The present invention is related to a microplasma device and a system thereof, especially to a microplasma device and a corresponded system that eject microplasma array to achieve mass production of nanomaterials.
Microplasma is a high energy density plasma source which has been widely used in various fields adopted as a microplasma device. One of the most commonly use is to produce nanomaterials like metal nanoparticles, graphene quantum dots, silicon quantum dots and metal clusters. Microplasma can also apply to produce Plasma Activated Water (PAW) as a new trendy application. Such high density energy allows PAW to have a large number of active substances and free radicals to be able to use for general daily sterilization, agricultural growth, irrigation and pathogen control purposes. Microplasma becomea a popular technology and draws more and more attention with its high energy density but yet small size reaction device.
Although the microplasma device has many advantages as mentioned above, it is still struggled with the low conversion rate or the low yields rate inherited by its extremely low power. In order to provide high voltage energy, a disproportionate large size of power supply equipment is necessary but resulting with poor space utilization. Many ruthless facts for such potential device have made lots of manufactories hesitating to introduce microplasma device into real production. Hence, it is eager to have a solution that will overcome or substantially ameliorate at least one or more of the deficiencies of a prior art, or to at least provide an alternative solution to the problems. It is to be understood that, if any prior art information is referred to herein, such reference does not constitute an admission that the information forms part of the common general knowledge in the art.
In order to solve the problems of the conventional microplasma device with low conversion rate or low yields rate, the present invention provides a new design microplasma device comprises:
In accordance, a second aspect of the present invention provides a microplasma system using the microplasma device as mentioned above. The microplasma system comprises:
In accordance, the present invention has the following advantages:
Many of the attendant features and advantages of the present invention will become better understood with reference to the following detailed description considered in connection with the accompanying figures and drawings.
The steps and the technical means adopted by the present invention to achieve the above and other objects can be best understood by referring to the following detailed description of the preferred embodiments and the accompanying drawings.
Reference will now be made in detail to the present preferred embodiments of the invention, examples of which are illustrated in the accompanying drawings. Wherever possible, the same reference numbers are used in the drawings and the description to refer to the same or like parts. It is not intended to limit the method by the exemplary embodiments described herein. In the following detailed description, for purposes of explanation, numerous specific details are set forth in order to attain a thorough understanding of the disclosed embodiments. It will be apparent, however, that one or more embodiments may be practiced without these specific details. As used in the description herein and throughout the claims that follow, the meaning of “a”, “an”, and “the” may include reference to the plural unless the context clearly dictates otherwise. Also, as used in the description herein and throughout the claims that follow, the terms “comprise or comprising”, “include or including”, “have or having”, “contain or containing” and the like are to be understood to be open-ended, i.e., to mean including but not limited to.
<First Preferred Embodiment of Microplasma Device>
With Reference to
The reaction tank 11 comprises a tank body, which can contain the reaction solution 111 without leakage. Substances or material contained in the reaction solution 111 are different as different timing. However, the reaction solution will at least constantly include a nanomaterial M and/or a precursor M′.
The first electrode 12 of the present invention includes any suitable conductive material. In this embodiment, it is preferably to be a metal foil, such as gold foil (Au foil), silver foil (Ag foil) or platinum foil (Pt foil).
With reference to
Normally, a number of the gas inlet 1311 is less than a number of the microplasma oulets 1312. In this embodiment, a plasma gas G is input into one gas inlet 1311 and enter to the microplasma source 131 of the present invention. The plasma gas G is preferred to be any suitable inert gas including but not limited to Helium (He), Argon (Ar), Neon (Ne), Nitrogen (H2) or air. The plasma gas G is evenly dispersed or diffused to each of the microplasma outlets 1312, and is applied to the surface of the reaction solution 111 in the form of the microplasma MP in the array arrangement.
As shown in
The power supply 14 may utilize any suitable power supply for generating microplasma, such as a direct current power supply (DC), an alternating current power supply (AC) or a radio frequency power supply (RF). The present invention is preferred to use the DC power supply with more stable current input. A positive electrode and a negative electrode of the power supply 14 can be alternatively connected to the first electrode 12 and the second electrode 13 of the present invention according to requirements. Such approach can resulting the second electrode 13 performs different polarities and provides the microplasma MP carried with corresponded electricity charges.
<Second Preferred Embodiment of Microplasma Device>
With reference to
The voltage and current control device 15 in this embodiment includes a resistor module 151, a heat dissipation module 152 and a circuit board 153.
As shown in
With reference to
<Nanomaterials and Precursors Thereof>
With reference to below table 1, substances or materials contained in the reaction solution 111 at least include the nanomaterial M and/or the precursor M′ simultaneously. The reaction solution 111 may also include other ions, composites, compounds, or byproducts synthesized by the precursor M′ under the energy striking of the microplasma MP during the reaction period. However, the nanomaterial M and/or the precursor M′ are constantly contained in the reaction solution 111. The nanomaterial M is synthesized from the precursor M′ after exposure and stimulating by the microplasma MP. The nanomaterial M of the present invention includes a zero-dimensional (OD) nanomaterial in particle form, a one-dimensional (1D) nanomaterial in a columnar or linear form, or a two-dimensional (2D) nanomaterial in a layered or sheet-like form. The size of the nanomaterial M is preferred to have at least one of the dimension being at a range of 1 to 100 nm.
<First Preferred Embodiment of Microplasma System>
With reference to
In this preferred embodiment, the power supply 14 may also be included between the first electrode 12 and the second electrode 13. The power supply 14 includes a direct current power supply (DC), an alternating current power supply (AC) or a radio frequency power supply (RF). The present invention is preferred to use the DC power supply with more stable current input. The positive electrode and the negative electrode of the power supply 14 can be alternatively connected to the first electrode 12 and the second electrode 13 of the present invention according to requirements. Such approach can resulting the second electrode 13 performs different polarities and provides the microplasma MP carried with corresponded electricity charges. With reference to
With reference to
<Validation Tests of Improved Yields Rate Form the Preferred Embodiments>
With reference to below Table 2, the present invention provides validation tests proving improved yields rate of the nanomaterial M with multiple preferred embodiments/examples of the reaction solution 111, the nanomaterial M and the precursor M′ synthesized by the microplasma device 10. The formula or the ratio of the precursor M′ in the reaction solution 111 and parameters of the procedures are listed in Table 2. In these series of experiences, the volume of the reaction solution contained in the microplasma reaction tank 11 is set as 20 mL. A comparison sample is further included for each embodiment of the present invention with utilizing single microplasma source instead of microplasma array.
With reference to below Table 3 and
Reference indicators showed in table 3 and
<Microplasma Electrical Effect Tests>
With reference to below Table 4 and
As shown in Table 4 and
According to the electrical property of the precursor M′ in the reaction solution 111, the present invention could obtain a better yield rate by connecting one of the opposite polarity of the electrode of the power supply 14 with the second electrode 13. For example, the precursors M′ carried with positive charges like metal ions tend to be attracted by the negative electrode. Hence, it is preferred to have the second electrode 13 connected with the negative electrode of the power supply 14 to be able to emit the microplasma MP carried with negative charges leading to a higher yields of the nanomaterial. As shown in
The above specification, examples, and data provide a complete description of the present disclosure and use of exemplary embodiments. Although various embodiments of the present disclosure have been described above with a certain degree of particularity, or with reference to one or more individual embodiments, those with ordinary skill in the art could make numerous alterations or modifications to the disclosed embodiments without departing from the spirit or scope of this disclosure.
Number | Date | Country | |
---|---|---|---|
63400778 | Aug 2022 | US |