circuit failure in the microphone line (e.g., in the headset, electrically somewhere between contacts M and G of plug 114). Of course detecting the short circuit situation presumes that the optional microphone button 121 is not pressed at the time of detection, and is not causing a short circuit in the microphone circuit, where one should exist and is desired when the button is pressed. For instance, detecting resistance RPOC may include monitoring or sampling voltage MV continuously over a period of time, or periodically at intervals greater than an expected button push action period. The results of monitoring or sampling voltage MV can be averaged. In some cases, they can be compared and results outside a variance (e.g., plus or minus 10 or 20 percent) can be discarded (such variances may represent a button push, and may possibly throw off the average).
Similar to the description for resistance RP, in some embodiments, notification signal NSA or NSB can identify a level or scale of the predicted future failure or a current failure.
Process 600 starts with block 610 where the headset is attach to the mobile device. Block 610 may correspond to completely inserting plug 114 of headset 116 into receptacle 122 of jack 112 to at least form nodes N1 and N2. After block 610, device 100 may be connected to headset 116 having a microphone bias signal and a temperature on microphone bias line MH. Subsequently, device 100 may be used to communicate by phone with or make audio recordings of electronic audio signals received on line MHD from line MH that have been converted by microphone 120 of headset 116 from verbal input of the user.
At block 620 the microphone bias line signal or a microphone bias line temperature is measured. For instance block 620 may include circuit 129A and/or 129B measuring a signal level (e.g., voltage MV or current I, in some cases) and/or the microphone bias line temperature MT, of or on line MHD and/or MH as described above (e.g., see
At block 630 a failure of headset 116 (e.g., microphone 120 and/or microphone circuit 140) attached to device 100 is detected. The failure may be caused by organic matter causing a signal path (e.g., resistance RP) or short circuit across the microphone circuitry of the headset as described above (e.g., see
At block 640, in response to detecting the failure, a failure signal is sent or transmitted to controller or processor 130 of mobile device 100. Block 640 may include circuit 129A and/or 129B (e.g., comparator 139A and/or 135B) producing or transmitting output notification NSA and/or NSB to controller 130, such as described above for
At block 650 a data connection between mobile device 100 and remote supply management system 160 is established. Block 160 may include establishing a network interface (e.g., wireless, wired, computer network, email, text message, and the like) to send data (e.g., messages and/or packets) using, various mediums, including those described above for
At block 660, in response to or caused by receiving the notification signal, controller 130 may send failure notification signal or message 150 to system 160. For example, failure notification 150 may be sent or transmitted to remote supply management system 160 using one or more of the various systems described for block 650.
In some cases, although controller 130 has received notification NSA and/or NSB, the controller has to wait for the data connection to be established before sending notification 150. For instance, controller 130 may have to delay sending notification 150 until device 100 is interfaced with a computer (host) or has wireless phone capability (e.g., cell). This delay may be a few seconds, minutes, or days. In cases where device 100 is interfaces with a host computer application having network communication access (e.g., is an iPod or iPhone), it may have to wait until it is interfaced with the host computer application (e.g., iTunes from Apple Inc. of Cupertino, Calif.) to send notification 150 to remote supply system 160 (e.g., AppleCare from Apple Inc. of Cupertino, Calif.), such as via network computer 156 and/or internet 158 (e.g., see
At block 670 a replacement headset is sent to the owner. Block 670 may include notification 150 requesting the replacement, and having headset and/or owner data, such as described above for
Certain embodiments may be described by only including blocks 630, 650 and 660. Some embodiments may be described by only blocks 630 and 660. Some embodiments only require block 630. Also, certain embodiments are described only by blocks 610, 620 and 630. Some embodiments only require blocks 610-640. Other embodiments require all of blocks 610-670.
At block 710 it is determined whether a microphone bias line signal (e.g., voltage MV or current I) exceeds a first threshold. For instance, block 710 may include detecting that microphone bias line voltage signal MV is less than first voltage threshold (e.g., by being compared to TVU such as described for
At decision block 720 it is determined whether microphone bias line temperature MT exceeds a first threshold. For instance, block 720 may include detecting that signal MT is greater than a first temperature threshold (e.g., by being compared to TTL such as described for FIG. 5B). Block 710 may be performed at the same time (or over the same period) as block 720. If the microphone bias temperature is greater than a first threshold, the process may continue block 730. If the microphone bias line signal is not is greater than a first threshold, the process may continue block 710. Some embodiments exclude block 710, so that if the microphone bias temperature is not greater than a first threshold, the process returns to block 720.
At block 730 it is determined that a predicted future failure of the headset (e.g., microphone circuit) is detected. Block 730 may include descriptions of detecting a predicted future failure described above for
At block 740 it is determined whether a microphone bias line signal (e.g., voltage MV or current I) exceeds a second threshold. For instance, block 740 may include detecting that microphone bias line voltage signal MV is less than second voltage threshold (e.g., by being compared to TVL such as described for
At decision block 750 it is determined whether microphone bias line temperature MT exceeds a second threshold. For instance, block 750 may include detecting that signal MT is greater than a second temperature threshold (e.g., by being compared to TTU such as described for
At block 760 it is determined that a current failure of the headset (e.g., microphone circuit) is detected. Block 760 may include descriptions of detecting a predicted future failure described above for
Some embodiments of
In some embodiments, in place of sending a failure signal at block 640, other actions or behaviors may be taken by controller 130, such as increasing the gain of the microphone (e.g., when a predicted future failure is detected). In some embodiments, some or all of the blocks 620-660 and
It is also considered that the concepts above may be applied to other peripherals, cables, and components that interface with device 100. For instance, the concepts above can be applied to any component that plugs into jack 112 or into charging and/or control jack 111. Failure detect circuits similar to circuit 129A and/or 129B may exist within device 100 and/or the component to detect voltage, current and/or temperature of a DC power line or bias line of the component, similar to the descriptions above. For example, a failure detection circuit could exist in device 100 and/or a cord attached to jack 111 to detect a failure of the cord or a component attached to jack 111. Similar to the description above for the microphone circuit failure detection circuit, the failure detection circuit(s) attached to jack 111 could detect a voltage or temperature to determine whether the cord had a predicted future or current failure. Specifically, the detection descriptions above can be applied to any DC voltage power line (e.g., bias power line) of the cord attached to jack 111. In some embodiments, a failure detect circuit can detect a predicted future failure and/or a current failure of a charge cable, a power cable, and/or interface cable to another device (e.g., a desktop computer or home entertainment system) plugged into jack 111. A failure notification for that component can then be sent to system 160, such as described above.
In some cases, device 100 may have multiple failure detect circuits coupled to jack 112 and/or jack 111 to detect failures of different or multiple components. Device 100 may also use controller 130 to change or adjust the level of Vref 135A depending on what component is identified as being plugged into jack 112 and/or jack 111 to detect failures of different or multiple components.
Next, headset 116 may be any component that can be coupled to and used in conjunction with device 100, such as a headset including audio speakers, earphones, headphones, noise cancellation, a video display, microphone, or combinations of functionality thereof. The electronic coupling between signal contact 124a and contact M may be a wired or wireless electronic connection or attachment (e.g., circuit 129A is not used here). For example, a wireless transmission system may exist between contact 124a and contact M, such as a transmission system transmitting audio signals, current, and voltage levels described herein.
Device 100 may be specially constructed for the purposes described herein, or it may comprise or be part of a computer (e.g., portable, such as a laptop, tablet or hand held computer; or stationary, such as a desktop computer), mobile device, telephone or cellular telephone specially configured by a computer program stored in a storage medium. Such a computer program (e.g., program instructions) may be stored in a machine (e.g. computer) readable non-volatile storage medium or memory, such as, a type of disk including floppy disks, optical disks, CD-ROMs, and magnetic-optical disks, read-only memories (ROMs), erasable programmable ROMs (EPROMs), electrically erasable programmable ROMs (EEPROMs), magnetic or optical cards, magnetic disk storage media, optical storage media, flash memory devices, or any type of media suitable for storing electronic instructions. Device 100 may also include a processor coupled to the storage medium to execute the stored instructions. The processor may also be coupled to a volatile memory (e.g., RAM) into which the instructions are loaded from the storage memory (e.g., non-volatile memory) during execution by the processor. The processor and memory(s) may be coupled to circuitry 129A and/or 129B, and/or control unit 130. In some cases, the processor may include control unit 130.
At least certain embodiments of device 100 may be part of a mobile device, telephone or cellular telephone, which may include a media processing system to present the media, a storage device to store the media and may further include a radio frequency (RF) transceiver (e.g., an RF transceiver for a cellular telephone) coupled with an antenna system and the media processing system, computer, mobile device, telephone or cellular telephone. In certain embodiments, media stored on a remote storage device may be transmitted to the media player through the RF transceiver. The media may be, for example, one or more of music or other audio, still pictures, or motion pictures. For example, these embodiments may be part of a mobile telephone which includes the functionality of one or more: media players (music and/or video media), entertainment systems, personal digital assistants (PDAs), general purpose computer systems, mobile device, Internet capable mobile device, special purpose computer systems, an embedded device within another device, or other types of data processing systems or devices (e.g., an iPhone from Apple Inc. of Cupertino, Calif.).
The processes, instructions, and/or circuitry described herein may be designed and/or sold by handset manufacturers, such as manufacturers of a “source device” or “host device” that can detect headset or microphone circuitry failure as described herein. They may also be designed and/or sold by headset manufacturers, such as manufacturers of an audio headset or other headset having a microphone of a “headset” or “headphone” device that can detect headset or microphone circuitry failure as described herein.
In the foregoing specification, the invention has been described with reference to specific exemplary embodiments thereof. It will be evident that various modifications may be made thereto without departing from the broader spirit and scope of the invention as set forth in the following claims. The specification and drawings are, accordingly, to be regarded in an illustrative sense rather than a restrictive sense.