This invention relates to signal processing systems. In particular, this invention relates to compensating non-uniformity among microphones in a multiple microphone system.
Microphones used in signal processing systems often have non-uniform characteristics. For example, the microphones in a hands-free voice command or communication system in an automobile may detect the same speech signal, but nonetheless produce very different microphone output signals. Non-uniform microphone characteristics may result from variations in the microphone fabrication process, from changes arising in the microphones from age, use, temperature, humidity, altitude, or from other factors. Non-uniform microphone characteristics may result in non-uniform frequency response between microphones, reduced signal strength and sampling accuracy, inconsistent sampling of sound signals, and generally reduced system performance.
One past attempt to compensate for microphone non-uniformities relied on pre-configuring digital filters with invariant initial settings to process the microphone signals. The initial settings depended upon the frequency response of the respective microphone and an extensive preliminary measurement and analysis phase. In the analysis, an optimally placed speaker output an audio signal with known characteristics. The microphone signals capturing the audio signal were then analyzed to determine optimum filter settings for each digital filter. The communication system used the same filter settings during its operational lifetime.
The filter settings were also determined based on the estimated or predicted conditions in which the communication system would operate. Thus, the initial measurements and analysis were extensive, but needed to accurately model the conditions in which the communications system would operate. Regardless, age, use, temperature, humidity, altitude, or other factors temporarily or permanently altered microphone characteristics, including frequency response, after the initial determination of the filter settings. Accordingly, the performance of the communication system degraded over time.
Therefore, a need exists for an improved system for compensating for microphone non-uniformity.
A microphone compensation system maintains performance from communication systems which use multiple microphones. Although the microphone characteristics may change over time, the compensation system effectively tunes the communication system for consistent performance despite the passage of time or the exposure to widely ranging environmental conditions. Furthermore, a lengthy, complex, and costly measurement and analysis phase for determining initial filter settings in the communications system may be avoided.
A microphone compensation system applies microphone input signals to signal adaptation inputs of microphone calibration logic. The microphone calibration logic produces multiple calibrated microphone output signals. The compensation system also beamforms the multiple calibrated microphone output signals. A beamformed output signal results. The microphone compensation system applies the beamformed output signal to the multiple reference signal inputs of the microphone calibration logic. The microphone calibration logic thereby adaptively filters the microphone input signals based on the beamformed output signal to obtain the calibrated microphone output signals.
Adaptation control logic may update the filter coefficients in the adaptive filters. The adaptation control logic may update the filter coefficients when an adaptation criteria is met. The adaptation criteria may be a temperature (e.g., a vehicle temperature), time (e.g., a periodic update schedule), a manual input, an interference level, or any other criteria. Furthermore, the adaptation control logic may ensure that the filter coefficients do not converge towards zero by exercising control of the sum of the filter coefficients for a given sampling interval.
Other systems, methods, features and advantages of the invention will be, or will become, apparent to one with skill in the art upon examination of the following figures and detailed description. It is intended that all such additional systems, methods, features and advantages be included within this description, be within the scope of the invention, and be protected by the following claims.
The foregoing features of embodiments will be more readily understood by reference to the following detailed description, taken with reference to the accompanying drawings, in which:
The invention may be better understood with reference to the following drawings and description. The components in the figures are not necessarily to scale, emphasis instead being placed upon illustrating the principles of the invention. Moreover, in the figures, like referenced numerals designate corresponding parts throughout the different views.
Definitions. As used in this description and the accompanying claims, the following terms shall have the meanings indicated, unless the context otherwise requires:
The microphone calibration logic 100 and 102 include a reference signal input 110 and a signal adaptation input 112. The reference signal input 110 receives a reference signal d(k). The reference signal input 110 connects to delay logic 114 in the calibration logic 100 and directly to the adder 120 in the calibration logic 102. The delay logic 114 produces a time delayed reference signal on a time delayed signal output 116. The time delayed signal output 116 provides the time delayed reference signal to a first adder input 118 of an adder 120.
In
The microphone signal adaptation input 112 connects to a self calibrating filter 122. The self calibrating filter 122 produces a calibrated output signal on an adaptive filter output 124. The adaptive filter output 124 provides the calibrated output signal xC(k) to a second, inverting, adder input 126. The adder 120 produces an error signal e(k) on an error output 128. The adder 120 combines the time delayed reference signal on the first adder input 118 with the calibrated output signal xC(k) on the inverting adder input 126 to produce an error signal e(k) on the error output 128. The error output 128 connects to the self calibrating filter 122 on an adaptation input 134.
The microphone 104 provides microphone signals to the A-to-D converter 106 on a microphone signal input 130. The A-to-D converter 106 produces a digital microphone signal x(k) on a digital microphone signal output 132. The digital microphone signal output 132 connects to the adaptation control logic 108 and to the microphone signal adaptation input 112 of the microphone calibration logic 100 and 102. The adaptation control logic 108 connects to the self calibrating filter 122 of the microphone calibration logic 100.
The configuration of the microphone calibration logic 102 varies from that of the microphone calibration logic 100 in that the microphone calibration logic 102 does not include the delay logic 114 or the time delayed signal output 116. In the microphone calibration logic 102, the reference signal input 110 connects to the first adder input 118. Accordingly, the adder 120 combines the reference signal d(k) on the first adder input 118 with the calibrated output signal xC(k) on the inverting adder input 126 to produce an error signal e(k) on the error output 128.
A signal processing system, such as a hands-free communication system, may use the microphone 104 as one microphone in an array of ‘M’ microphones. Where a microphone array is used, the signal processing system may also use an array of microphone calibration logic 100 or 102 to calibrate one or more of the microphones in the array. Equation (1) represents the microphone signals xms(k), where m=1, 2, . . . M, s(k) represents identical wanted signal portions, and nm(k) represents respective interference signal portions:
x
m
s
=s(k)+nm(k) (1)
The symbol ‘k’ represents the ordinal number of the sampling period at which the sound signal is converted into a digital form.
Thus, ‘k’ represents the time interval in the progression of the sound signal xms and equation (1) is a time domain equation. However, the microphone compensation system may process signals in a transformed domain such as the frequency domain, and may incorporate frequency domain adaptive filters or frequency-subband filters. The interference signal portions nm(k) may represent any potential interference components, such as direction-dependent noise or diffuse noise. The nm(k) may differ considerably among the individual M microphones.
Equation (1) may represent an ideal electrical output signal of the microphones. In practical applications, microphone-specific characteristics may distort the conversion of a sound signal into an electrical signal. The microphone-specific signal distortions may result from non-uniformities or inconsistent tolerances among the M microphones. Factors such as aging, temperature, humidity, altitude, or other factors may contribute to the varying tolerances and non-uniformities.
A linear model hm(k) may describe the specific characteristics of the microphones, which may vary over time. Thus, the actual electrical signals obtained by an array of microphones may be described by applying the linear model to the ideal microphone signal samples according to equation (2):
x
m
R(k)=xms(k)*hm(k)
Consequently, the actual output signals xmR(k) represent multiple microphone signals which may have differing amounts of interference signal portions nm(k) and/or a different frequency response determined by the coefficients hm(k).
In practice, the microphones produce the microphone signals xmR(k). As described above, any one of the signals xmR(k) may represent a non-ideal microphone signal affected by various factors such as aging, temperature, humidity, altitude, or other factors. The microphone 104 communicates the non-ideal microphone signal xmR(k) to the A-to-D converter which in turn is communicated to the microphone calibration logic 100 or 102. The A-to-D converter provides a digital microphone signal x(k) on the digital microphone signal output 132.
The microphone calibration logic 100 or 102 receives the reference signal d(k) on the reference signal input 110. The reference signal d(k) may represent one or more microphone signals, a beamformed signal, or other reference signals. The reference signal d(k) may be a digital signal obtained from an A-to-D converter operating, for example, with the same sampling frequency as the A-to-D converter 106. In the microphone calibration logic 100, the delay logic 114 delays the reference signal by a pre-defined number of sampling periods, ‘D’. In the microphone calibration logic 102, the reference signal may be communicated directly to the first adder input 118.
The adder 120 combines the reference signal, whether delayed or not, with the calibrated output signal provided by the self calibration filter 122. The error signal e(k) results. The error output 128 on the adder 120 feeds the error output e(k) back to the self calibrating filter 122.
The self calibrating filter 122 includes filter coefficients w(n, k), where n=0 . . . L−1, and L is the length of the self calibrating filter 122. The self calibrating filter 122 filters the digital microphone signal x(k) to produce the calibrated output signal xc(k). The self calibrating filter 122 optimally matches the calibrated output signal xc(k) with the reference signal. The reference signal may or may not be delayed by delay logic 114. Equations (3) and (4) represent the calibrated output signal xc(k) and error signal e(k), respectively:
x
c(k)=Σn=0L−1w(n,k)x(k−n) (3)
e(k)−d(k−D)−xc(k) (4)
Equation (4) represents the error signal in the case in which the reference signal d(k) was delayed by the delay logic 114.
Updating the filter coefficients w(n, k) adapts the filter 122 to changes in microphone characteristics due to age, temperature, humidity, altitude, or other factors. An adaptation algorithm which minimizes the squared error e2(k) may update the filter coefficients. The algorithm may operate in the time domain, the frequency domain, in a transform domain in the form of a subband filter, or in another manner.
The self calibrating filter 122 may be implemented as a finite impulse response (FIR) filter. The FIR filter may be implemented as a complex-valued fast Fourier transform (FFT)-based filter for processing both amplitude and phase of a signal. By delaying the reference signal d(k) supplied to the microphone calibration logic 100 or 102, non-causal filter behavior of the self calibration filter 122 may be obtained. The microphone calibration logic 100 or 102 provides the calibrated output signal xC(k) and the error signal e(k) and optimally adapts the frequency response of the microphone 104 to the reference signal d(k). Subsequent processing logic may process the calibrated output signal .xC(k) and/or the error signal e(k).
The adaptation control logic 108 may selectively activate the recalculation of the filter coefficients w(n, k). The adaptation control logic 108 may trigger the recalculation of the filter coefficients w(n, k) based upon predefined criteria such as the magnitude of the wanted and/or interference signal portions of the microphone signal x(k), the magnitude of the wanted and/or interference signal portions of the reference signal d(k), temperature, time, a manual user request, or upon any combination of these or other criteria.
For example, the adaptation control logic 108 may initiate adaptation using a temperature sensor, a timer, or other sensors or measurement devices. As another example, the adaptation control logic 108 may compare the average amplitude of a specified frequency range, which is expected to include a substantial portion of a wanted signal, with the average amplitude in a different frequency range that is expected to contain a typical interference signal portion. Based on these comparison results, the adaptation control logic 108 may update or refrain from updating the filter coefficients w(n, k). By selectively activating the recalculation of the filter coefficients, the adaptation control logic 108 may avoid generating filter coefficients for the self calibrating filter 122 from a signal having a high interference level.
Each microphone in the microphone array 201 may connect to an A-to-D converter that produces digital microphone signals x1(k), . . . , x.M(k), where M represents the number of microphones. The reference microphone 202 provides its corresponding microphone reference signal x1(k) to the reference delay logic 206 and to the reference signal input 110 of each set of microphone calibration logic 100. The reference delay logic 206 produces a delayed microphone reference signal x1C(k).
Each of the other microphones 204 provides its respective microphone signal x2(k), . . . , xM(k) to a different microphone signal adaptation input 112 of the microphone calibration logic 100, where M−1 represents the number of sets of microphone calibration logic 100. The system 200 provides calibrated output signals x1C(k), . . . , xMC(k) and error signals e1(k), . . . , eM−1(k). The output x1C(k) corresponds to the delayed microphone reference signal produced by the reference delay logic 206. The outputs x2C(k), . . . , xMC(k) correspond to the calibrated signal outputs produced on the adaptive filter output 124 of each microphone calibration logic 100. The error outputs e1(k), . . . , eM−1(k) correspond to the error outputs produced on the error output 128 of each microphone calibration logic 100.
The system 200 selects the reference microphone 202 as the source of the reference signal provided to each reference signal input 110. The selection of the reference microphone 202 may be arbitrary. Alternatively, the reference microphone 202 may be selected based on its position or another characteristic. For example, a reference microphone 202 may be positioned such that it produces a microphone signal with a low interference level over many potential environmental conditions. The system 200 uses the microphone calibration logic 100 to adapt the signals produced by the remaining microphones 204 to match the signal produced by the reference microphone 202.
The microphone calibration logic 100 may adaptively filter the microphone signals x2, . . . , xM(k) based on the microphone reference signal x1(k) in the manner described with respect to
The signal combining logic 302 combines the microphone signals x1(k), . . . , xM(k) to provide a combined output signal (e.g., a beamformed signal), indicated as y(k). The output signal may preferentially focus the received sound from the M microphone from one or more spatial directions. The system 300 may implement the signal combining logic 302 as a time invariant beamforming logic, adaptive beamforming logic, or other signal combining logic.
In selecting which microphone among the M microphones will provide the signal to adapt, x1(k), the same principles described above for the system 200 may apply. The signals provided on the adaptive filter output 124 may or may not be used for further processing, such as beamforming processes. Alternatively or additionally, subsequent processing may instead be based on the error signals e1(k), . . . , eM−1(k) and the output signal y(k) provided by the signal combining logic 302.
For example, a generalized side lobe canceller (GSC) may use the output signal y(k) and error signals e1(k), . . . , eM−1(k) produced by the system 300. The error signals provided by the system 300 may replace a blocking matrix used in the GSC. The error signals e1(k), . . . , eM−1(k) are based on the current filter coefficients and thus the current filter behavior of the respective self calibrating filters 122. Accordingly, the error signals, based upon calibrated microphone signals, may significantly improve GSC operation.
The signal combining logic 302 provides the combined signal output y(k) to the reference signal inputs 110 of the microphone calibration logic 100. One set of microphone calibration logic 100 may be provided for each microphone 402. The system 400 produces calibrated output signals x1C(k), . . . , xMC(k) and error signals e1(k), . . . , eM(k) in the manner described with respect to
Using the combined output signal y(k) to calibrate the microphone signals x1(k), . . . , xM(k) minimizes the influence of individual microphone characteristics on the adaptation process. That is, instead of calibrating based upon a single microphone reference signal, the combined output signal y(k) may provide a more reliable reference signal. As a result, suitable filter coefficients may be obtained even if one or more of the microphones produces signals having a substantial interference portion.
The signal combining logic 302 provides the combined signal output y(k) to the beamformer signal adaptation input 112 of each set of microphone calibration logic 100. The microphone calibration logic 100 determines error signals e1(k), . . . , eM(k) in the manner described with respect to
The microphone signal adaptation inputs 112 connect to signal combining logic 302. The signal combining logic 302 combines the calibrated output signals x1C(k), . . . , xMC(k) to produce a calibrated combined output signal yC(k) The signal combining logic 604 provides the calibrated combined output signal yC(k) to the reference signal inputs 110 for use as reference signals in the microphone calibration logic 102, thereby providing a closed feedback loop.
The closed feedback loop configuration of the system 600 may cause the filter coefficients to converge towards zero. To avoid this effect, the system 600 may exercise additional control over the microphone calibration logic 102. The microphone calibration logic 102 may implement the condition expressed in equation (5) to prevent the filter coefficients of the adaptive filters from converging to zero. In other respects, the modified microphone calibration logic 604 produces calibrated outputs signals x1C(k), . . . , xMC and error signals e1(k), . . . , eM(k) as described with respect to
The condition shown in equation (5) ensures that, except at a specified sampling interval, D, the sum of the filter coefficients of the M self calibrating filters 122 equals zero. In this way, at least some of the filter coefficients of each self calibration filter 122 have non-zero values. Due to the condition set by equation (5), the delay logic 114 (present in the microphone calibration logic 100) may be omitted as shown in the microphone calibration logic 102.
Even though a closed feedback loop is established, the condition expressed by equation (5) ensures the stability of the adaptation process. The system 600 benefits from increased efficiency and reliability in responding to changes in microphone frequency responses by using the reference signal derived from the combination of the calibrated signals yC(k) rather than the initial microphone inputs signals x1(k), . . . , xM(k).
Any of the microphone compensation systems 200-600 may include adaptation logic 108. The adaptation logic 108 may estimate the strength of desired signal content or interference signal content and responsively update the filter coefficients. Other adaptation criteria may be used to determine when the update the filter coefficients, however. As example, the adaptation criteria may include temperature (e.g., vehicle temperature), time (e.g., on a regular basis); manual input, or based on other adaptation criteria.
The microphones 704 provide the microphone signals x1(k), . . . , xM(k) to time delay compensation logic 706. The time delay compensation logic 706 produces time delayed microphone signals x1T(k), . . . , xMT(k). The time delay compensation logic 706 provides the time delayed microphone signals to the microphone compensation system 702 and to adaptation control logic 108. The adaptation control logic 108 connects to the microphone compensation system 702 and updates the filter coefficients in the adaptive filters in the microphone compensation system 702.
The microphone compensation system 702 produces calibrated output signals x1C(k), . . . , xMC(k). The microphone compensation system 702 communicates the calibrated output signals to a beamformer 710. The beamformer produces a beamformed output signal xBF(k) based upon the calibrated output signals.
The beamformed output signal may be provided to subsequent processing stages, such as the echo/noise reduction logic 712. The echo/noise reduction logic 712 produces an transmission output signal xtrans(k). The system 700 further includes one or more speakers 716 connected to receive a signal xreceive(k). The system 700 provides the receive signal xreceive(k) to the echo/noise reduction logic 712 for echo cancellation processing.
Microphone positions relative to a sound source may vary. A time delay between individual microphones may therefore occur, thereby resulting in a relative time delay between the desired signal portions s(k) from the individual microphones. The time delay compensation logic 706 may compensate for the relative time delays between individual microphones 704. The time delay compensation logic 706 may be implemented in the form of adaptive filter elements. The adaptive filter elements may operate as delay paths to synchronize the desired signal portions of the individual microphones 704. However, any other circuitry or logic may compensate for relative time delays in the microphone signals.
Any of the microphone compensation systems 200-600 may implement the microphone compensation system 700. The adaptation control logic 108 operates in the manner described above. The beamformer 710 may be a time invariant beamformer or an adaptive beamformer.
The microphone compensation system 702 may significantly reduce or eliminate the effects non-uniformities of microphone signal characteristics, such as the frequency response of the microphones 704. Due to the adaptive nature of the microphone compensation system 702, the system 700 responds over time to the changing characteristics of the microphones 704. Thus, the system 700 is not limited by fixed, pre-determined filter coefficients. Instead, the system 700 consistently provides high quality audio processing of the microphone signals.
The beamformer 710 provides efficient spatial filtering of the calibrated microphone signals x1C(k), . . . , xMC(k). The beamformer may provide a direction-dependent signal damping or gain, for example to dampen interference signal portions. The echo/noise reduction logic 712 reduces echo and noise signal components coupled into the microphones 704 by the speaker 716. The echo/noise reduction logic 712 also reduces stationary interference signal portions. The highly uniformly calibrated microphone signals enhance the beamformer 710 operation, particularly with respect to the frequency response and the spatially selective modification of the microphone signals, regardless of whether a time invariant or an adaptive beamformer 710 used.
The microphone compensation systems 200-600 provide a signal gain of approximately 2 dB or more for frequencies below 1000 Hz. Example parameter values for operating the system 700 are shown in Table 1.
In practical applications, the microphones 818 have different characteristics, including different frequency responses. The non-uniformities in characteristics may be time variant or time invariant. For example, the characteristics may vary widely depending on age, amount of use, temperature, humidity, altitude, or other factors.
The processor 802 may execute an adaptive filter program 820 and an adaptation program 822. The adaptive filter program 820 may implement any of the microphone compensation systems 200-600 described above. The adaptation program 822 in part implements the adaptation logic 108, which updates the filter coefficients in the adaptive filters when predefined adaptation criteria 826 are met. The predefined adaptation criteria 826 may include a threshold magnitude of the desired signal portion 828 and/or interference signal portion 830 of the microphone input signals or a reference signal. The adaptation criteria 826 may also establish a temperature threshold 834, time criteria 836, or any other adaptation criteria.
A temperature sensor 840 provides temperature data to the processor 800, while a timer 844 provides time and date information to the processor 800. In addition, a user interface 846 provides command input to the processor 800. The command inputs may direct the processor 800 to initiate adaptation of the filter coefficients in the adaptive filters.
The adaptation program 822 may compare the average amplitude of a specified frequency range, which is expected to include a substantial portion of a desired signal, with the average amplitude in a different frequency range, which is expected to contain a typical interference signal portion. Based on the comparison results and the predefined thresholds 828 and 830, the adaptation program 822 may update the filter coefficients and may avoid updating the filter coefficients when a high interference level is present. The adaptation program 822 may also update the filter coefficients when input from the temperature sensor 842 or time 844 meet the adaptation criteria 834 and 836 set in the memory 804.
The microphone compensation system 200 selects a microphone input signal as a reference signal (Act 904). The microphone compensation system 200 then applies the reference signal to each of the reference signal inputs of the microphone calibration logic (Act 906). Thus, the microphone calibration logic will attempt to compensate microphone input signals obtained from the other microphones to match the characteristics of the microphone providing the reference signal.
In addition, the microphone compensation system 200 applies the input signals obtained from the other microphones to the signal adaptation inputs of the microphone calibration logic (Act 908). The microphone calibration logic filters the microphone input signals using the adaptive filters (Act 910) to obtain calibrated microphone output signals. The microphone compensation system 200 also delays the reference signal as noted above (Act 912). The delayed reference signal and the calibrated microphone output signals are provided as outputs to subsequent processing systems (Act 914).
The microphone compensation system 300 applies the input signals obtained from the other microphones to the reference signal inputs of the microphone calibration logic (Act 1008). The adaptive filters compensate the reference signal based on the input signals obtained from the other microphones to obtain calibrated microphone output signals (Act 1010). In addition, the microphone compensation system 300 beamforms the microphone input signals to form a beamformed output signal (Act 1012). The beamformed output signal and the multiple calibrated reference signals are provided as outputs to subsequent processing systems (Act 1014). Furthermore, adaptation may occur when the microphone compensation system 300 determines that an adaptation criteria is met (Act 1016).
The microphone compensation system 400 applies the beamformed reference signal to each of the reference signal inputs of each set of microphone calibration logic (Act 1106). The beamformed reference signal thereby provides the standard against which the microphone compensation system 400 will match the microphone input signals. To that end, the microphone compensation system 400 applies the microphone input signals to the signal adaptation inputs of the microphone calibration logic (Act 1108).
The adaptive filters compensate the microphone input signals based on the beamformed reference signal (Act 1110). The beamformed reference signal and the calibrated microphone output signals are provided as outputs to subsequent processing systems (Act 1112). The microphone compensation system 400 may also adapt the filter coefficients when the microphone compensation system 400 determines that an adaptation criteria is met (Act 1114).
The microphone compensation system 500 applies the beamformed signal to each of the adaptation signal inputs of each set of microphone calibration logic (Act 1206). Thus, the microphone calibration logic compensates the beamformed signal in different adaptive filters in the microphone compensation system 500. The microphone compensation system 500 applies the microphone input signals to the reference signal inputs of the microphone calibration logic (Act 1208). The microphone input signals thereby provide the reference against which the beamformed signal is matched.
The adaptive filters compensate the beamformed signal based on the microphone input signals (Act 1210). The beamformed reference signal and the multiple calibrated beamformed output signals are provided as outputs to subsequent processing systems (Act 1212). Additionally, the microphone compensation system 500 adapts the filter coefficients when an adaptation criteria is met (Act 1214).
The microphone compensation system 600 applies the beamformed reference signal to each of the reference signal inputs of each set of microphone calibration logic (Act 1306). The microphone compensation system 600 applies the microphone input signals to the adaptation signal inputs of the microphone calibration logic (Act 1308). The microphone input signals are thereby adapted on the basis of the beamformed reference signal, which is a combination of previously calibrated microphone input signals.
The adaptive filters compensate the microphone input signals based on the beamformed reference signal (Act 1310). The calibrated microphone input signals result. The beamformed reference signal and the multiple calibrated microphone output signals are provided as outputs to subsequent processing systems (Act 1312). Additionally, the microphone compensation system 600 adapts the filter coefficients when an adaptation criteria is met (Act 1314). As described above, the microphone compensation system 600 ensures that the sum of the filter coefficients is non-zero for a sampling interval, ‘D’ (Act 1316).
The microphone compensations systems described above update the filter coefficients to adjust for the changing characteristics of the microphones. Thus, the microphone compensation systems provide flexible compensation to microphone non-uniformities. Moreover, lengthy and complex measurements for an initial determination of time-invariant filter coefficients may be avoided.
While various embodiments of the invention have been described, it will be apparent to those of ordinary skill in the art that many more embodiments and implementations are possible within the scope of the invention. Accordingly, the invention is not to be restricted except in light of the attached claims and their equivalents.
The embodiments of the invention described above are intended to be merely exemplary; numerous variations and modifications will be apparent to those skilled in the art. All such variations and modifications are intended to be within the scope of the present invention as defined in any appended claims.
Number | Date | Country | Kind |
---|---|---|---|
03009852.9 | May 2003 | EP | regional |
This application is a Continuation Application of and claims priority to U.S. application Ser. No. 11/271,503, filed on Nov. 12, 2005. Furthermore, U.S. application Ser. No. 11/271,503 claims priority to and is a Continuation-in-Part of International Application No. PCT/EP2004/00514, filed May 13, 2004 and published in English as International Publication No. WO 2004/103013 A2. International Application No. PCT/EP2004/005147 claims priority to European Application 03009852.9, filed on May 13, 2003. The present Continuation Application claim priority from and incorporates all of the previously mentioned priority applications by reference in their entirety.
Number | Date | Country | |
---|---|---|---|
Parent | 11271503 | Nov 2005 | US |
Child | 13273816 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/EP2004/005147 | May 2004 | US |
Child | 11271503 | US |