This disclosure relates to microporous layer structures for use in proton exchange membrane fuel cell systems.
Concerns about environmental pollution and fossil fuel depletion have led to urgent demand for alternative clean energy solutions. The hydrogen fuel cell, for example, the proton exchange membrane fuel cell (PEMFC), is one potential energy conversion system for future automobiles and stationary applications. The reaction in a PEMFC involves hydrogen molecules splitting into hydrogen ions and electrons at the anode, while protons re-combine with oxygen and electrons to form water and release heat at the cathode. A fuel cell can be very complicated and delicate due to the specific requirements of high power output (fast reaction and dynamics), longevity, and economical effectiveness. Generally, a proton exchange membrane is used as a proton conductor in a PEMFC. A catalyst layer containing, for example, platinum and/or platinum alloy is used to catalyze the electrode reactions. A gas diffusion layer, which may include a microporous layer and a carbon fiber based gas diffusion backing layer, is used to transport reactant gases and electrons as well as remove product water and heat. In addition, a flow field plate is generally used to distribute the reactant gas.
In one embodiment a fuel cell comprises a cathode having a first gas diffusion layer and a first catalyst layer, an anode including a second gas diffusion layer and a second catalyst layer and a proton exchange membrane disposed between the cathode and anode. A microporous layer is disposed between the first gas diffusion layer and the first catalyst layer. The microporous layer defines a plurality of bores extending between opposite surfaces of the microporous layer. Under freezing conditions the microporous layer is arranged to concentrate ice formation within the bores to reduce an amount of frozen water within the catalyst layer.
In another embodiment, a fuel cell microporous layer is disposed between a catalyst layer and a gas diffusion backing layer on a cathode side of the fuel cell. The microporous layer comprises a bulk material. The bulk material defines a plurality of pores and a plurality of domains. Under freezing conditions the domains are configured to concentrate ice formation within the domains to reduce an amount of frozen interface between the bulk material and the catalyst layer.
In yet another embodiment, a cathode microporous layer for a fuel cell comprises a first carbon-based material layer adjacent to the catalyst layer and a second carbon-based material layer disposed between the first layer and a gas diffusion backing layer. The second carbon-based material includes a plurality of domains that are configured to concentrate ice formation, under freezing conditions, within the domains to reduce an amount of frozen water within the catalyst layer.
Embodiments of the present disclosure are described herein. It is to be understood, however, that the disclosed embodiments are merely examples and other embodiments can take various and alternative forms. The figures are not necessarily to scale; some features could be exaggerated or minimized to show details of particular components. Therefore, specific structural and functional details disclosed herein are not to be interpreted as limiting, but merely as a representative basis for teaching one skilled in the art to variously employ the present invention. As those of ordinary skill in the art will understand, various features illustrated and described with reference to any one of the figures can be combined with features illustrated in one or more other figures to produce embodiments that are not explicitly illustrated or described. The combinations of features illustrated provide representative embodiments for typical applications. Various combinations and modifications of the features consistent with the teachings of this disclosure, however, could be desired for particular applications or implementations.
Although PEMFC technology has undergone significant development over the past decade, a PEMFC with high performance and increased robustness at a low cost has yet to be achieved. Therefore, fuel cells are yet to be significantly commercialized. One of the important technical challenges of PEMFCs is water management. This is mainly dictated by the current polymer electrolyte membrane, which exhibits high proton conductivity only in the well hydrated state. The hydration requirement of the electrolyte limits the maximum fuel cell operating temperature to about 90° Celsius (C). Above this temperature, membrane dry-out may occur, resulting in decreased proton conductivity. On the other hand, if the product water is not removed efficiently, it may cause water accumulation and flood the electrodes. This causes mass transport loss and may even stop fuel cell operation.
Liquid water accumulation in various fuel cell components makes two-phase flow (e.g., liquid and gas) almost unavoidable for PEMFC operation, especially at low temperatures and high current densities. The accumulated liquid water solidifies to form ice at sub-freezing temperatures. The capability to efficiently handle liquid water flow and ice formation is an important criterion when designing and selecting PEMFC components and operating conditions. According to Faraday's law, water generation at the cathode catalyst layer as a result of the reduction reaction can be determined by the following equation:
J
H2O
=Mj/2Fρ (1)
where
JH2O is the water flux in cm3/(s·cm2);
M is the molecular weight of water (i.e., 18 grams/mole);
j is the operating current density in A/cm2;
F is the Faraday constant (i.e., approx. 96,485 C/mol); and
ρ is the density of liquid water (i.e., 1 g/cm3 at 25° C.).
In order to achieve a suitable balance between the hydration requirements of various fuel cell components and the rejection of excess water from the fuel cell system, the design of the fuel cell can be tailored to effectively manage water under the given operating conditions of the system. A PEMFC includes a number of components that can potentially employ particular material and structural designs in order to enhance water management within the assembly. As disclosed herein, the particular gas diffusion layer of a PEMFC, typically including a carbon fiber based gas diffusion backing layer and a microporous layer disposed at the interface between the gas diffusion backing layer and an adjacent catalyst layer, performs an integral role in the management of water throughout both the electrode assembly and the larger fuel cell system. Based on the characteristics and operating conditions of a given PEMFC, the architecture of the gas diffusion layer assembly, including the structure and design of the microporous layer, can be optimized in order to enhance the management of water throughout the fuel cell system.
In vehicle applications, operating in sub-freezing temperature conditions may be common, especially in colder climates. Therefore, it is important to provide a fuel cell that is operational at sub-freezing temperatures. At sub-freezing temperatures the liquid water in the fuel cell may solidify to ice. The ice may form a frozen interface at the catalyst layer-gas diffusion layer boundary and block oxygen molecules from diffusing into the catalyst layer. The ice may also block liquid water for diffusing out of the catalyst layer to be carried away by the gas streams. This retards the electrochemical reaction, which can cause failed startup and accelerated catalyst and material degradation.
With reference to
Conventional GDBL 18 materials for PEMFCs are carbon fiber based paper and cloth with a thickness of about 200 microns. These materials are highly porous (having porosities of about 80%) to allow reactant gas transport to the catalyst layer (which generally has a thickness of about 10-15 microns), as well as water transport from the catalyst layer. In order to facilitate the removal of water, GDLs are typically treated to be hydrophobic with a non-wetting polymer such as polytetrafluoroethylene (PTFE), commonly known by the trade name Teflon. Conventional GDLs have a primary pore size in the range of 1 to hundreds of microns. Water produced in the cathode may be transported in forms of both vapor and liquid water through the GDL to a cathode gas channel where it is carried away by the gas stream.
The particular characteristics and structure of the MPL used in the GDL assembly can play a key role in the management of water throughout the fuel cell electrode. Conventionally, MPL materials consist mainly of carbon powder and PTFE particles. By designing the material and structural configuration of the MPL, enhancements to overall water management within the fuel cell system may be achieved. MPLs disclosed herein have the ability to effectively address the detrimental water accumulation and ice formation. New varieties of CLs that are now emerging in the art, such as thin-film type CLs, have the potential to increase fuel cell durability while decreasing cost. Despite these benefits, many of these CLs, including thin-film type, are prone to flooding as a result of limited water/ice storage in the membrane electrode assembly. The disclosed MPL structures can provide water and ice management enhancements to help harness the potential of these new types of catalyst layers.
Referring to
Conventional MPLs are hydrophobic and have very small pores sizes (i.e. 0.05-0.2 microns). This causes poor liquid water transport through the MPL 30. Thus, much of the liquid water will be absorbed by the PEM or accumulate in the CL 32. If the temperature of the CL 32 is subfreezing, then water in the CL 32 will freeze forming ice 36. The ice 36 may be formed within the CL pores or may be formed at the interface between the CL 32 and the MPL 30. The ice 36 at least partially blocks the oxygen from diffusing into the CL 32 in the PEM 34. This retards the electrochemical reaction and reduces output power of the fuel cell.
The cathode ice storage capacity may be calculated using the equation 2.
Equation 2:
W
cap
=W
cap,cl
+W
cap,m (2)
where
Wcap,cl=δCLερice+δCLεmCf,dryΔλav,CLMH2O
Wcap,m=δmCf,dryΔλav,mMH2O
and where
Wcap is the ice storage capacity;
Wcap,CL is the ice storage capacity offered by the catalyst layer;
Wcap,m is the ice storage capacity provided by the polymer electrolyte membrane.
δCL a is the thickness of the catalyst layer;
ε is the porosity of the catalyst layer;
ρice is the density of ice;
εm is the volume fraction of ionomer in catalyst layer;
Cf,dry is the charge (—SO3−) concentration in dry membrane;
Δλav,CL is the water uptake by catalyst layer ionomer during freeze startup;
MH2O is the molecular weight of water (18 grams/mole);
δm is the thickness of the polymer electrolyte membrane; and
Δλav,m is the water uptake by the polymer electrolyte membrane during freeze startup.
For example, consider a fuel cell which has an 18 micron thick membrane (conditioned to an initial residual water λ0=6 and can absorb water until λ=14) and a 10 micron thick CL that has porosity of 0.33. The ice storage capacity of this fuel cell, calculated by Equation 2, is about 0.83 mg/cm2. A fuel cell operating at a current density of 0.1 amp/square centimeter (A/cm2) will exceed the ice storage capacity of the fuel cell in approximately 90 seconds. For successful startup in freezing conditions, the fuel cell has to increase its temperature to above zero in less than 90 seconds. This short time-window is challenging for fuel cell startup in freezing conditions, especially from temperatures lower than −20° C. MPLs can be engineered to increase liquid water transport out of the CL and to store ice in the MPL. This reduces the likelihood of flooding and failed start up in freezing temperatures.
Referring to
The domains 44 increase the ice storage capacity. For example, a 30 micron thick MPL having domains of 100 microns in diameter and a domain spacing of 0.5 mm arranged in a square lattice pattern, can store 0.1 mg/cm2 of ice. This increases the total ice storage capacity to 0.93 mg/cm2, compared to 0.83 mg/cm2 in the conventional MPL. This is roughly a 12% increase in ice storage capacity. The domains 44 also increase transportation of super-cooled liquid water out of the CL and into the gas stream. This is due to the significantly reduced water breakthrough pressure and liquid transport resistance. This increases ice storage significantly and enables successful PEMFC startup in freezing temperatures.
In another embodiment, the domains 44 are packets of hydrophilic material embedded into the MPL 26. The hydrophilic material may be hydrophilically treated carbon, hydrophilic polymers (e.g., polyvinyl alcohol (PVA) and ionomer), and metal oxides (e.g., SiO2). The hydrophilic material may wick water and/or ice into the domain 44 further increasing the efficiencies of the domain 44 to capture water and ice. The hydrophilic material packets may be formed by any suitable method. For example, boreholes may be formed into the MPL in a first step. Then in a second step, the boreholes are filled in with a hydrophilic material.
Referring to
Referring to
Next, the remaining MPL is formed onto the substrate 52 as shown in
Next, the MPL 56 is removed from the substrate as is shown in
Alternatively, the micro-spikes 50 are formed of certain pore former materials. An example material of the pore former is ammonium chloride (NH4Cl), which decomposes to leave holes in MPL when sintering the MPL at temperatures above 338° C. Thus, the removed MPL 56 has a plurality of boreholes 58 corresponding to the locations of the micro spikes 50.
Referring to
Referring to
In another embodiment, the first layer is hydrophobic and the second layer 88 is hydrophilic. One or both of the first and second layers 86, 88 may contain domains 92. In yet another embodiment, the first and second layers 86, 88 have similar water properties (meaning both are either hydrophobic or hydrophilic). One or both of the first and second layers 86, 88 may contain domains 92.
While exemplary embodiments are described above, it is not intended that these embodiments describe all possible forms encompassed by the claims. The words used in the specification are words of description rather than limitation, and it is understood that various changes can be made without departing from the spirit and scope of the disclosure. As previously described, the features of various embodiments can be combined to form further embodiments of the invention that may not be explicitly described or illustrated. While various embodiments could have been described as providing advantages or being preferred over other embodiments or prior art implementations with respect to one or more desired characteristics, those of ordinary skill in the art recognize that one or more features or characteristics can be compromised to achieve desired overall system attributes, which depend on the specific application and implementation. These attributes can include, but are not limited to cost, strength, durability, life cycle cost, marketability, appearance, packaging, size, serviceability, weight, manufacturability, ease of assembly, etc. As such, embodiments described as less desirable than other embodiments or prior art implementations with respect to one or more characteristics are not outside the scope of the disclosure and can be desirable for particular applications.
This application is a continuation-in-part of application Ser. No. 13/832,943, filed Mar. 15, 2013, and a continuation-in-part of application Ser. No. 13/832,358, filed Mar. 15, 2013, the disclosures of which are hereby incorporated in their entirety by reference herein.
Number | Date | Country | |
---|---|---|---|
Parent | 13832943 | Mar 2013 | US |
Child | 14271705 | US | |
Parent | 13832358 | Mar 2013 | US |
Child | 13832943 | US |