The present disclosure relates to a micropump MEMS device for moving or ejecting a fluid, in particular a microblower or flowmeter.
Known micropumps are able of moving small amounts of a fluid, such as a liquid or a gas, to cool small components, to supply specific gas molecules for administering medicines, or to perform flow analyses. In particular, some known micropump devices exploit the capacity of piezoelectric materials to deflect a membrane when biased at an appropriate a.c. voltage.
For instance, US 2009/0232683 describes a piezoelectric microblower formed by a stack of appropriately shaped plates, overlapped on each other and bonded, of metal or hard resin. In particular, the microblower described therein comprises a body housing a chamber closed on a first side by a first wall and on an opposite side by a vibrating plate (also of metal or flexible resin, such as an epoxy resin). The vibrating plate is bonded to the body and carries a piezoelectric element. The first wall has a first hole in fluidic contact with a fluid supply path. The supply path is formed by a suitably shaped plate arranged between the first wall and a second wall and has a fluid inlet and a fluid-ejection outlet. The fluid-ejection outlet is formed by a second hole arranged in the second wall so that it is aligned to the first hole.
The piezoelectric element is fixed on the back of the vibrating plate to form a unimorph membrane, which, when the piezoelectric element is biased by an a.c. voltage, bends in opposite directions, with alternating motion, reducing and increasing the volume of the chamber in the body. The above volume variation alternately causes fluid to be drawn from the supply path inlet and discharge thereof through the ejection outlet, in an alternating way.
With this structure, it is thus possible to move small amounts of fluid, larger than 0.2 ml/min, in a precise way; the microblower may thus be used for cooling electronic devices with air.
It is, however, desirable to have micropump devices able of moving, with high precision, amounts of fluid ranging from very low values to higher values.
One or more embodiments of the present disclosure provide a micropump device having a simple and inexpensive structure allowing variable amounts of fluids, from very low to high values, to be moved with high precision.
According to the present disclosure a micropump device and the corresponding manufacturing process are provided.
For an understanding of the present disclosure, embodiments thereof are now described, purely by way of non-limiting example, with reference to the attached drawings, wherein:
The micropump device 1 comprises a plurality of individual actuator elements 5 arranged side-by-side, for example, aligned in rows and columns. In the embodiment of
Each actuator element 5 is connected independently, via electrical connections 6 and contact pads 7, shown schematically, to a control unit 8, generally formed in a different die 9, for example, as an ASIC (Application-Specific Integrated Circuit). Alternatively, the actuator elements 5 may be connected in groups, the actuator elements 5 of each group being controlled simultaneously, and the groups may be controlled separately, to reduce the number of electrical connections and thus simplify them.
With reference to
Each actuator element 5 comprises a fluidic inlet path 10 and outlet openings 11. In the illustrated embodiment, the fluidic inlet path 10 opens on the first main face 3A, through inlet openings 12. The outlet openings 11 are arranged on the second main face 3B, here one for each actuator element 5. The inlet openings 12 may be connected to an external fluidic circuit (not illustrated), for example for drawing a liquid or a gas contained in a reservoir, or directly with the external environment, for example for drawing ambient air. Likewise, the outlet openings 11 may be connected to an external fluidic circuit, not illustrated, or to the outside, according to the envisaged application.
As illustrated in detail in
The portion between each chamber 15 and the first main face 3A of the die 2 forms a membrane 18 and a piezoelectric element 19 is arranged on each membrane 18, on the first main face 3A.
The first and second chambers 15, 20 here have a circular shape, with centers aligned to each other along a central axis 25. The membrane 18 is thus circular, concentric to the chambers 15, 20. Moreover, the second chamber 20 has an area (in top plan view, see
In the illustrated embodiment, the inlet openings 12 are four for each actuator element 5, are arched and annulus sector-shaped, circumferentially aligned to each other (see, in particular,
The outlet trench 22 (one for each actuator element 5) has a cylindrical shape parallel and concentric to the central axis 25 of the respective actuator element 5, has the same area (in top plan view) as the respective outlet opening 11, and extends through the second chamber 20.
The piezoelectric element 19 may have the structure illustrated in the cross-section of
In detail, the piezoelectric element 19 is formed on an insulating layer 181, for example formed by superposing a thermally grown silicon oxide layer and a dielectric layer, as discussed in detail hereinafter with reference to
The micropump device 1 operates in a way similar to known devices. In fact, application of an a.c. driving voltage between the top and bottom electrodes 183, 184, for example of 40 V, causes contraction and expansion of the thin-film piezoelectric region 191 and deflection of the membrane 18 in a vertical direction, alternately moving away from and towards the second chamber 20, causing a corresponding volume increase and decrease of the first chamber 15. This volume variation causes the fluid in the inlet trench 21 and in the second chamber 20 to be drawn into the first chamber 15 and then ejected through the outlet trench 22 and the outlet opening 11.
The micropump device 1 can be manufactured as described hereinafter with reference to
Initially,
In detail, on the wafer 100 a resist mask 101 is formed having openings with honeycomb lattice. Using the mask 101, an anisotropic chemical etch of the wafer 100 is carried out to form a plurality of communicating trenches 102, having a depth of, for example, 15 μm, communicating with each other and delimiting a plurality of silicon columns 103.
Then,
An annealing step is then performed, for example for 30 minutes at 1190° C., preferably in a hydrogen atmosphere or, alternatively, in a nitrogen atmosphere.
As discussed in the above patents, the annealing step causes migration of the silicon atoms, which tend to move into a lower energy position. Consequently, also by virtue of the short distance between the columns 103, the silicon atoms thereof migrate completely, and the second chambers 20 are formed. A thin layer of silicon remains above the second chambers 20, formed in part by epitaxially-grown silicon atoms and in part by migrated silicon atoms, and forms a closing layer 105 of monocrystalline silicon.
Next,
Then,
Next,
Then,
Then,
Then, the piezoelectric elements 19 are formed on the dielectric material layer 117. For instance, with reference to
Next,
Then,
After performing final manufacturing steps, including contact opening and wafer 100 dicing, the micropump device 1 of
In this way, a micropump device 1 may be obtained having small outer dimensions and high flexibility and versatility, in particular for moving adjustable fluid volumes.
For instance, with the described solution, it is possible to manufacture a die 2 having a side S=20 mm comprising 1600 (40×40) actuator elements 5, each having a diameter D (dimension of the second chamber 20, see
Moreover, in each actuator element 5 the first chamber 15 may have a diameter of 350 μm and a thickness of 3.5 μm, the second chamber 20 may have a diameter of 460 μm (as already mentioned) and a thickness of 3 μm, the distance between the first chamber 15 and the second chamber 20 may be of 10 μm and the membrane 18 may have, for example, a thickness of approximately 6 μm. The inlet hole 12 (inlet trench 21) may have a diameter of 10 μm, and the outlet hole 11 (outlet trench 22) may have a diameter of 13 μm. The thin-film piezoelectric region 191 may have a thickness of 2 μm, and the piezoelectric element 19 may have a total thickness comprised between 2.1 μm and 3 μm.
With the dimensions referred to above, each actuator element 5, when biased at 40 V, is able to generate a flow of 0.026 l/min, and the micropump device 1 can generate a total flow of up to 41 l/min. By virtue of the possibility of controlling the actuator elements 5 individually or in groups, however, the micropump device 1 is able to control, in a precise way, intermediate flow values between the unit flow referred to above (0.026 l/min) and the total flow (41 l/min). Moreover, the minimum and maximum flow values may also be increased or reduced by modifying the driving voltage applied between the top and bottom electrodes 183, 184. For instance, by lowering the driving voltage to 20 V, it is possible to halve the flow, thus obtaining a minimum value of approximately 0.01 l/min, and, by reducing it to 10 V, a minimum value of approximately 0.005 l/min is obtained.
Monolithic formation of a plurality of actuator elements within a monolithic body of semiconductor material thus enables precise regulation of flow ranging from very low values to high values.
From the simulations conducted by the present applicant, it has moreover been found that the micropump device 1 has an excellent reliability and the structure is able to withstand stresses generated also by simultaneous actuation of all the actuator elements 5, with ample safety margin.
The values referred to above are, however, only indicative, and in particular the shape and dimensions of the chambers 15, 20 may vary widely, according to the application and the desired flow volumes.
For instance, according to a different embodiment,
The described micropump device may be used in a plurality of applications, where controlled movement of fluids (liquids or gases) is desired in variable and well-controlled amounts or where it is desired to measure flow. For instance, the present micropump device may form a microblower usable as a flowmeter, in gas sensors, or in medical applications, for example for treating sleep apnoea.
Finally, it is clear that modifications and variations may be made to the micropump device and to the manufacturing process described and illustrated herein, without thereby departing from the scope of the present disclosure.
For instance, the inlet trenches 21 and the outlet trenches 22 may be formed in a reversed with respect to what illustrated in
Moreover, the shape of the inlet trenches 21 and of the inlet openings 12 may vary, as their number, and the inlet trenches 21 may be connected to a single supply channel that opens to the outside.
The various embodiments described above can be combined to provide further embodiments. These and other changes can be made to the embodiments in light of the above-detailed description. In general, in the following claims, the terms used should not be construed to limit the claims to the specific embodiments disclosed in the specification and the claims, but should be construed to include all possible embodiments along with the full scope of equivalents to which such claims are entitled. Accordingly, the claims are not limited by the disclosure.
Number | Date | Country | Kind |
---|---|---|---|
102019000005808 | Apr 2019 | IT | national |