MicroRNAs for Modulating Herpes Virus Gene Expression

Abstract
An algorithm for identification of microRNA (miRNA) targets within viral and cellular RNA is disclosed. Also disclosed are essential herpes virus genes whose transcripts contain one or more targets of miRNAs encoded by herpes viruses or by host cells as predicted by the algorithm, and the use of such targets, miRNAs and their derivatives for modulating viral replication and latency.
Description
FIELD OF THE INVENTION

This invention relates to the fields of molecular biology and control of gene expression, particularly viral gene expression within a virus-infected cell. In particular, the invention is related to the identification of essential herpes virus genes whose transcripts are targeted by microRNAs (miRNAs) of both viral and cellular origin, and the use of such miRNAs and their derivatives for modulating viral replication and latency.


BACKGROUND OF THE INVENTION

Various publications, including patents, published applications, technical articles and scholarly articles are cited throughout the specification. Each of these cited publications is incorporated by reference herein, in its entirety.


Mature microRNAs (miRNAs) are ˜22-nucleotide noncoding RNAs that regulate gene expression. They are produced by excision of a 60- to 80-nucleotide stem-loop precursor from a primary transcript by the ribonuclease Drosha; transported to the cytoplasm by exportin 5; and further processed by the ribonuclease Dicer, which excises a duplex that is unwound to produce the miRNA. The miRNA enters an RNA-induced silencing complex (RISC) containing multiple proteins. Within the complex, miRNAs regulate gene expression by forming imperfectly base-paired duplexes with target mRNAs, most often within the 3′ non-coding region of the message. Generally, miRNAs inhibit translation of target mRNAs, although in some cases they might also reduce the half life and therefore the level of targeted mRNAs. Perfectly base-paired miRNAs, often termed siRNAs, appear to sponsor cleavage of target mRNAs.


The human genome encodes several hundred miRNAs (reviewed in Jackson and Standart, Sci STKE 2007:re1, 2007). An individual miRNA can control multiple target mRNAs and an individual mRNA can be targeted by multiple miRNAs, and the action of a single miRNA can produce multiple functional consequences that lead to a coordinated physiological response. For example, the D. melanogaster miRNA that is encoded by bantam induces tissue growth by both stimulating cell proliferation and inhibiting apoptosis. Viruses also encode miRNAs, suggesting that, like their host cells, they employ these RNAs for gene regulation (reviewed in Sullivan and Ganem, 2005, Mol. Cell 20, 3-7). Multiple members of the human herpesvirus family have been shown to encode miRNAs, including Epstein-Barr virus (EBV, Pfeffer et al., 2004, Science 304, 734-736), Kaposi's sarcoma-associated herpesvirus (KSHV, Cai et al., 2005, Proc Natl Acad Sci USA 102, 5570-5575; Pfeffer et al., 2005, Nat Methods 2, 269-276; Samols et al., 2005, J Virol 79, 9301-9305), human cytomegalovirus (HCMV, Dunn et al., 2005, Cell Microbiol 7, 1684-1695; Grey et al., 2005, J Virol 79, 12095-12099; Pfeffer et al., 2005, supra), and herpes simplex virus (HSV, Pfeffer et al., 2005, supra; Cui et al., 2006, J Virol 80, 5499-5508; Gupta et al., 2007, Nature 442, 82-85).


Because of their role in regulating gene expression at the post-transcriptional level, miRNAs are being widely investigated as therapeutic agents for numerous disease states, including the control of infectious agents and proliferative disorders. Several algorithms have been developed for predicting microRNA targets; for the most part, these have been used for prediction of targets in Drosophila, C. elegans, and humans. One such algorithm is Miranda (Enright et al., 2003, Genome Biology, 5, R1.1-R1.14), which predicts targets by computing an approximate free energy of binding between the microRNA and the 3′UTR as well as a score based on various empirically determined rules derived from microRNA-target pairs known from experiments. Another algorithm (Robins et al., 2005, Proc. Natl. Acad. Sci. USA 102, 4006-4009), uses the RNA structure of the 3′UTR and essentially searches for potential binding sites only in the single stranded regions of the 3′UTR. Other algorithms utilize conservation among species in their parameters (e.g., Lewis et al, 2005, Cell 120, 15-20; Robins & Press, 2005, Proc. Natl. Acad. Sci. USA 102, 15557-15562); these algorithms search for potential binding sites only in the conserved part of the 3′UTR.


In spite of the interest in exploiting miRNA for therapeutic use, the targets of miRNAs remain largely unknown. This is in part because, as outlined above, current computational methods employ structural or energetic parameters based on the molecular basis of miRNA-target interaction, which is not yet completely understood. Accordingly there is a need for improved predictive techniques and for the resultant identification of molecular targets for miRNAs.


SUMMARY OF THE INVENTION

One aspect of the present invention features a method of identifying miRNA hybridization targets in a population of mRNA molecules, wherein the population of mRNA molecules corresponds to mRNAs encoded by one or more selected genomes. The method comprises the steps of:


a) providing one or more databases comprising selected miRNA sequences and sequences representing 3′ untranslated regions (3′UTRs) of the population of mRNA molecules;


b) determining one or more seed oligomers for each of the selected miRNA molecules;


c) computing the probability (p) of finding an oligomer complementary to a seed oligomer at any position of a random background sequence generated using a kth order Markov model based on the sequence composition of the 3′ UTRs;


d) counting the number (c) of occurrences of an oligomer in each 3′UTR that is complementary to a seed oligomer, thereby creating a collection of miRNA-3′UTR pairs;


e) providing a score for each miRNA-3′UTR pair, wherein the score is determined by a single hypothesis p-value PVSH of a binomial distribution, computed by









PV
SH



(

l
,
c
,
p

)


=


B


(

p
,
c
,

l
-
c
+
1


)



B


(

c
,

l
-
c
+
1


)




;




wherein l is the length of the 3′ UTR, B(x,a,b) is the incomplete beta function and B(a,b) is the usual beta function, defined by








B


(

x
,
a
,
b

)


=



0
x






u

a
-
1




(

1
-
u

)



b
-
1









u




,







B


(

a
,
b

)


=

B


(

1
,
a
,
b

)



;





f) ranking the miRNA-3′UTR pairs according to their score PVSH, wherein the highest rank corresponds to the smallest PVSH;


g) evaluating the statistical significance of the t highest-ranking microRNA-target pairs, wherein t is an integer number between 1 and the total number of pairs tested, by generating N random genomes analogous to the selected genome, wherein each random genome comprises the same number of 3′UTRs as the selected genome, and each corresponding 3′UTR is of the same length and is based on the same kth Markov model as the corresponding 3′UTR in the selected genome.


h) repeating steps c) through f) for each of the N random genomes;


i) evaluating the statistical significance of the t highest-ranking miRNA-3′UTR pairs from step f) for the selected genome by (1) counting the number Nt of the randomly generated genomes in which the tth pair exhibits PVSH smaller than the tth pair in the selected genome and (2) computing the p-value PVMH(t) corrected for Multiple Hypothesis Testing from the formula









PV
MH



(
t
)


=


N
t

N


;




wherein PVMH(t) is the probability of finding higher scores for the t highest-ranking miRNA-3′UTR pairs in the random genome as compared with the selected genome; and


j) identifying the miRNA hybridization targets by assessing each PVMH(t), wherein a smaller PVMH(t), correlates with a higher probability that the predicted targets are miRNA hybridization targets.


The seed oligomers can be heptamers or hexamers, and are typically determined from positions 2-8 from the 5′ end of the miRNA sequences. The 3′UTRs may be determined experimentally or computationally. In various embodiments, the miRNA sequences are human or viral and the one or more selected genomes is a virus genome. In particular, the one or more selected genomes are from herpes viruses.


Another aspect of the invention features a system for identifying miRNA hybridization targets. The system comprises: an input interface for inputting mRNA sequences, a database of mRNA sequences or a link for connecting to a remote data input interface, data or a database of mRNA sequences; an input interface for inputting miRNA sequences, a database of miRNA sequences or a link for connecting to a remote data input interface, data or a database of miRNA sequences; a processor with instructions for comparing mRNA sequences to miRNA sequences to identify miRNA hybridization targets according to the method of claim 1. In certain embodiments, the system comprises a link for connecting to a database of mRNA sequences. Supplementally or alternatively, the system may comprise an input interface for inputting miRNA sequences.


Another aspect of the invention features a computer program comprised in a computer readable medium for implementation on a computer system for identifying miRNA hybridization targets. The computer program comprises instructions for performing the steps of the method recited above.


Another aspect of the invention features a complex comprising an mRNA hybridization target to which is hybridized a miRNA, or chemically modified miRNA or siRNA derivative thereof, wherein the hybridization of the miRNA or derivative thereof to the mRNA hybridization target is predicted by a method comprising the steps set forth hereinabove. In one embodiment, the mRNA hybridization targets are viral 3′ untranslated regions (3′UTRs). In particular, the viral 3′UTRs are from herpes simplex virus 1 or 2 (HSV), Epstein-Barr virus (EBV), human cytomegalovirus (HCMV), Kaposi's sarcoma-related herpesvirus (KSHV) or varicella zoster virus (VZV). In specific embodiments, the viral 3′UTRs are set forth in Table 9 and elsewhere herein, and are:


a) HSV 3′UTRs RL1 (ICP 34.5), RL2 (ICP0), UL1, UL2, UL5, UL9, UL11, UL13, UL14, UL16, UL20, UL24, UL34, UL35, UL37, UL39, UL42, UL47, UL49A, UL51, UL52, US1 (US 1.5, ICP22), US8, US8A, US9, US11, or US12 (ICP47);


b) EBV 3′UTRs BALF2, BALF3, BALF5, BARF0, BaRF1, BARF1, BBLF4, BDLF 3.5, BDLF4, BFRF2, BGLF1, BGLF2, BGLF3, BGLF 3.5, BHLF1, BHRF1, BLLF3, BMRF1, BNRF1, BOLF1, BRLF1, BSLF2/BMLF1, BVLF1, BXLF1, BXRF1, BZLF1, BZLF2, LF3, LMP-1, LMP-2A, or LMP-2B;


c) HCMV 3′UTRs IE1 (UL123), IE2 (UL122), RL1, RL10, UL3, UL16, UL17, UL20, UL26, UL29, UL31, UL32, UL33, UL34, UL37, UL38, UL40, UL43, UL44, UL45, UL50, UL51, UL52, UL54, UL57, UL60, UL61, UL67, UL69, UL78, UL79, UL80, UL86, UL87, UL91, UL92, UL95, UL97, UL98, UL10, UL103, UL105, UL107, UL112-113, UL117, UL120, UL137, UL141a, UL151, UL151a, UL153, US7, US10, US12, US14, US24, US26, US27, US28, New ORF1, or New ORF3;


d) KSHV 3′UTRs ORF6, ORF7, ORF8, ORF9, ORF16, ORF18, ORF21, ORF25, ORF26, ORF28, ORF32, ORF40, ORF47, ORF49, ORF 50 (Rta), ORF56, ORF57, ORF58, ORF59, ORF63, ORF72, ORF73 (LANA), ORF74, ORF75, ORFK4, ORFK8 (Zta), ORFK13, and ORFK14; or


e) VZV 3′UTRs ORF16, ORF47, ORF52, ORF55, ORF59, ORF61, or ORF62.


In specific embodiments, the miRNAs are from HSV, EBV, HCMV, KSHV or humans. In particular, the miRNAs comprise those set forth in Table 9 herein. Sequences complementary thereto, as appropriate, are also encompassed. More particularly, the miRNAs comprise those set forth in any of Tables 1, 2, 3, 4, 5, 6, 7 or 8 herein.


In various embodiments, the complex comprises the miRNA-target pairs set forth in Table 1 and Table 2 herein. In other embodiments, the complex comprises the miRNA-target pairs set forth in Tables 3C, 4C, 5C, 6C and 7 herein. In particular, the mRNA hybridization targets are 3′UTRs of immediate early (IE) genes set forth in Table 8 herein, wherein the pairs are: ebv-miR-BART15 targeting EBV 3′UTRs of BZLF1 or BRLF1; ebv-miR-BHRF1-3 targeting EBV 3′UTRs of BZLF1 or BRLF1; hcmv-miR-UL112-1 targeting HCMV 3′UTR of IE (UL123); or kshv-miR-K12-6-3p targeting KSHV 3′UTRs of Zta (ORFK8) or Rta (ORF 50). More particularly, the mRNA hybridization targets are 3′UTRs of HCMV E genes and the pairs are hcmv-miR-UL112-1 targeting IE1 (UL123); or any one of human-encoded miRNAs hsa-miR-200b, hsa-miR-200c and hsa-miR-429, targeting IE2 (UL122), as described in detail in Examples 2 and 3.


Another aspect of the invention features a siRNA or a chemically modified analog of a miRNA, which hybridizes with one or more mRNA targets selected from the viral 3′UTRs set forth above. The siRNA or chemically modified miRNA, comprises a seed sequence of any of the miRNAs set forth in Table 9, and may comprise a seed sequence of a miRNA selected from the representative miRNA sequences of Table 9, namely SEQ ID NOS: 216-428. In particular embodiments, the siRNA or chemically modified miRNA contains a seed sequence that comprises, as at least a portion thereof, one of the hexamer or heptamer sequences set forth in Tables 3A, 4A, 5A or 6A, or its complement. In other embodiments, the siRNA or chemically modified analog of miRNA is based on any of the miRNAs set forth in Table 9, and more particularly as set forth in Tables 1, 2, 3, 4, 5, 6, 7 or 8.


Another aspect of the invention features a vector comprising a polynucleotide which, when expressed in a mammalian cell, produces a transcript that is processed within the cell to form a miRNA or a siRNA derivative thereof, which is capable of binding to a viral 3′UTR selected from any of those viral 3′UTRs set forth hereinabove. In particular, the vector comprises a polynucleotide which, when expressed in a mammalian cell, produces a transcript that is processed within the cell to form a miRNA or an siRNA derivative of a miRNA comprising one or more of the miRNAs set forth in Table 9 herein. In particular embodiments, the miRNA or siRNA derivative is selected from those listed respectively in Tables 1, 2, 3, 4, 5, 6, 7 or 8.


Another aspect of the invention features a pharmaceutical composition for treatment of herpes virus infection caused by HSV, EBV, HCMV, KSHV or VSV, comprising a pharmaceutical carrier and miRNA which is capable of binding to a viral 3′UTR selected from any of those viral 3′UTRs set forth hereinabove. In particular, the miRNA is one or more of the miRNAs set forth in Table 9 herein. In particular embodiments, the miRNA is selected from those listed respectively in Tables 1, 2, 3, 4, 5, 6, 7 or 8. In certain embodiments, the miRNA comprises at least one chemical modification. In other embodiments, the miRNA is replaced with a siRNA that hybridizes with the herpes virus sequence with which the miRNA hybridizes in situ. In yet other embodiments, the miRNA is provided as a vector with a polynucleotide that, when transcribed and processed in a mammalian cell, produces the one or more miRNAs. In these embodiments, the polynucleotide may be customized to produce a siRNA that hybridizes with the herpes virus sequence with which the miRNA hybridizes in situ. The pharmaceutical composition can comprise more than one miRNA or derivative, and further may comprise one or more other antiviral agents.


Another aspect of the invention features a kit or article of manufacture comprising the above-described pharmaceutical composition and instructions for administering the composition to treat a herpes virus infection. Optionally, the kit or article may contain one or more other antiviral agents and instructions for their use in conjunction with the pharmaceutical composition.


Another aspect of the invention features a method of treating a herpes virus infection in a patient. The method comprises administering to the patient a pharmaceutical composition comprising a miRNA or derivative thereof as described above, for a time and in an amount effective to treat the herpes virus infection in the patient.


Another aspect of the invention features a method of modulating herpes virus replication in a cell. The method comprises exposing the cell to one or more miRNAs, or chemically modified or siRNA derivatives thereof, under conditions permitting the miRNA to interact with a hybridization target thereof on a viral transcript within the cell, whereupon the interaction modulates the herpes virus replication in the cell. Again, the miRNAs are selected from Table 9, or more particularly from any one of Tables 1, 2, 3, 4, 5, 6, 7 and 8.


Other features and advantages of the invention will be understood by reference to the drawings, detailed description and examples that follow.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1. miR-UL112-1 is predicted to bind to the IE1 3′UTR. The predicted miR-UL112-1 binding site within the HCMV major IE locus. At the top of the diagram, the spliced mRNAs that encode IE1 and IE2 are depicted with the non-coding exon 1 (Ex1) shown as an open box and the coding exons (Ex2-5) depicted as grey boxes. IE1 and IE2 share Ex2 and Ex3. The PolyA sites and the location of the miR-UL112-1 binding site in the 3′UTR (grey pinhead) are shown. At the bottom of the diagram, the IE1 3′UTR sequence is expanded and the putative miRNA/mRNA base pairing is depicted. The grey box denotes nucleotides within the miRNA seed sequence.



FIG. 2. miR-UL112-1 inhibits expression from a reporter mRNA containing the IE1 3′UTR. Reporter assay for miR-UL112-1 function. 293T cells were co-transfected with firefly luciferase expression plasmids containing either the wild-type (light grey) or mutant IE1 3′UTR (dark grey) as well as a Renilla luciferase internal control. Cells were additionally co-transfected with the indicated amounts of a miR-UL112-1 expressing plasmid, and transfection mixtures were balanced with the expression plasmid lacking an insert. Firefly luciferase units were normalized to Renilla luciferase. The luciferase units are shown relative to the amount of luciferase from the reporter construct in the absence of miRNA expression plasmids. Asterisks denote p-values<0.05 as determined by the Student's T-test.



FIG. 3. Viruses that lack miR-UL112-1 or its binding site synthesize more IE1 protein. (A) MRC5 fibroblasts were mock-infected (M) or infected with BFXwt (WT), BFXsub112-1 (112-1), BFXsub112-1r (112-1r) or BFXdlE1cis (IE1cis). Cells were 35S-labeled for 1 h before harvesting at the indicated times after infection. Lysates were prepared and analyzed by western blot for IE1, the late virus-coded pp28 or tubulin (top panel) or immunoprecipitation followed by electrophoresis for 35S-labeled IE1 (bottom panel). The experiment shown is a representative of 6 independent immunoprecipitations. (B, top panel) Quantification of 35S-labeled IE1 relative to tubulin. IE1 protein levels were quantified by phosphorimager analysis of immunoprecipated complexes from two independent experiments, each of which was analyzed by three independent immunoprecipitations, such as that displayed at the bottom of panel A. The levels of IE1 protein were normalized to tubulin levels from the Western blot in panel A. The mutant and revertant viruses are normalized to WT levels for each time point. P-values were determined by the Student's T-test. (B, middle panel) Quantification of IE1 RNA relative to UL37 RNA by qRT-PCR. Mutant and repaired viruses are normalized to WT levels for each time point. (C, bottom panel) ratio IE1 protein (from top panel) to IE1 RNA (from middle panel).



FIG. 4. hsa-miR-200b, hsa-miR-200c and hsa-miR-429 are predicted to bind to the IE1 3′UTR. The predicted hsa-miR-200b binding site within the HCMV IE2 3′UTR locus is shown as a representative miRNA:mRNA interaction. At the top of the diagram, the spliced mRNAs that encode IE1 and IE2 are shown. The PolyA sites and the location of the hsa-miR-200b binding site in the IE2 3′UTR (grey pinhead) are shown. At the bottom of the diagram, the IE2 3′UTR sequence is expanded and the putative miRNA/mRNA base pairing is depicted. The grey box denotes nucleotides within the miRNA seed sequence.



FIG. 5. Retrovirus transduced 4T07 cells overexpress hsa-miR-200b and hsa-miR-200c. Murine cells were transduced with two different retroviruses which over express both hsa-miR-200b and hsa-miR-200c (4T07:C1C2). The expression levels of the miRNAs were assayed by qRT-PCR using TaqMan probe sets specific to the two miRNAs. The amount of miRAN expression was normalized to the levels of the endogenous small nucleolar RNA RNU44. Relative amounts of the miRNA expression are shown.



FIG. 6. Luciferase reporter mRNA containing the IE2 3′UTR is inhibited in cells over-expressing hsa-miR-200b, hsa-miR-200c and hsa-miR-429. A mouse mammary tumor cell line, was transduced with either lentiviruses containing scrambled DNA (4T07) or lentiviruses which over express the hsa-miR-200b, hsa-miR-200c and hsa-miR-429 miRNAs (4T07/C1C2). These cells were co-transfected with firefly luciferase expression plasmids containing either a non-specific 3′UTR (Empty vector), the wild type 3′UTR of IE2 (IE2 3′UTR), the IE2 3′UTR with four nucleotides within the seed sequence mutated to four cysteines (Mutant IE2 3′UTR) or a 3′UTR which contains a sequence complementary to the hsa-miR-200b sequence (miR-200b pos control). Cells were additionally co-transfected with a Renilla luciferase plasmid to control for transfection efficiencies and luciferase assays. Firefly luciferase units were normalized to Renilla luciferase. The luciferase units for each plasmid are shown relative to the amount of luciferase activity in the absence of the overexpressed miRNAs.





DETAILED DESCRIPTION OF ILLUSTRATIVE EMBODIMENTS

Various terms relating to the methods and other aspects of the present invention are used throughout the specification and claims. Such terms are to be given their ordinary meaning in the art unless otherwise indicated. Other specifically defined terms are to be construed in a manner consistent with any particular definitions provided throughout the specification. It is to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to be limiting.


As used in this specification and the appended claims, the singular forms “a”, “an” and “the” include plural referents unless the content clearly dictates otherwise. Thus, for example, reference to “a cell” includes a combination of two or more cells, and the like.


“About” as used herein when referring to a measurable value such as an amount, a temporal duration, and the like, is meant to encompass variations of ±20% or ±10%, more preferably ±5%, even more preferably ±1%, and still more preferably ±0.1% from the specified value, as such variations are appropriate to perform the disclosed methods.


A “coding region” of a gene consists of the nucleotide residues of the coding strand of the gene and the nucleotides of the non-coding strand of the gene which are homologous with or complementary to, respectively, the coding region of an mRNA molecule which is produced by transcription of the gene.


A “coding region” of an mRNA molecule also consists of the nucleotide residues of the mRNA molecule which are matched with an anti-codon region of a transfer RNA molecule during translation of the mRNA molecule or which encode a stop codon. The coding region may thus include nucleotide residues corresponding to amino acid residues which are not present in the mature protein encoded by the mRNA molecule (e.g., amino acid residues in a protein export signal sequence).


The term “complementary” (or “complementarity”) refers to the specific base pairing of nucleotide bases in nucleic acids. The term “perfect complementarity” as used herein refers to complete (100%) complementarity within a contiguous region of double stranded nucleic acid, such as between a hexamer or heptamer seed sequence in a miRNA and its complementary sequence in a target polynucleotide, as described in greater detail herein.


“Encoding” refers to the inherent property of specific sequences of nucleotides in a polynucleotide, such as a gene, a cDNA, or a mRNA, to serve as templates for synthesis of other polymers and macromolecules in biological processes having either a defined sequence of nucleotides (i.e., rRNA, tRNA and mRNA) or a defined sequence of amino acids and the biological properties resulting therefrom. Thus, a gene encodes a protein if transcription and translation of mRNA corresponding to that gene produces the protein in a cell or other biological system. Both the coding strand, the nucleotide sequence of which is identical to the mRNA sequence and is usually provided in sequence listings, and the non-coding strand, used as the template for transcription of a gene or cDNA, can be referred to as encoding the protein or other product of that gene or cDNA. Unless otherwise specified, a “nucleotide sequence encoding an amino acid sequence” includes all nucleotide sequences that are degenerate versions of each other and that encode the same amino acid sequence. Nucleotide sequences that encode proteins and RNA may include introns.


“Effective amount” or “therapeutically effective amount” are used interchangeably herein, and refer to an amount of a compound, formulation, material, or composition, as described herein effective to achieve a particular biological result. Such results may include, but are not limited to, the inhibition of virus infection as determined by any means suitable in the art.


As used herein “endogenous” refers to any material from or produced inside an organism, cell, tissue or system. “Exogenous” refers to any material introduced from or produced outside an organism, cell, tissue or system.


The term “expression” as used herein is defined as the transcription and/or translation of a particular nucleotide sequence driven by its promoter.


As used herein, the term “fragment,” as applied to a nucleic acid, refers to a subsequence of a larger nucleic acid. A “fragment” of a nucleic acid can be at least about 15 nucleotides in length; for example, at least about 50 nucleotides to about 100 nucleotides; at least about 100 to about 500 nucleotides, at least about 500 to about 1000 nucleotides, at least about 1000 nucleotides to about 1500 nucleotides; or about 1500 nucleotides to about 2500 nucleotides; or about 2500 nucleotides (and any integer value in between).


“Homologous, homology” or “identical, identity” as used herein, refer to comparisons among amino acid and nucleic acid sequences. When referring to nucleic acid molecules, “homology,” “identity,” or “percent identical” refers to the percent of the nucleotides of the subject nucleic acid sequence that have been matched to identical nucleotides by a sequence analysis program. Homology can be readily calculated by known methods. Nucleic acid sequences and amino acid sequences can be compared using computer programs that align the similar sequences of the nucleic or amino acids and thus define the differences. In preferred methodologies, the BLAST programs (NCBI) and parameters used therein are employed, and the DNAstar system (Madison, Wis.) is used to align sequence fragments of genomic DNA sequences. However, equivalent alignments assessments can be obtained through the use of any standard alignment software.


“Isolated” means altered or removed from the natural state. For example, a nucleic acid or a peptide naturally present in a living animal is not “isolated,” but the same nucleic acid or peptide partially or completely separated from the coexisting materials of its natural state is “isolated.” An isolated nucleic acid or protein can exist in substantially purified form, or can exist in a non-native environment such as, for example, a host cell. Unless it is particularly specified otherwise herein, the proteins, virion complexes, antibodies and other biological molecules forming the subject matter of the present invention are isolated, or can be isolated.


The term, “miRNA” or “microRNA” is used herein in accordance with its ordinary meaning in the art. miRNAs are single-stranded RNA molecules of about 20-24 nucleotides, although shorter or longer miRNAs, e.g., between 18 and 26 nucleotides in length, have been reported. miRNAs are encoded by genes that are transcribed from DNA but not translated into protein (non-coding RNA), although some miRNAs are coded by sequences that overlap protein-coding genes. miRNAs are processed from primary transcripts known as pri-miRNA to short stem-loop structures called pre-miRNA and finally to functional miRNA. Typically, a portion of the precursor miRNA is cleaved to produce the final miRNA molecule. The stem-loop structures may range from, for example, about 50 to about 80 nucleotides, or about 60 nucleotides to about 70 nucleotides (including the miRNA residues, those pairing to the miRNA, and any intervening segments). Mature miRNA molecules are partially complementary to one or more messenger RNA (mRNA) molecules, and they function to regulate gene expression, as described in greater detail herein. Thus, in various aspects of the present invention, the miRNAs can be processed from a portion of an miRNA transcript (i.e., a precursor miRNA) that, in some embodiments, can fold into a stable hairpin (i.e., a duplex) or a stem-loop structure.


The terms “patient,” “subject,” “individual,” and the like are used interchangeably herein, and refer to any animal, or cells thereof whether in vitro or in situ, amenable to the methods described herein. In certain non-limiting embodiments, the patient, subject or individual is a human.


The term “polynucleotide” as used herein is defined as a chain of nucleotides. Furthermore, nucleic acids are polymers of nucleotides. Thus, nucleic acids and polynucleotides as used herein are interchangeable. One skilled in the art has the general knowledge that nucleic acids are polynucleotides, which can be hydrolyzed into the monomeric “nucleotides.” The monomeric nucleotides can be hydrolyzed into nucleosides. As used herein polynucleotides include, but are not limited to, all nucleic acid sequences which are obtained by any means available in the art, including, without limitation, recombinant means, i.e., the cloning of nucleic acid sequences from a recombinant library or a cell genome, using ordinary cloning and amplification technology, and the like, and by synthetic means. An “oligonucleotide” as used herein refers to a short polynucleotide, typically less than 100 bases in length.


The term “siRNA” (also “short interfering RNA” or “small interfering RNA”) is given its ordinary meaning, and refers to small strands of RNA (21-23 nucleotides) that interfere with the translation of messenger RNA in a sequence-specific manner. SiRNA binds to the complementary portion of the target messenger RNA and is believed to tag it for degradation. This function is distinguished from that of miRNA, which is believed to repress translation of mRNA but not to specify its degradation.


The term “therapeutic” as used herein means a treatment and/or prophylaxis. A therapeutic effect is obtained by suppression, remission, or eradication of a disease state, particularly a disease state associated with a herpes virus infection.


The term “treatment” as used within the context of the present invention is meant to include therapeutic treatment as well as prophylactic, or suppressive measures for the disease or disorder. Thus, for example, the term treatment includes the administration of an agent prior to or following the onset of a disease or disorder thereby preventing or removing all signs of the disease or disorder. As another example, administration of the agent after clinical manifestation of the disease to combat the symptoms of the disease comprises “treatment” of the disease. This includes for instance, prevention of CMV propagation to uninfected cells of an organism. The phrase “diminishing CMV infection” is sometimes used herein to refer to a treatment method that involves reducing the level of infection in a patient infected with CMV, as determined by means familiar to the clinician.


“Variant” as the term is used herein, is a nucleic acid sequence or a peptide sequence that differs in sequence from a reference nucleic acid sequence or peptide sequence respectively, but retains essential properties of the reference molecule. Changes in the sequence of a nucleic acid variant may not alter the amino acid sequence of a peptide encoded by the reference nucleic acid, or may result in amino acid substitutions, additions, deletions, fusions and truncations. A variant of a nucleic acid or peptide can be a naturally occurring such as an allelic variant, or can be a variant that is not known to occur naturally. Non-naturally occurring variants of nucleic acids and peptides may be made by mutagenesis techniques or by direct synthesis.


A “vector” is a replicon, such as plasmids, phagemids, cosmids, baculoviruses, bacmids, bacterial artificial chromosomes (BACs), yeast artificial chromosomes (YACs), as well as other bacterial, yeast and viral vectors, to which another nucleic acid segment may be operably inserted so as to bring about the replication or expression of the segment. “Expression vector” refers to a vector comprising expression control sequences operatively linked to a nucleotide sequence to be expressed. An expression vector comprises sufficient cis-acting elements for expression; other elements for expression can be supplied by the host cell or in an in vitro expression system. Expression vectors include all those known in the art, such as cosmids, plasmids (e.g., naked or contained in liposomes) and viruses (e.g., lentiviruses, retroviruses, adenoviruses, and adeno-associated viruses) that incorporate the recombinant polynucleotide.


The inventors have developed an improved algorithm for the prediction of mRNAs that are targeted by known miRNAs. The algorithm can be used to predict miRNA targets in any organism, but is expected to be particularly useful in predicting targets in viral mRNA. In an exemplary embodiment described in detail in the examples, the algorithm was employed to identify the targets of cell-coded and virus-coded miRNAs in mRNAs encoded by herpes viruses. Certain of these predictions have been validated experimentally. These naturally occurring miRNAs target mRNAs encoding essential herpes virus proteins. Consequently, they can be used and developed to inhibit acute replication and pathogenesis of the herpes viruses and prevent the re-emergence of herpes viruses from latency.


Algorithm for prediction of miRNA targets: The miRNA-target-predicting algorithm described herein is superior to currently available methodology in that it allows prediction of viral targets of both human and viral microRNAs without detailed knowledge of the molecular basis of microRNA-target interaction, the mechanism of which is not well understood. The inventors' algorithm compensates the incomplete experimental understanding of target selection with a bioinformatics approach that scores each potential miRNA target site with a probability that it would appear by chance in a random sequence with similar composition. Multiple miRNAs and multiple potential 3′UTR targets are tested. The algorithm evaluates the statistical significance of the scores of the most likely targets by a Monte Carlo simulation in which p-values are corrected for Multiple Hypothesis Testing. While the algorithm is general and can be used to predict miRNA targets in any organism, the algorithm is expected to be particularly predictive in viruses, due to the small size of their genomes. Further, based on both computational results of the algorithm and the experimental confirmation described below, the algorithm will be extremely useful for understanding and identifying opportunities for manipulating regulation of immediate early genes and genes involved in DNA replication, regulation of the lytic and latent infection in herpesviruses, and interaction with the immune system of the host.


The algorithm of the invention is based on the assumption that the target 3′UTR sequence, particularly but not exclusively in viruses, coevolved with the sequence of the miRNA. The method makes use of the experimental fact that the miRNA binding requires a perfect complementarity of a “seed” oligomer sequence near the 5′ end of the miRNA to an oligomer sequence in the 3′UTR. As a result of coevolution, the number of actual seed oligomers present in the 3′ UTR of a targeted gene will be higher than the number expected based on a random background sequence. The algorithm orders miRNA-3′ UTR pairs according to the increasing probability (p-value) that the observed number of seed sites is smaller than that which would occur in the random sequence (the most likely targets have the smallest p-value). This part of the algorithm is described in steps 1-6 below. Due to Multiple Hypothesis Testing, these p-values are considered only as scores for ranking the potential targets. The statistical significance of the highest ranking potential targets is evaluated rigorously in the end by a Monte-Carlo simulation in which p-values corrected for Multiple Hypothesis Testing are computed (described in steps 7-10 below). This latter method is needed because the discrete nature of the data does not allow the standard methods for analyzing Multiple Hypothesis Testing problems. That is, most genes have 0 binding sites for a given microRNA, and therefore most single hypothesis p-values are 1, whereas in the continuous case, the p-values close to 1 have a uniform distribution.


The typical steps in the algorithm are set forth below.

  • Step 1. Determine the seed sequences of the microRNAs of interest. In a preferred practice, heptamers (sequences consisting of 7 nucleotides) at positions 2-8 from the 5′ end of the microRNAs are considered. (More generally, n-mers are considered, but most often n=6 or 7.)
  • Step 2. Determine the 3′UTRs of the genes of interest. The first choice is to use experimentally determined 3′UTR sequences. If these are not known, the second choice is to determine the 3′ UTRs computationally by the experimentally determined positions of polyadenylation sites. If even these are not known, the third choice is to find the first polyadenylation site motif in the sequence downstream of the stop codon of each gene computationally.
  • Step 3. Compute the probability p of finding an oligomer complementary to a given seed oligomer at any given position of a random background sequence based on the kth order Markov model [which considers composition of the 3′ UTR up to (k+1)-mers]. By “global” is meant that the composition of 3′UTRs of all genes are taken together to form the Markov model. In the present case, k=2 is preferred. To be more specific, assume that the combined length of all 3′UTR is ltotal and that one is interested in determining the probability p of finding an n-mer X1X2 . . . Xn in a hypothetical 3′ UTR based on the k-th order Markov model. Let c(X1X2.Xj) denote the count of j-mer X1X2 . . . Xj for 0≦j≦k+1. Frequency of X1X2 . . . Xj is f(X1 . . . Xj)=C(X1 . . . Xj)/ltotal. Denoting p (Xj+1|X1 . . . Xj) the conditional probability of (J+1)-st nucleotide being Xj+1 if it is preceded by a j-mer X1 . . . Xj, we compute p as






p
=



p


(


X
n




X

n
-
k














X

n
-
1




)














p


(


X

k
+
1





X
1













X
k



)




f


(


X
1













X
k


)



=




f


(


X

n
-
k














X
n


)














f


(


X
1













X

k
+
1



)





f


(


X

n
-
k














X

n
-
1



)














f


(


X
2













X
k


)




.






  • Step 4. Count the number c of occurrences of an oligomer complementary to each seed oligomer in each 3′UTR.

  • Step 5. Give each microRNA-3′UTR pair a score, given by the single hypothesis p-value PVSH of a binomial distribution, computed by









PV
SH



(

l
,
c
,
p

)


=



B


(

p
,
c
,

l
-
c
+
1


)



B


(

c
,

l
-
c
+
l


)



.





  • Here l is the length of the 3′ UTR, B(x,a,b) is the incomplete beta function and B(a,b) is the usual beta function,









B


(

x
,
a
,
b

)


=



0
x






u

a
-
1




(

1
-
u

)



b
-
1









u




,






B


(

a
,
b

)


=


B


(

1
,
a
,
b

)


.






  • Step 6. Rank the microRNA-3′UTR pairs according to their score PVSH (the 1st pair is the one with the smallest PVSH).

  • Step 7. Evaluate the statistical significance of the top microRNA-target pairs by the following procedure: First generate N random genomes analogous to the actual genome of interest. This means that each genome will have exactly the same number of 3′UTR as the genome of interest, each corresponding 3′UTR will be of the same length and will be based on the same kth Markov model as the 3′UTR in the actual genome.

  • Step 8. Repeat the analysis in steps 3) to 6) for each of the N random genomes.

  • Step 9. Now evaluate the statistical significance of the top t microRNA-target pairs in the results from step 6) for the actual genome by counting the number Nt of the randomly generated genomes in which the tth top pair has PVSH smaller than the tth pair in the actual genome. For each t, compute the p-value PVMH(t) corrected for Multiple Hypothesis Testing by









PV
MH



(
t
)


=



N
t

n

.





  • Step 10. PVMH(t) is the probability of finding better scores for the top t potential microRNA-3′UTR pairs in a random genome with similar properties as the actual genome. The smaller PVMH(t), the higher the chance that the predicted targets are real targets.



Optionally, certain variations and extensions of the algorithm may be incorporated. For instance, if information on conservation among various strains of a specific virus is available, it is advantageous to consider this conservation. In this instance, the count c in step 4) denotes only the count of the conserved n-mers complementary to a given seed n-mer among several strains, and 1 in step 5) denotes the total count of all conserved n-mers instead of the total length of the 3′UTR.


As another non-limiting example, if it is preferred to increase sensitivity and decrease specificity, seed hexamers instead of heptamers can be used. If this alternative is selected, hexamers complementary to positions 2-7 as well as 3-8 in the microRNAs are recommended. Positions 3-8, as well as the standard 2-7 should be considered because it is often experimentally determined that the extent of microRNA seed sequence varies by one nucleotide. Additionally, the experimental error in determining the precise extent of a mature miRNA is typically one nucleotide.


As yet another illustration, if it is suspected that the overall sequence composition in a viral genome is not homogeneous, then a local Markov model should be used, i.e., a separate Markov model should be created for each 3′UTR. In such a case, ltotal in step 3) is replaced by the length of the given 3′UTR l and the various counts denote counts in the given 3′UTR rather than in a combination of all 3′UTRs. The benefit of the “global” model is that it provides enough statistics to consider higher order Markov models. The advantage of the “local” model is that it captures inhomogeneity of the genome such as the so-called isochores in genomes of higher animals (such an inhomogeneity however should not play a major role in the very small genomes of viruses). For herpesviruses, the statistics should be sufficient to consider up to about the 4th order global Markov model and up to the 1st order local Markov model.


The methods outlined above differ in several important aspects from previously used algorithms for predicting miRNA targets. As mentioned earlier, the other algorithms utilize such parameters as free energy of binding and certain empirically determined rules derived from known miRNA-target pairs (Enright et al., 2003, supra), RNA structure of the 3′ UTR (Robins et al., 2005, supra), and conservation among species (Lewis et al., 2005, supra; Robins & Press, 2005, supra).


In contrast, the algorithm of the present invention does not use the free energy of binding or the RNA structure, and can rarely use conservation because (1) miRNAs are not conserved among different viral species, and (2) with the exception of human CMV, sufficient information on conservation among strains of a given species typically is not available. Instead, the algorithm described herein uses a computation of a p-value score, which is based solely on a rigorous evaluation of the statistical significance of the seed binding and does not rely on any empirical information other than the requirement of seed binding (which is the only requirement common to all experimentally known microRNA-target pairs). Similar to the algorithm of Robins and Press based on conservation among species, the presently described algorithm also use a Markov model as a model of a random 3′UTR. But while the Robins and Press algorithm estimates the overall probability that a given gene as a target of any subset of all human microRNAs, the algorithm of this invention computes the p-value for each gene and microRNA separately. Most importantly, the algorithm of the present invention uses a different method for scoring (single hypothesis p-value computed exactly) and analysis of statistical significance of the results (multiple hypothesis p-value computed numerically without any approximation) while the Robins and Press algorithm uses an approximate Poisson odds ratio method. Other less central, but significant differences are (1) the Robins and Press algorithm uses hexamer seeds while the present algorithm preferentially uses heptamer seeds to increase specificity, and (2) the Robins and Press algorithm uses a local Markov model, whereas the present algorithm preferentially uses a global Markov model, particularly for the preferred target population of viral genomes, which are fairly small and do not have isochores.


Predicted viral mRNA targets of viral and cellular miRNAs: The above-described methods were used to predict herpes virus targets of both viral and human miRNAs. Among the most frequently predicted targets were the following important groups of genes: (1) immediate early genes (IE genes); (2) genes involved in DNA replication (DNA rep.); and (3) viral inhibitors of apoptosis (vIAP) and other immune evasion genes.


The algorithm predicts that the following cellular or viral miRNAs will target at least one 3′UTR within a particular virus.

    • (1) Herpes simplex virus types 1 and 2 (HSV1 HSV2): hsv1-miR-H1, hsv1-miR-LAT;
    • (2) Epstein-Barr virus (EBV): ebv-miR-BART1-3p, ebv-miR-BART1-5p, ebv-miR-BART2, ebv-miR-BART3-3p, ebv-miR-BART3-5p, ebv-miR-BART4, ebv-miR-BART5, ebv-miR-BART6-3p, ebv-miR-BART6-5p, ebv-miR-BART7, ebv-miR-BART8-3p, ebv-miR-BART8-5p, ebv-miR-BART9, ebv-miR-BART10, ebv-miR-BART11-3p, ebv-miR-BART11-5p, ebv-miR-BART12, ebv-miR-BART13, ebv-miR-BART14-3p, ebv-miR-BART14-5p, ebv-miR-BART15, ebv-miR-BART16, ebv-miR-BART17-3p, ebv-miR-BART17-5p, ebv-miR-BART18, ebv-miR-BART19, ebv-miR-BART20-3p, ebv-miR-BART20-5p, ebv-miR-BHRF1-1, ebv-miR-BHRF1-2*, and ebv-miR-BHRF1-3;
    • (3) Human cytomegalovirus (HCMV): hcmv-miR-UL22-1, hcmv-miR-UL22A-1*, hcmv-miR-UL31-1, hcmv-miR-UL36-1, hcmv-miR-UL36-1-N, hcmv-miR-UL53-1, hcmv-miR-UL54-1, hcmv-miR-UL70-3p, hcmv-miR-UL70-5p, hcmv-miR-UL102-1, hcmv-miR-UL102-2, hcmv-miR-UL111a-1, hcmv-miR-UL112-1, hcmv-miR-UL148D-1, hcmv-miR-US4, hcmv-miR-US5-1, hcmv-miR-US5-2, hcmv-miR-US5-2-N, hcmv-miR-US25-1, hcmv-miR-US25-2-5p, hcmv-miR-US25-2-3p, hcmv-miR-US29-1, and hcmv-miR-US33-1;
    • (4) Kaposi's sarcoma sarcoma-associated herpesvirus (KSHV or HHV-8): kshv-miR-K12-1, kshv-miR-K12-2, kshv-miR-K12-3, kshv-miR-K12-3*, kshv-miR-K12-4-5p, kshv-miR-K12-4-3p, kshv-miR-K12-5, kshv-miR-K12-6-5p, kshv-miR-K12-6-3p, kshv-miR-K12-7, kshv-miR-K12-8, kshv-miR-K12-9*, kshv-miR-K12-9, kshv-miR-K12-10a, kshv-miR-K12-10b, kshv-miR-K12-11, and kshv-miR-K12-12;
    • (5) Human cellular (Homo sapiens):
    • Targeting HSV: hsa-miR-138, hsa-miR-205, hsa-miR-326, hsa-miR-381, hsa-miR-425, hsa-miR-492, and hsa-miR-522;
    • Targeting EBV: hsa-miR-24, hsa-miR-214, hsa-miR-296, hsa-miR-328, hsa-miR-346, and hsa-miR-502;
    • Targeting HCMV: hsa-miR-15a, hsa-miR-15b, hsa-miR-16, hsa-miR-103, hsa-miR-107, hsa-miR-126, hsa-miR-142-5p, hsa-miR-184, hsa-miR-194, hsa-miR-195, hsa-miR-200b, hsa-miR-200c, hsa-miR-202, hsa-miR-326, hsa-miR-330-5p, hsa-miR-367, hsa-miR-424, hsa-miR-429, hsa-miR-450-b-3p, hsa-miR-497, hsa-miR-503, hsa-miR-548d-3p, hsa-miR-548k, hsa-miR-551a, hsa-miR-551b, hsa-miR-552, hsa-miR-592, hsa-miR-598, hsa-miR-652, hsa-miR-769-3-p, and hsa-miR-1226;
    • Targeting KSHV: hsa-let-7a, hsa-let-7b, hsa-let-7c, hsa-let-7d, hsa-let-7e, hsa-let-7f, hsa-let-7g, hsa-let-7i, hsa-miR-1, hsa-miR-9, hsa-miR-15a, hsa-miR-15b, hsa-miR-16, hsa-miR-17-5p, hsa-miR-18a, hsa-miR-18b, hsa-miR-20a, hsa-miR-20b, hsa-miR-23a, hsa-miR-23b, hsa-miR-30a-5p, hsa-miR-30a-3p, hsa-miR-30b, hsa-miR-30c, hsa-miR-30e-5p, hsa-miR-30e-3p, hsa-miR-93, hsa-miR-98, hsa-miR-105, hsa-miR-106a, hsa-miR-106b, hsa-miR-125a, hsa-miR-125b, hsa-miR-129, hsa-miR-134, hsa-miR-137, hsa-miR-141, hsa-miR-142-3p, hsa-miR-145, hsa-miR-150, hsa-miR-154, hsa-miR-181a, hsa-miR-181b, hsa-miR-181c, hsa-miR-181d, hsa-miR-182*, hsa-miR-194, hsa-miR-195, hsa-miR-196a, hsa-miR-196b, hsa-miR-199a, hsa-miR-199b, hsa-miR-200a, hsa-miR-205, hsa-miR-206, hsa-miR-210, hsa-miR-213, hsa-miR-299-3p, hsa-miR-302a, hsa-miR-302b, hsa-miR-302c, hsa-miR-302d, hsa-miR-324-3p, hsa-miR-326, hsa-miR-329, hsa-miR-337, hsa-miR-338, hsa-miR-340, hsa-miR-346, hsa-miR-372, hsa-miR-373, hsa-miR-424, hsa-miR-448, hsa-miR-450, hsa-miR-453, hsa-miR-455, hsa-miR-490, hsa-miR-491, hsa-miR-492, hsa-miR-497, hsa-miR-518b, hsa-miR-518c, hsa-miR-518d, hsa-miR-519d, hsa-miR-520a, hsa-miR-520b, hsa-miR-520c, hsa-miR-520d, hsa-miR-520g, hsa-miR-520h, hsa-miR-525, and hsa-miR-526b;
    • Targeting VZV: hsa-miR-99a, hsa-miR-99b, hsa-miR-100, hsa-miR-124a, hsa-miR-132, hsa-miR-141, hsa-miR-150, hsa-miR-197, hsa-miR-200a, hsa-miR-212, hsa-miR-219, hsa-miR-330, hsa-miR-374, hsa-miR-371, hsa-miR-339, hsa-miR-451, hsa-miR-495, and hsa-miR-510.


Within particular viruses, the algorithm predicts miRNA (cellular or viral) targets within the 3′UTRs of the following genes:

    • (1) Herpes simplex virus types 1 and 2 (HSV1, HSV2): RL1 (ICP 34.5), RL2 (ICP0), UL1, UL2, UL5, UL9, UL11, UL13, UL14, UL16, UL20, UL24, UL34, UL35, UL37, UL39, UL42, UL47, UL49A, UL51, UL52, US1 (US 1.5, ICP22), US8, US8A, US9, US11, and US12 (ICP47);
    • (2) Epstein-Barr virus (EBV): BALF2, BALF3, BALF5, BARF0, BaRF1, BARF1, BBLF4, BDLF 3.5, BDLF4, BFRF2, BGLF1, BGLF2, BGLF3, BGLF 3.5, BHLF1, BHRF1, BLLF3, BMRF1, BNRF1, BOLF1, BRLF1, BSLF2/BMLF1, BVLF1, BXLF1, BXRF1, BZLF1, BZLF2, LF3, LMP-1, LMP-2A, and LMP-2B;
    • (3) Human cytomegalovirus (HCMV): IE1 (UL123), IE2 (UL122), RL1, RL10, UL3, UL16, UL17, UL20, UL26, UL29, UL31, UL32, UL33, UL34, UL37, UL38, UL40, UL43, UL44, UL45, UL50, UL51, UL52, UL54, UL57, UL60, UL61, UL67, UL69, UL78, UL79, UL80, UL86, UL87, UL91, UL92, UL95, UL97, UL98, UL100, UL103, UL105, UL107, UL112-113, UL117, UL120, UL137, UL141a, UL151, UL151a, UL153, US7, US10, US12, US14, US24, US26, US27, US28, New ORF1, and New ORF3;
    • (4) Kaposi's sarcoma sarcoma-associated herpesvirus (KSHV or HHV-8): ORF6, ORF7, ORF8, ORF9, ORF16, ORF18, ORF21, ORF25, ORF26, ORF28, ORF32, ORF40, ORF47, ORF49, ORF 50 (Rta), ORF56, ORF57, ORF58, ORF59, ORF63, ORF72, ORF73 (LANA), ORF74, ORF75, ORFK4, ORFK8 (Zta), ORFK13, and ORFK14;
    • (5) Varicella zoster virus (VZV): ORF16, ORF47, ORF52, ORF55, ORF59, ORF61, and ORF62.


Representative examples of miRNAs and their predicted targets of particular biological significance are listed below in Tables 1 and 2. Additional lists of miRNAs, 3′UTRs and miRNA-3′UTR pairs are set forth in Example 1.









TABLE 1





Selected viral miRNAs and their viral 3′UTR targets















Herpes simplex virus types 1 and 2 (HSV-1 and HSV-2):


hsv1-miR-LAT targeting ICP0 (=RL2): IE gene; UL9 (=oriBP = DNA origin binding


protein): DNA rep.; UL42 (=DNA polymerase processivity factor): DNA rep.; ICP34.5


(=RL1): immune evasion


Epstein-Barr Virus (EBV):


ebv-miR-BHRF1-3 and ebv-miR-BART15 targeting BZLF1 and BRLF1: IE genes


ebv-miR-BART2 (perfect complementarity) and ebv-miR-BART6-3p targeting BALF5


(=DNA polymerase): DNA rep.


ebv-miR-BART1-3p targeting BHRF1 (=vBCL-2): vIAP


ebv-miR-BART10 targeting BBLF4 (=helicase-primase subunit): DNA rep.


ebv-miR-BHRF1-3 targeting BSLF2/BMLF1 (=Mta): transactivator


ebv-miR-BART17-5p targeting BMRF1 (=DNA polymerase processivity factor): DNA


rep.


ebv-miR-BART6-3p (perfect complementarity) targeting LF3


Human cytomegalovirus (HCMV):


hcmv-miR-UL112-1 targeting IE1 (=UL123): IE gene


hcmv-miR-UL36-1 (almost perfect complementarity) targeting UL37: IE gene and vIAP


hcmv-miR-UL53-1 (perfect complementarity) targeting UL52


hcmv-miR-UL54-1 targeting UL112-113 (organization of DNA replication centers): DNA


rep., UL45 (=ribonucleotide reductase): DNA rep.


hcmv-miR-US25-2-5p targeting UL57 (=SSB = single-stranded DNA binding protein):


DNA rep.


hcmv-miR-UL148D-1 targeting UL26: transactivator of IE promoter, UL98


(=deoxyribonuclease), UL103, UL151a (perfect complementarity)


hcmv-miR-US5-1 and US5-2 (both perfect complementarity) targeting US7


hcmv-miR-US25-2-3p targeting UL32


hcmv-miR-US33-1 (perfect complementarity) targeting US28: chemokine receptor


Kaposi's sarcoma-associated herpesvirus (KSHV or HHV-8):


kshv-miR-K12-6-3p targeting Zta (=ORF K8) and Rta (=ORF 50): IE genes


kshv-miR-K12-8 targeting ORF9 (=DNA polymerase): DNA rep.


kshv-miR-K12-10b targeting LANA (=ORF73 = latency associated nuclear antigen):


latent gene
















TABLE 2





Selected human miRNAs and their viral 3′UTR targets















Herpes simplex virus types 1 and 2 (HSV-1 and HSV-2):


hsa-miR-138 targeting ICP0 (=RL2): IE gene


hsa-miR-425 targeting UL47 (=virion protein transactivating): IE gene


hsa-miR-381 targeting ICP22 (US1) and US1.5: IE genes


hsa-miR-522 targeting UL5 (=DNA helicase-primase component): DNA rep.


hsa-miR-326 targeting ICP47 (=US12): IE gene


hsa-miR-205 targeting UL2 (=uracil DNA glycosylase): DNA rep.


hsa-miR-492 targeting UL52 (=DNA helicase-primase component): DNA rep.


Epstein-Barr Virus (EBV):


hsa-miR-24 targeting BHRF1 (=vBCL-2): vIAP


hsa-miR-214 targeting BXLF1 (=thymidine kinase): DNA rep.


hsa-miR-296 targeting BALF5 (=DNA polymerase): DNA rep.


hsa-miR-296 and hsa-miR-328 targeting LMP-2A and LMP-2B: latent genes


hsa-miR-346 and hsa-miR-502 targeting LMP-1: latent gene


Human cytomegalovirus (HCMV):


hsa-miR-200b, 200c, 429 targeting IE2 (=UL122): IE gene


hsa-miR-769-3-p, 450-b-3p targeting IE1 (=UL 123): IE gene


hsa-miR-503 targeting UL44 (=DNA polymerase processivity factor): DNA rep.;


UL37: IE gene and vIAP


hsa-miR-503, 592 targeting UL54 (=DNA polymerase): DNA rep.


hsa-miR-142-5p targeting UL105 (=DNA helicase-primase): DNA rep.; UL97


(=phosphotransferase and ganciclovir kinase); UL33 (=viral glucocorticoid receptor, vGCRs);


US 27 (=viral glucocorticoid receptor, vGCRs)


hsa-miR-103, 107, 202, 15a, 15b, 16, 195, 424, 497 targeting UL38: Viap


hsa-miR-367 targeting UL57: DNA rep.


hsa-miR-1226 targeting UL50: Nuclear egress


hsa-miR-184 targeting UL31 (=dUTPase family)


hsa-miR-16, 15b, 195, 424, 15a, 497 (almost the same as those targeting UL38) targeting UL78


(=GCPR family)


hsa-miR-652 targeting New ORF3


hsa-miR-552 targeting UL91


hsa-miR-548k targeting UL29: temperance in RPE cells


hsa-miR-330-5p, 326 targeting New ORF1


hsa-miR-548d-3p targeting UL107


hsa-miR-598 targeting UL60


hsa-miR-126 targeting UL20 (=T-cell receptor homolog)


hsa-miR-194 targeting UL17 (=7TM membrane glycol-protein)


hsa-miR-551a, 551b targeting UL100


hsa-miR-503 targeting RL1


Kaposi′s sarcoma-associated herpesvirus (KSHV or HHV-8):


hsa-miR-302b*, 105, 150, 210, 142-3p, 302a-d, 372, 373, 520a-e, 526b*, 93, 17-5p, 519d, 20a-b,


106a-b, 199a-b, 520g-h targeting ORF6 (=ssDNA binding protein): DNA rep.


hsa-miR-329, 141, 200a, 324-3p, 213, 182*, 105, 455, 518b-d, 453, hsa-let-7a-g and i, and


hsa-miR-98, targeting LANA (=ORF73 latency associated nuclear antigen): latent gene


hsa-miR-199a-b, 137, 205, 154, 346, 340, 490, 9, 1, 206, 492, 299-3p, 491 targeting ORF56


(=DNA helicase-primase subunit): DNA rep.


hsa-miR-129, 450, 448, 134, 196a-b, 337, 141, 200a, 194, 30a-5p, 30a-3p, 30b-d, 30e-5p, 30e-3p,


195, 15a-b, 16, 424, 497 targeting ORF58 (=DNA polymerase processivity factor):


DNA rep.


hsa-miR-326, 181a-d, 181a, 23a-b, 125a-b, 340, 18a-b, 520a*, 525, 145, 338 targeting ORF21


(=thymidine kinase): DNA rep.


Varicella zoster virus (VZV):


hsa-miR-132, 212, 451, 495 targeting ORF62: IE gene


hsa-miR-510, 150, 124a, 330 targeting ORF61: IE gene


hsa-miR-197 targeting ORF52 (=helicase-primase subunit)


hsa-miR-374 targeting ORF16 (=DNA polymerase processivity subunit)


hsa-miR-371, 219, 339 targeting ORF47 (=tegument serine/threonine protein kinase)


hsa-miR-141, 200a targeting ORF59 (=uracil-DNA glycosylase)


hsa-miR-99a, 99b, 100 targeting ORF55 (=helicase-primase helicase subunit)









The miRNAs identified in accordance with the present invention are natural regulators of viral gene expression. As a consequence, modulating, i.e., inhibiting or augmenting, these miRNA activities can be expected to perturb viral replication, latency and pathogenesis. As discussed in greater detail below, small inhibitory RNAs (siRNAs) that inhibit expression of the virus-coded mRNAs at the same site targeted by the naturally occurring miRNAs, and derivatives of the miRNAs and siRNAs that have been modified to enhance their efficacy, e.g., to extend their half life and/or enhance their entry into cells, are expected to function as efficiently or even more efficiently than the naturally occurring miRNAs in the prevention and treatment of herpes virus disease. Finally, it is likely that artificial miRNAs, siRNAs and their derivatives that target all of the mRNAs or a subset of the mRNAs targeted by the naturally occurring miRNAs, but at a different site within the mRNAs than is targeted by the naturally occurring miRNAs, will also have therapeutic efficacy.


Why is it expected that inhibiting or augmenting these miRNAs will have therapeutic benefit? Because, for a variety of reasons, naturally occurring miRNAs and their derivatives that recognize the same or similar target elements in mRNAs are expected to exhibit therapeutic efficacy that is superior to that of artificial miRNAs and their derivatives that target different sites in the same mRNAs. One rationale for this view is evolutionary: evolution selects for efficient function, and therefore, naturally occurring miRNAs would be expected to be optimized for a specific physiological outcome. Another rationale is based on the observation that a single miRNA can regulate multiple targets. Consequently, it is possible that cell-coded miRNAs controlling the function of a viral gene also control one or more additional viral or cellular genes that contribute to successful virus replication and spread. Individual miRNAs are known to sponsor multiple functional consequences that lead to a coordinated physiological response, so there is precedent for the view that a single naturally occurring miRNA can influence the dynamics of viral replication and pathogenesis by modulation of a set of virus-coded and cell-coded mRNAs.


Regulation of gene expression: Thus, one aspect of the present invention provides methods and compositions for regulating the expression of a gene. The term “regulating” is used interchangeably with the term “modulating” throughout the specification. In particular embodiments, gene expression is regulated within a cell, e.g., a mammalian cell. In more particular embodiments, viral gene expression within a virus-infected cell is regulated. The regulation may take place in cultured cells or in cells present within a living organism. As used herein, the term “regulation of gene expression” and similar phrases inclusively refer to modulation of processes at the transcriptional or post-transcriptional level. In a preferred embodiment, gene expression is regulated at the post-transcriptional level in accordance with the typical function of a miRNA. In a specific embodiment, such regulation is accomplished through interaction between a miRNA or derivative thereof and a target element in the 3′UTR of a mRNA molecule. However, at least in part because many miRNAs have multiple targets, the interaction may also be with a coding portion of an mRNA sequence in some cases, i.e., to a portion of a mRNA which is translated to produce a protein. Thus, it should be understood that the description herein with respect to binding (also referred to as annealing or hybridizing) of miRNAs to UTRs of mRNAs is one embodiment only, and in other embodiments of the present invention, certain miRNAs may bind to coding portions of the mRNA, and/or both the coding portions and the UTR portions of the mRNA.


Typically, miRNA and siRNA function by a mechanism that results in inhibition of the production of the encoded polypeptide; in the case of miRNA, through repression of translation with possible enhanced degradation of non-translated mRNA molecules, and, in the case of siRNA, through cleavage and subsequent degradation of the mRNA. Accordingly, gene expression can be inhibited by increasing the amount and/or stability of specific miRNAs in a cell. The amount of miRNA in a cell may be increased by stimulating expression of an endogenous miRNA-encoding gene or by adding exogenous miRNA. The latter may be accomplished by administering an miRNA in mature form or as a pre-miRNA of a duplex or a stem-loop structure, which is processed by the cell to a mature form. Alternatively or additionally, a cell may be transfected with a sequence encoding a miRNA, e.g., a miRNA-encoding gene. For instance, a vector comprising a miRNA-encoding sequence under the control of regulatory elements (either its own, or heterologous elements) may be transfected into a cell using techniques known to those of ordinary skill in the art and described in greater detail below, and the sequence may be expressed by the cell (in addition to any normal miRNA), thereby resulting in amounts of the miRNA within the cell that are higher than would be observed in the absence of such transfection.


Likewise, gene expression may also be increased in a cell by reducing the function of a specific miRNA in the cell. This may be accomplished by inhibiting expression of the miRNA-encoding gene, or by interfering with miRNA activity; e.g., by administering an antisense oligonucleotide that competes with the miRNA's natural substrate for binding to the miRNA (i.e., the miRNA preferentially binds to the antisense oligonucleotide instead of its target on the cellular mRNA).


In preferred embodiments, the methods and biological interactions identified in accordance with the present invention have many utilities in modulation of the herpes virus lifecycle in cells, and ultimately in treatment of herpes virus disease. Described below are four specific examples of such embodiments.


First, viral replication may be prevented by stimulating the expression of naturally occurring miRNAs (those that are predicted to suppress genes involved in essential virus functions, such as DNA replication) or by augmenting expression by delivery of analogous artificial miRNAs into the cell.


Second, reactivation of the virus may be prevented by stimulating the expression of naturally occurring miRNAs (those that are predicted to suppress viral genes needed to exit latency and resume replication, such as the major immediate early genes) or by delivery of analogous artificial miRNAs into the cell.


Alternatively, in instances in which the first approach of preventing virus replication is successful, it may be advantageous to use a combination therapy of the first approach together with enhancing reactivation by suppressing miRNAs that inhibit immediate early genes. This way the virus would be forced out of latency and at the same time would be prevented from replicating and spreading. The advantage of this approach over the second approach listed above, for instance, would be the possibility of a full cure of the herpes virus disease. That is, this combined approach could prevent the chronic disease as opposed to preventing only the acute disease as addressed by the above-stated second approach. Another advantage of the combined approach is that by forcing the virus out of latency, the virus would become visible and therefore susceptible to the immune system of the host.


Another approach involves improving the efficacy of current antiviral compounds. Specific miRNAs could be combined with small molecule drugs to interfere with viral replication or emergence from latency by multiple and potentially synergistic mechanisms.


Design and production of miRNA, variants and chemically modified derivatives: The naturally occurring miRNAs identified in accordance with the present invention are believed to require perfect complementarity of a “seed” oligomer sequence near the 5′ end of the miRNA, typically within the first 7, 8 or 9 nucleotides, to its target oligomer sequence in the mRNA. The degree of complementarity of the remaining miRNA is believed to govern the mechanism by which the miRNA regulates its target mRNA. That is, once incorporated into a cytoplasmic RISC, the miRNA will specify cleavage if the mRNA has sufficient complementarity to the miRNA, or it will repress productive translation if the mRNA does not have sufficient complementarity to be cleaved but does have a threshold level of complementarity to the miRNA (reviewed by Bartel, D., 2004, Cell, 116, 281-297). Accordingly, a person of skill in the art will appreciate that, outside the “seed” sequence, the sequence of a naturally occurring miRNA can be altered to increase or decrease the level of complementarity between the miRNA and a target sequence, while still maintaining, or even improving on, the ability of the miRNA to repress translation. Indeed, the present invention contemplates such modifications, particularly directed to increasing overall complementarity. In one embodiment, the naturally occurring miRNA sequence can be modified to achieve full complementarity with its target sequence, thereby creating a siRNA that would be expected to specify cleavage of the mRNA at the target sequence.


Furthermore, in embodiments of the invention in which gene expression is regulated by introducing mature miRNA into a cell, such miRNA can be modified in accordance with known methods, for instance to improve stability of the molecules, to improve binding/annealing to a target, or to introduce other pharmaceutically desirable attributes, as discussed for siRNAs in, for example, Fougerolles et al., 2007 (Nature Reviews Drug Discovery 6, 443-453). Methods of chemically modifying oligonucleotides, particularly as used for RNA interference, to achieve such ends are well known in the art. For instance, numerous such methods are set forth in U.S. Publication No. 2006/0211642 to McSwiggen et al., directed in part to chemically modified siRNA molecules that retain their RNAi activity.


By way of a further non-limiting representative example, the miRNA molecules may be designed to resist degradation by modifying it to include phosphorothioate, or other linkages, methylphosphonate, sulfone, sulfate, ketyl, phosphorodithioate, phosphoramidate, phosphate esters, and the like. Modifications designed to increase in vivo stability include, but are not limited to, the addition of flanking sequences at the 5′ and/or 3′ ends; the use of phosphorothioate or 2′ O-methyl rather than phosphodiester linkages in the backbone; and/or the inclusion of nontraditional bases such as inosine, queosine, and wybutosine and the like, as well as acetyl- methyl-, thio- and other modified forms of adenine, cytidine, guanine, thymine, and uridine. In addition, chemically synthesizing nucleic acid molecules with modifications (base, sugar and/or phosphate) can prevent their degradation by serum ribonucleases, which can increase their potency.


The miRNAs may also be provided as conjugates and/or complexes of miRNAs or their variants or derivatives. Such conjugates and/or complexes can be used to facilitate delivery of miRNA molecules into a biological system, such as a cell. The conjugates and complexes can impart therapeutic activity by transferring therapeutic compounds across cellular membranes, altering the pharmacokinetics, and/or modulating the localization of nucleic acid molecules of the invention. Such conjugates are known in the art, and include, but are not limited to, small molecules, lipids, cholesterol, phospholipids, nucleosides, nucleotides, nucleic acids, antibodies, toxins, negatively charged polymers and other polymers, for example, proteins, peptides, hormones, carbohydrates, polyethylene glycols, or polyamines.


In other embodiments, miRNA can be provided as an miRNA-encoding gene or polynucleotide and produced in situ by expression of the polynucleotide operably linked into to a vector comprising a promoter/regulatory sequence (either the miRNA gene's homologous sequences, or heterologous elements) such that the vector is capable of directing transcription of the miRNA in a manner enabling its processing in situ. The vector comprises a nucleic acid sequence encoding at least one miRNA molecule as described herein. It can encode one or both strands of a miRNA duplex, or a single self-complementary strand that self hybridizes into a miRNA duplex.


The miRNA encoding polynucleotide can be cloned into a number of types of vectors, including RNA vectors or DNA plasmids or viral vectors. Viral vectors can be constructed based on, but not limited to, adeno-associated virus, retrovirus/lentivirus, adenovirus, or alphavirus. The recombinant vectors capable of expressing the miRNA molecules can be delivered as described below, and persist in target cells. Alternatively, viral vectors can be used that provide for transient expression of nucleic acid molecules.


Those of skill in the art of molecular biology generally know how to use regulatory elements to control gene expression. If homologous regulatory elements are not utilized, it is understood that heterologous elements can be constitutive, tissue-specific, inducible, and/or useful under the appropriate conditions to direct high level expression of the introduced DNA segment.


A promoter sequence exemplified in the experimental examples is the immediate early cytomegalovirus (CMV) promoter sequence. This promoter sequence is a strong constitutive promoter capable of driving high levels of expression of any polynucleotide sequence operatively linked to it. Another exemplified promoter sequence is the U6 promoter. Promoters derived from genes encoding U6 small nuclear (snRNA), transfer RNA (tRNA) and adenovirus VA RNA are useful in generating high concentrations of desired RNA molecules such as miRNA in cells.


Other constitutive promoter sequences may also be used, including, but not limited to the simian virus 40 (SV40) early promoter, mouse mammary tumor virus (MMTV), human immunodeficiency virus (HIV) long terminal repeat (LTR) promoter, Moloney virus promoter, the avian leukemia virus promoter, Epstein-Barr virus immediate early promoter and Rous sarcoma virus promoter. Suitable human gene promoters include, but are not limited to, the actin promoter, the myosin promoter, the hemoglobin promoter, and the muscle creatine promoter. Examples of inducible promoters include, but are not limited, to a metallothionine promoter, a glucocorticoid promoter, a progesterone promoter, and a tetracycline promoter.


To assess the expression of the miRNA, the expression vector to be introduced into a cell can also contain either a selectable marker gene or a reporter gene or both to facilitate identification and selection of expressing cells from the population of cells sought to be transfected or infected through viral vectors. In other embodiments, the selectable marker may be carried on a separate piece of DNA and used in a co-transfection procedure. Both selectable markers and reporter genes may be flanked with appropriate regulatory sequences to enable expression in the host cells. Useful selectable markers are known in the art and include, for example, antibiotic-resistance genes, such as neo and the like. Suitable reporter genes may include genes encoding luciferase, beta-galactosidase, chloramphenicol acetyl transferase, secreted alkaline phosphatase, or green fluorescent protein, among others.


Delivery to host cells and tissues: As mentioned above, the miRNA molecules identified in accordance with the invention can be used to regulate expression of target genes within cultured cells and tissues, or ex vivo in cells or tissues that have been removed from a subject and, optionally, will be returned to the same subject or a different subject. Alternatively, the miRNA molecules are used to regulate gene expression in situ, in cells or tissues within a living subject.


In certain embodiments of the invention involving delivery of miRNA to cultured cells, the cultured cells are mammalian cells, more particularly human cells. In specific embodiments, the cells are cell lines typically used to study or screen for agents that affect viral infection, replication and other aspects of a viral life cycle, especially of herpes viruses. Nonlimiting examples of suitable cultured cell types include: fibroblasts, such as human embryonic lung fibroblasts or human foreskin fibroblasts; endothelial cells, such as human umbilical vein endothelial cells or other vascular endothelial cells; and epithelial cells, such as retinal pigmented epithelial cells or kidney epithelial cells, various neuronal cell types, and various stem cell types, including CD34+ hematopoietic stem cells.


In other embodiments, miRNA molecules are used in ex vivo applications; e.g., they are introduced into tissue or cells that are transplanted into a subject for therapeutic effect. The cells and/or tissue can be derived from a subject that later receives the explant, or can be derived from another subject prior to transplantation. For instance, in one non-limiting example, bone marrow cells to be transplanted from a donor to a recipient could be treated with therapeutic miRNAs (introduced either as an RNA molecule, a modified RNA molecule or by expression from a vector) which interfere with replication of HCMV. Such a treatment would protect the recipient from reactivation of latent virus and efficient replication of active virus within the transplanted cells.


Methods of delivering oligonucleotides or polynucleotides, such as miRNAs or miRNA-encoding genes, to cells are well known in the art, e.g., as described by Sambrook et al., 2001, supra or Ausubel et al., 2007, supra. For instance, physical methods for introducing a polynucleotide into a host cell include calcium phosphate precipitation, lipofection, particle bombardment, microinjection, electroporation, and the like.


Biological methods for introducing a polynucleotide of interest into a host cell include the use of DNA and RNA vectors as described above. Viral vectors, and especially retroviral vectors, have become a widely used method for inserting genes into mammalian, e.g., human cells.


Chemical means for introducing a polynucleotide into a host cell include colloidal dispersion systems, such as macromolecule complexes, nanocapsules, microspheres, beads, and lipid-based systems including oil-in-water emulsions, micelles, mixed micelles, and liposomes. A preferred colloidal system for use as a delivery vehicle in vitro and in vivo is a liposome (i.e., an artificial membrane vesicle). The preparation and use of such systems is well known in the art.


Regardless of the method used to introduce exogenous nucleic acids into a host cell or otherwise expose a cell to the miRNA of the present invention, in order to confirm the presence of the recombinant nucleotide sequence in the host cell, a variety of assays may be performed. Such assays include, for example, molecular biological assays well known to those of skill in the art, such as DNA and RNA blotting, RT-PCR and PCR; or through the use of selectable markers or reporter genes.


In other embodiments, miRNAs or variants/derivatives thereof as described herein are used as therapeutic agents to regulate expression of one or more target genes in a subject. In particular embodiments, the target genes are viral genes, particularly herpes virus genes, and more particularly genes involved in herpes virus replication or latency. In general, such methods involve introducing the miRNA molecules into the subject under conditions suitable to modulate (e.g., inhibit) the expression of the one or more target genes in the subject, to achieve a therapeutic effect, e.g., reduction or elimination of viral infection. One or more miRNAs may be administered, targeting expression of one or more genes. The miRNAs may be administered with other therapeutic agents, as described in greater detail below.


Administration of the miRNA therapeutic agent in accordance with the present invention may be continuous or intermittent, depending, for example, upon the recipient's physiological condition, whether the purpose of the administration is therapeutic or prophylactic, and other factors known to skilled practitioners. The administration of the agents of the invention may be essentially continuous over a preselected period of time or may be in a series of spaced doses.


The miRNA molecules of the invention can be formulated for and administered by infusion or injection (intravenously, intraarterially, intramuscularly, intracutaneously, subcutaneously, intrathecally, intraduodenally, intraperitoneally, and the like). The miRNA molecules of the invention can also be administered intranasally, vaginally, rectally, orally, topically, buccally, transmucosally, or transdermally.


Compositions and kits: The miRNAs, miRNA-encoding polynucleotides and vectors, and miRNA derivatives and variants described herein can be formulated into compositions for use in cultured cells, in ex vivo cell or tissue explants, or in vivo for delivery of therapeutic agents. Such compositions comprise one or more of the miRNA molecules listed above, and a biologically or pharmaceutically acceptable carrier or medium. The term “biologically acceptable medium” refers to a carrier, diluent, excipient and/or salt that is compatible with the other components of the composition and is not deleterious to the cells or tissues to which the composition is introduced. A “pharmaceutically acceptable medium” is a carrier, diluent, excipient, and/or salt that is compatible with the other ingredients of the formulation, and not deleterious to the recipient thereof. Compositions formulated for pharmaceutical use are referred to herein as “pharmaceutical compositions.”


Pharmaceutical compositions containing miRNA therapeutic agents can be prepared by procedures known in the art using well known and readily available ingredients. They can be formulated as solutions appropriate for parenteral administration, for instance by intramuscular, subcutaneous or intravenous routes. They can also take the form of an aqueous or anhydrous solution or dispersion, or alternatively the form of an emulsion or suspension. Suitable components of pharmaceutical compositions, and methods of making such compositions are described in Remington's Pharmaceutical Sciences, a standard reference text in this field.


The pharmaceutical compositions may incorporate additional substances to function as stabilizing agents, preservatives, buffers, wetting agents, emulsifying agents, dispersing agents, and monosaccharides, polysaccharides, and salts for varying the osmotic balance. They may further include one or more antioxidants. Exemplary reducing agents include mercaptopropionyl glycine, N-acetylcysteine, P-mercaptoethylamine, glutathione, ascorbic acid and its salts, sulfite, or sodium metabisulfite, or similar species. In addition, antioxidants can include natural antioxidants such as vitamin E, C, leutein, xanthine, beta carotene and minerals such as zinc and selenium.


As mentioned above, all compositions contemplated herein, including the pharmaceutical compositions, may contain a plurality of different miRNA, which may be present in modified or unmodified form, or as a miRNA-encoding polynucleotide. Moreover, the pharmaceutical compositions can contain one or more additional active ingredients to achieve a desired therapeutic effect. In one embodiment, the additional active ingredient is an antiviral agent or combination of antiviral agents, which may target herpesviruses, or other viruses, or combinations thereof in accordance with their pharmaceutical indications. Nonlimiting examples of such agents include: abacavir, aciclovir, adefovir, amantadine, amprenavir, arbidol, atazanavir, atripla, brivudine, cidofovir, combivir, darunavir, delavirdine, didanosine, docosanol, edoxudine, efavirenz, emtricitabine, enfuvirtide, entecavir, famciclovir, fomivirsen, fosamprenavir, foscamet, fosfonet, ganciclovir, gardasil, ibacitabine, idoxuridine, imiquimod, indinavir, various interferons, lamivudine, lopinavir, loviride, maraviroc, moroxydine, nelfinavir, nevirapine, oseltamivir, penciclovir, peramivir, pleconaril, podophyllotoxin, ribavirin, rimantadine, ritonavir, saquinavir, stavudine, tenofovir, tipranavir, trifluridine, trizivir, tromantadine, truvada, valaciclovir, valganciclovir, vicriviroc, vidarabine, viramidine, zalcitabine, zanamivir and zidovudine.


Another aspect of the invention features articles of manufacture, sometimes referred to as “kits,” to facilitate practice of various aspects the invention. The kits typically comprise one or more miRNAs, or derivatives or variants thereof, or miRNA-encoding polynucleotides, together with one or more other drugs or reagents, biologically or pharmaceutically acceptable media or components thereof, and instructions for using the components to practice one or more of the methods described herein. The components typically are packaged together or separately for convenience and ease of use. The kits may comprise any one or more of the miRNAs, vectors, delivery vehicles, media, additional active ingredients or supplemental components described herein.


The following examples are provided to describe the invention in more detail. They are intended to illustrate, not to limit, the invention.


Example 1
Use of Algorithm to Predict Herpes Virus Targets of Viral and Human Cellular miRNAs

The algorithm described herein was used to predict miRNA targets within the 3′UTRs of herpes virus mRNAs. The miRNAs that were evaluated included all database-accessible miRNAs from herpes simplex virus (HSV), Epstein-Barr virus (EBV), human cytomegalovirus (HCMV), Kaposi's sarcoma-associated herpesvirus (KSHV or HHV-8) and Homo sapiens (humans).


The 3′UTRs that were queried by the algorithm included 3′ UTRs from herpes viruses, which have been either (1) experimentally determined, (2) determined computationally by experimentally determined positions of the polyadenylation sites, or (3) determined computationally based on the first polyadenylation sites in the sequences downstream from the stop codons of the genes.


Materials and Methods:


Viral genome sequences were obtained at http://www.ncbi.nlm.nih.gov. The RefSeq accession numbers as follow: (i) HSV-1, NC001806.1; (ii) EBV, NC007605.1; (iii) HCMV clinical isolates: Toledo-BAC, AC146905; FIX-BAC, AC146907; PH-BAC, AC146904; TR-BAC, 146906; and HCMV laboratory strains: AD169-BAC, AC146999; Towne-BAC, AC146851; (iv) KSHV sequence NC003409.1. Accessed databases or other miRNA-containing information included the miRBase at the following url: microrna.sanger.ac.uk/sequences/index.shtml, as well as sequences from the published literature referred to herein.


For herpesvirus genes for which the 3′UTR was not tabulated, we used a simple computational algorithm to detect them: we detected the polyadenylation (polyA) signal (AATAAA) nearest to the stop codon of the coding sequence and considered the 3′UTR to be the sequence from the stop codon to the polyA signal. In cases where the resulting 3′UTR was longer than 500 nucleotides, we did not analyze the part beyond 500, in order to avoid considering exceedingly long 3′UTRs when a non-standard polyadenylation signal was present. In KSHV it is known that the Zta and Rta genes have 3′UTRs longer than 500 (reference), so in this virus, we performed the analysis with all 3′UTRs extending all the way to the nearest downstream polyA signal, with no restriction on the length.


The most common experimentally observed seed binding sequence in a 3′UTR for a miRNA is either the hexamer sequence from position 2 to 7 (denoted 2-7) or the heptamer 2-8, both counted from the 5′ end of the miRNA. In order to increase specificity of our algorithm, we used the heptamer 2-8 whenever possible. In cases where too much sensitivity was lost (for HSV-1 and KSHV), we used hexamers 2-7 or 3-8 as the seed. The reason to use a seed 3-8 besides 2-7 is that the extents of the same miRNA sequences often differ by one or two nucleotides in different publications.


The random background sequence used in our computations is based on the k-th order Markov model (MM) that considers composition of the 3′UTR up to (k+1)-mers. For example, the second order Markov model considers the nucleotide, dinucleotide, and trinucleotide count in the 3′UTR. Two approaches are used for constructing the background sequence: either each 3′UTR is considered separately or all 3′UTRs are combined. The advantage of the first approach is that it captures local properties of the sequence. The benefit of the second approach is that it provides sufficient statistical power to consider higher order Markov models. In the end we used two combinations for comparison: either the first order Markov model based on local sequence composition, or the third order Markov model based on global sequence composition. Both cases take into account the dinucleotide content in order to capture such features as the under-representation of CpG dinucleotides in eukaryotic sequences.


To be more specific, let us assume that the length of the 3′UTR is l and that we are interested in determining the probability p of finding an n-mer X1X2 . . . Xn in the given 3′UTR based on the k-th order Markov model. Let c(X1X2 . . . Xk) denote the count of k-mer X1X2 . . . Xk. Frequency of X1X2 . . . Xk is clearly f(X1 . . . Xk)=c(X1 . . . Xk)/l . Denoting by p (Xk+1|X1 . . . Xk) the conditional probability of the (k+1)-st nucleotide being Xk+1 if it is preceded by a k-mer X1 . . . Xk, we compute p as






p
=



p


(


X
n




X

n
-
k














X

n
-
1




)














p


(


X

k
+
1





X
1













X
k



)




f


(


X
1













X
k


)



=




f


(


X

n
-
k














X
n


)














f


(


X
1













X

k
+
1



)





f


(


X

n
-
k














X

n
-
1



)














f


(


X
2













X
k


)




.






In higher organisms, miRNAs and their targets have often been predicted by using evolutionary conservation among species, given is the prediction that the miRNA binding sites within 3′UTRs will be more conserved than the surrounding sequences. So far there has been very little evidence for conservation in the case of virus miRNAs. The sole exception is the conservation of nine miRNAs between EBV and the rhesus lymphocryptovirus (RLCV), but since there are over 20 known miRNAs in EBV, we did not use conservation in order not to miss any targets.


As for HCMV, conservation with the chimpanzee cytomegalovirus (CCMV) was used to predict several HCMV miRNAs but the corresponding CCMV miRNAs were not experimentally verified. Therefore instead of using conservation among species we employed conservation among six strains of the virus (both laboratory strains and clinical isolates): AD 169, FIX, PH, Toledo, Towne, and TR. We aligned these six genomes and counted only heptamers conserved among all six strains. The only change in the algorithm was that in the formula set forth in the next section for the p-value PVSH, the actual count of the seed heptamer c was replaced by its conserved count and the 3′UTR length l was replaced by the count of all conserved heptamers.


Computation. In order to determine the likelihood that a particular miRNA-3′UTR pair was functional, we computed the corresponding probability PVSH. Let c denote the actual count of seed n-mers in the 3′UTR of length l and p the probability (based on the MM described above) that any given n-mer in the random background sequence is the seed n-mer. Then our p-value PVSH gives the probability of finding at least c seed n-mers in a background sequence of length l which is equal to the p-value of the binomial distribution,







PV
SH

=



PV
bin



(


l
-
n
+
1

,
c
,
p

)


=




i
=
c


l
-
n
+
1









(




l
-
n
+
1





i



)






p
i



(

1
-
p

)



l
-
n
+
1
-
i


.








In practice, l is of the order of 100 or 1000. For a hexamer seed sequence (n=6), a typical p is 1/46=1/4096 (exactly if all hexamers were equally likely) and therefore a typical c is zero, making the equation above impractical. An alternative exact expression for PVSH which is numerically efficient is







PV
SH

=



PV
bin



(


l
-
n
+
1

,
c
,
p

)


=


B


(

p
,
c
,

l
-
n
-
c
+
2


)



B


(

c
,

l
-
n
-
c
+
2


)








where B(x,a,b) is the incomplete beta function and B(a,b) is the usual beta function,








B


(

x
,
a
,
b

)


=



0
x






u

a
-
1




(

1
-
u

)



b
-
1









u




,






B


(

a
,
b

)


=


B


(

1
,
a
,
b

)


.






The statistical significance of the top miRNA-target pairs was evaluated by calculating probability PVMH. Because the majority of p-values PVSH is equal to 1, we could not use the standard method of estimating the False Discovery Rate. Instead we used the following Monte Carlo procedure: First we generated N=1000 random genomes analogous to the actual genome of interest. This means that each genome will have exactly the same number of 3′UTRs as the genome of interest and each generated 3′UTR will be of the same length as the corresponding real 3′UTR. Each random 3′UTR is generated using the kth order MM based on the composition of the corresponding 3′UTR in the real genome.


For each of the N randomly generated genomes, we repeated the same analysis of computing PVSH as we did for the real genome: i.e., we computed the score PVSH for each miRNA-3′UTR and sorted them. Next we evaluated the statistical significance of the top t miRNA-target pairs for the actual genome by counting the number Nt of the randomly generated genomes in which the tth top microRNA-3′UTR pair has PVSH smaller than the tth pair in the actual genome. For each t, the p-value PVMH(t) corrected for Multiple Hypothesis Testing was computed by








PV
MH



(
t
)


=



N
t

N

.





PVMH(t) is the probability of finding better scores for the top t potential microRNA-3′UTR pairs in a random genome with similar properties as the actual genome. The smaller PVMH(t), the higher the chance that the predicted targets are real targets.


Results:


Tables 3-6 below set forth predicted miRNAs, UTRs and the best miRNA-UTR pairs predicted by the algorithm. For Tables 3-6, the following annotations are used: MM=Markov model; o.=order; PV-SH=single hypothesis p-value; miRNA name=notation from microRNA database at http://microma.sanger.ac.uk/sequences/; miRNA #=miRNA number used in other tables as a shorthand; hexamer=a hexamer complementary to the seed miRNA sequence; actual=actual oligomer count; predicted=predicted count based on the MM; Log=logarithm with the base 10 length=3′UTR length or the count of conserved oligomers in the 3′ UTR when conservation is taken into account (in HCMV only); PV_MH=p-value corrected for multiple hypothesis testing.










TABLE 3A







HSV-1 miRNAs: Combined effect on all 3′ UTRs using



hexamers complementary to positions 3-8 in miRNA

















Local 1st o. MM
Global 3rd o. MM















miRNA name
miRNA#
Hexamer
Actual
Predicted
Log (PV_SH)
Predicted
Log (PV_SH)


















hsv1-miR-H1
1
TCCTTC
5
5.08
−0.24
4.41
−0.35






hsv1-miR-LAT
2
GGCCGC
33
20.57
−2.16
23.74
−1.38


Total:


38
25.65

28.15
















TABLE 3B







Best HSV-1 3′ UTR targets: Combined effect of all microRNAs based on


heptamer complementary to positions 3-8 in miRNA










Local 1st o. MM
Global 3rd o. MM















Ac-

Log

Log


3′ UTR
Length
tual
Predicted
(PV_SH)
Predicted
(PV_SH)
















UL35
33
1
0.05
−1.30
0.05
−1.30


RL1
274
3
0.88
−1.22
0.43
−2.03


RL1
274
3
0.88
−1.22
0.43
−2.03


RL2
146
1
0.10
−1.03
0.23
−0.69


RL2
186
1
0.10
−1.01
0.29
−0.60


US9
82
1
0.11
−0.99
0.13
−0.92


UL42
53
1
0.14
−0.88
0.08
−1.10


US8A
444
2
0.65
−0.86
0.69
−0.82


UL20
500
2
0.76
−0.75
0.78
−0.74


UL1
500
2
0.83
−0.70
0.78
−0.74


UL34
477
2
0.83
−0.69
0.74
−0.77


UL24
192
1
0.23
−0.69
0.30
−0.59


UL9
500
2
1.03
−0.56
0.78
−0.74


UL52
500
1
0.35
−0.53
0.78
−0.27


UL51
500
1
0.38
−0.50
0.78
−0.27


UL11
500
1
0.38
−0.50
0.78
−0.27


UL47
500
2
1.17
−0.49
0.78
−0.74


UL16
500
1
0.44
−0.45
0.78
−0.27


UL49A
500
1
0.51
−0.40
0.78
−0.27


UL13
500
1
0.57
−0.37
0.78
−0.27


UL37
500
1
0.58
−0.35
0.78
−0.27


UL39
500
1
0.66
−0.32
0.78
−0.27


UL14
500
1
0.68
−0.31
0.78
−0.27


US11
500
1
0.71
−0.30
0.78
−0.27


US8
500
1
0.86
−0.24
0.78
−0.27
















TABLE 3C







Best HSV-1 miRNA - 3′UTR target pairs based on hexamer complementary to


positions 3-8 in miRNA











Local 1st o. MM

Global 3rd o. MM















3′ UTR
Length
miRNA #
Actual
Predicted
Log (PV_SH)
PV_MH
Predicted
Log (PV_SH)


















UL35
33
1
1
0.05
−1.35
0.50
0.01
−2.10


RL1
274
2
3
0.84
−1.28
0.38
0.36
−2.23


RL1
274
2
3
0.84
−1.28
0.31
0.36
−2.23


RL2
186
2
1
0.07
−1.18
0.28
0.24
−0.66


RL2
146
2
1
0.08
−1.12
0.25
0.19
−0.76


US9
82
1
1
0.11
−0.99
0.33
0.02
−1.70


UL20
500
2
2
0.55
−0.98
0.33
0.66
−0.85


UL24
192
1
1
0.11
−0.97
0.27
0.05
−1.34


UL42
53
2
1
0.13
−0.92
0.26
0.07
−1.17


UL34
477
1
1
0.14
−0.89
0.25
0.12
−0.96


UL1
500
2
2
0.69
−0.82
0.27
0.66
−0.85


UL49A
500
2
1
0.25
−0.66
0.45
0.66
−0.32


UL52
500
2
1
0.27
−0.63
0.41
0.66
−0.32


US8A
444
1
1
0.28
−0.62
0.40
0.11
−0.99


UL9
500
2
2
0.95
−0.61
0.38
0.66
−0.85


UL11
500
2
1
0.33
−0.56
0.44
0.66
−0.32


UL51
500
2
1
0.34
−0.55
0.42
0.66
−0.32


UL39
500
2
1
0.34
−0.54
0.38
0.66
−0.32


UL47
500
2
2
1.10
−0.52
0.41
0.66
−0.85


US8A
444
2
1
0.38
−0.51
0.40
0.58
−0.35


UL16
500
2
1
0.38
−0.50
0.37
0.66
−0.32


UL13
500
2
1
0.43
−0.46
0.44
0.66
−0.32


UL37
500
2
1
0.51
−0.40
0.49
0.66
−0.32


UL14
500
2
1
0.54
−0.38
0.48
0.66
−0.32


US11
500
2
1
0.63
−0.33
0.48
0.66
−0.32

















TABLE 4A







EBV miRNAs: Combined effect on all 3′ UTRs using



hexamers complementary to positions 2-8 in miRNA

















Local 1st o. MM
Global 3rd o. MM















miRNA name
miRNA #
Heptamer
Actual
Predicted
Log (PV_SH)
Predicted
Log (PV_SH)


















ebv-miR-BART1-3p
1
CGGTGCT
5
1.97
−1.30
1.68
−1.55






ebv-miR-BART1-5p
2
CACTAAG
2
1.39
−0.39
0.66
−0.85





ebv-miR-BART2
3
AGAAAAT
2
1.14
−0.50
1.38
−0.40





ebv-miR-BART3-3p
4
GTGGTGC
2
3.57
−0.06
4.38
−0.03





ebv-miR-BART3-5p
5
ACTAGGT
0
1.20
0.00
0.42
0.00





ebv-miR-BART4
6
ATCAGGT
0
1.57
0.00
1.92
0.00





ebv-miR-BART5
7
TCACCTT
6
2.00
−1.78
1.86
−1.92





ebv-miR-BART6-3p
8
GATCCCC
3
3.46
−0.17
1.92
−0.52





ebv-miR-BART6-5p
9
GACCAAC
5
2.28
−1.09
2.22
−1.13





ebv-miR-BART7
10
CTATGAT
0
1.23
0.00
1.44
0.00





ebv-miR-BART8-3p
11
ATTGTGA
1
1.66
−0.09
1.50
−0.11





ebv-miR-BART8-5p
12
AAACCGT
0
0.80
0.00
0.90
0.00





ebv-miR-BART9
13
AAGTGTT
0
1.34
0.00
1.20
0.00





ebv-miR-BART10
14
GGTTATG
3
1.40
−0.78
1.62
−0.66





ebv-miR-BART11-3p
15
GTGTGCG
2
2.07
−0.21
1.68
−0.30





ebv-miR-BART11-5p
16
AAACTGT
0
1.47
0.00
1.74
0.00





ebv-miR-BART12
17
CCACAGG
4
4.68
−0.16
4.02
−0.25





ebv-miR-BART13
18
AAGTTAC
3
0.76
−1.39
0.78
−1.35





ebv-miR-BART14-3p
19
AGCATTT
2
1.45
−0.37
1.92
−0.24





ebv-miR-BART14-5p
20
GTAGGGT
0
1.66
0.00
0.54
0.00





ebv-miR-BART15
21
AAACCAC
2
1.90
−0.25
1.98
−0.23





ebv-miR-BART16
22
CACTCTA
1
1.48
−0.11
1.02
−0.19





ebv-miR-BART17-3p
23
GCATACA
1
1.42
−0.12
1.07
−0.18





ebv-miR-BART17-5p
24
GTCCTCT
3
2.28
−0.40
2.64
−0.31





ebv-miR-BART18
25
CGAACTT
0
0.91
0.00
0.42
0.00





ebv-miR-BART1 9
26
ACAAAAC
0
1.49
0.00
1.79
0.00





ebv-miR-BART20-3p
27
CCTTCAT
2
1.95
−0.24
1.86
−0.26





ebv-miR-BART20-5p
28
CCTGCTA
1
2.55
−0.04
3.29
−0.02





ebv-miR-BHRF1-1
29
TCAGGTT
1
1.74
−0.08
1.20
−0.16





ebv-miR-BHRF1-2
30
AAAAGAT
1
1.14
−0.17
1.62
−0.10





ebv-miR-BHRF1-2*
31
CAGAATT
2
1.35
−0.41
1.98
−0.23





ebv-miR-BHRF1-3
32
TCCCGTT
3
1.24
−0.89
1.08
−1.02


Total:


57
56.55

53.73
















TABLE 4B







Best EBV 3′ UTR targets: Combined effect of all microRNAs based on


heptamer complementary to positions 2-8 in miRNA










Local 1st o. MM
Global 3rd o. MM













3′ UTR
Length
Actual
Predicted
Log (PV_SH)
Predicted
Log (PV_SH)
















BZLF1
53
2
0.10
−2.35
0.10
−2.38


BLLF3
24
1
0.03
−1.54
0.04
−1.39


BNRF1
148
2
0.33
−1.36
0.27
−1.53


BZLF2
500
3
0.91
−1.19
0.90
−1.21


BALF3
500
3
0.93
−1.17
0.90
−1.21


BHLF1
257
2
0.58
−0.93
0.46
−1.11


BALF2
370
2
0.68
−0.83
0.67
−0.84


BALF5
500
2
0.73
−0.78
0.90
−0.65


BVLF1
171
1
0.19
−0.77
0.31
−0.58


BARF1
500
2
0.85
−0.68
0.90
−0.65


BDLF3.5
500
2
0.85
−0.68
0.90
−0.65


BGLF3
500
2
0.86
−0.67
0.90
−0.65


BGLF3.5
500
2
0.90
−0.65
0.90
−0.65


BaRF1
500
2
0.91
−0.64
0.90
−0.65


BMRF1
500
2
0.99
−0.59
0.90
−0.65


BRLF1
500
2
1.07
−0.54
0.90
−0.65


LF3
500
2
1.10
−0.52
0.04
−1.39


BGLF1
500
2
1.12
−0.51
0.90
−0.65


LMP-1
500
2
1.26
−0.45
0.90
−0.65


BOLF1
500
1
0.68
−0.31
0.90
−0.23


BARF0
500
1
0.69
−0.30
0.90
−0.23


BFRF2
485
1
0.75
−0.28
0.87
−0.24


BDLF4
500
1
0.77
−0.27
0.90
−0.23


BGLF2
378
1
0.80
−0.26
0.68
−0.31


BXRF1
500
1
0.83
−0.25
0.90
−0.23
















TABLE 4C







Best EBV miRNA - 3′UTR target pairs based on hexamer complementary to


positions 2-8 in miRNA











Local 1st o. MM

Global 3rd o. MM















3′ UTR
Length
miRNA #
Actual
Predicted
Log (PV_SH)
PV_MH
Predicted
Log (PV_SH)


















BALF3
500
9
2
0.07
−2.68
0.22
0.04
−3.17


BNRF1
148
23
1
0.01
−2.25
0.27
0.01
−2.28


BZLF1
53
21
1
0.01
−2.24
0.17
0.00
−2.46


BZLF1
53
32
1
0.01
−2.07
0.23
0.00
−2.71


BALF3
500
30
1
0.01
−2.00
0.23
0.03
−1.58


BKRF2
500
3
1
0.01
−2.00
0.20
0.02
−1.64


BFRF2
485
18
1
0.01
−1.95
0.21
0.01
−1.89


BNRF1
148
7
1
0.01
−1.94
0.20
0.01
−2.04


BLLF3
24
27
1
0.01
−1.91
0.21
0.00
−2.83


BRLF1
500
1
1
0.01
−1.88
0.22
0.03
−1.56


BSLF2/
500
32
1
0.02
−1.80
0.28
0.02
−1.74


BMLF1


BHLF1
257
14
1
0.02
−1.80
0.26
0.01
−1.86


BLRF2
500
18
1
0.02
−1.79
0.22
0.01
−1.87


BSLF1
500
19
1
0.02
−1.78
0.23
0.03
−1.50


BHRF1
500
1
1
0.02
−1.75
0.26
0.03
−1.56


BaRF1
500
21
1
0.02
−1.73
0.27
0.03
−1.49


LF1
500
18
1
0.02
−1.70
0.30
0.01
−1.87


BDLF3.5
500
32
1
0.02
−1.69
0.28
0.02
−1.74


BGRF1/
500
31
1
0.03
−1.60
0.42
0.03
−1.48


BDRF1


BARF1
500
7
1
0.03
−1.58
0.43
0.03
−1.52


BGLF2
378
1
1
0.03
−1.58
0.42
0.02
−1.68


BaRF1
500
29
1
0.03
−1.58
0.40
0.02
−1.71


BZLF2
500
31
1
0.03
−1.58
0.40
0.03
−1.48


BHLF1
257
22
1
0.03
−1.55
0.41
0.01
−2.06


LF3
500
8
1
0.03
−1.55
0.42
0.03
−1.50

















TABLE 5A







HCMV miRNAs: Combined effect on all 3′ UTRs using FIX and



conserved hexamer complementary to positions 2-8 in miRNA




















Local 1st o. MM
Global 3rd o. MM

Local 1st o. MM
Global 3rd o. MM





















miRNA




Log

Log


Log

Log



name
#
Heptamer
Actual
Predicted
(PV_SH)
Predicted
(PV_SH)
Actual
Predicted
(PV—SH)
Predicted
(PV—SH)























hcmv-
1
TCCCGTG
4
4.85
−0.15
5.24
−0.12
1
2.39
−0.04
2.68
−0.03



miR-


UL22-1





hcmv-
2
GCTAGTT
0
2.07
0.00
1.71
0.00
0
0.97
0.00
0.92
0.00


miR-


UL22A-


1





hcmv-
3
TCTGGTG
3
3.88
−0.13
7.06
−0.01
2
1.93
−0.24
3.34
−0.07


miR-


UL22A-


1





hcmv-
4
ACATGCC
1
3.57
−0.01
2.92
−0.02
0
1.74
0.00
1.58
0.00


miR-


UL31-1





hcmv-
5
TTCAACG
6
4.54
−0.52
4.50
−0.53
3
2.28
−0.40
2.18
−0.43


miR-


UL36-1





hcmv-
6
AGGTGTC
2
3.13
−0.09
2.68
−0.13
2
1.40
−0.39
1.71
−0.29


miR-


UL36-


1-N





hcmv-
7
CTCGCGC
9
13.55
−0.04
8.05
−0.38
6
8.26
−0.08
4.02
−0.66


miR-


UL53-1





hcmv-
8
GACGCGC
16
15.52
−0.31
12.43
−0.73
12
9.37
−0.63
6.37
−1.52


miR-


UL54-1





hcmv-
9
CCATCCC
6
3.75
−0.75
4.27
−0.59
1
1.91
−0.07
2.15
−0.05


miR-


UL70-


3p





hcmv-
10
GAGACGC
6
7.30
−0.13
8.89
−0.06
4
3.90
−0.26
4.26
−0.21


miR-


UL70-


5p





hcmv-
11
CATGGCC
3
3.57
−0.16
4.51
−0.08
1
1.72
−0.09
2.33
−0.05


miR-


UL102-


1





hcmv-
12
CGACGCC
16
12.00
−0.81
15.59
−0.31
9
6.80
−0.61
7.77
−0.43


miR-


UL102-


2





hcmv-
13
CAACGTC
11
6.00
−1.37
8.39
−0.65
2
3.05
−0.09
4.10
−0.04


miR-


UL111


a-1





hcmv-
14
CGTCACT
13
5.34
−2.45
4.75
−2.88
6
2.80
−1.19
2.45
−1.41


miR-


UL112-


1





hcmv-
15
GAGGACG
23
5.98
−7.02
11.34
−2.81
10
2.91
−3.06
5.70
−1.19


miR-


UL148


D-1





hcmv-
16
CCATGTC
4
3.33
−0.37
4.03
−0.24
2
1.61
−0.32
2.24
−0.18


miR-


US4





hcmv-
17
GCTTGTC
4
4.56
−0.18
2.93
−0.47
1
2.46
−0.04
1.70
−0.09


miR-


USS-1





hcmv-
18
TATCATA
3
2.05
−0.47
2.06
−0.47
1
0.81
−0.26
1.03
−0.19


miR-


USS-2





hcmv-
19
ACCTATC
5
2.02
−1.26
2.31
−1.07
2
0.95
−0.61
1.03
−0.56


miR-


USS-


2-N





hcmv-
20
GAGCGGT
3
4.76
−0.07
5.61
−0.04
1
2.39
−0.04
2.80
−0.03


miR-


US25-1





hcmv-
21
AGACCGC
6
5.40
−0.34
6.32
−0.22
3
2.78
−0.28
2.77
−0.28


miR-


US25-


2-5p





hcmv-
22
AAGTGGA
2
2.51
−0.15
2.92
−0.10
1
1.12
−0.17
1.34
−0.13


miR-


US25-


2-3p





hcmv-
23
ACATCCA
8
3.09
−1.86
3.78
−1.41
0
1.44
0.00
1.97
0.00


miR-


US29-1





hcmv-
24
GCACAAT
3
3.35
−0.19
2.08
−0.46
2
1.52
−0.35
1.10
−0.52


miR-


US33-1


Total:


157
126.12

134.37

72
66.51

67.54
















TABLE 5B







Best HCMV 3′ UTR targets: Combined effect of all microRNAs based on


heptamer complementary to positions 2-8 in miRNA








Fix strain only
Conserved among 6 strains













Local
Global

Local
Global



1st o. MM
3rd o. MM

1st o. MM
3rd o. MM
























Log

Log




Log

Log


3′ UTR
L
Act
Pred
(PV_SH)
Pred
(PV_SH)
3′ UTR
L
Act
Pred
(PV_SH)
Pred
(PV_SH)























UL61
500
5
1.01
−2.42
1.10
−2.27
UL80
34
1
0.02
−1.63
0.08
−1.12


UL103
500
5
1.18
−2.14
1.10
−2.27
UL34
14
1
0.03
−1.53
0.03
−1.50


UL120
500
4
0.91
−1.86
1.10
−1.59
UL98
413
3
0.80
−1.33
0.94
−1.16


UL16
500
4
0.97
−1.76
1.10
−1.59
UL103
21
1
0.05
−1.32
0.05
−1.32


US7
383
3
0.56
−1.72
0.84
−1.27
UL16
430
3
0.82
−1.30
0.97
−1.12


UL153
161
2
0.24
−1.62
0.36
−1.30
UL112-
67
1
0.05
−1.29
0.15
−0.85


UL34
14
1
0.03
−1.53
0.03
−1.50
113


UL137
500
4
1.18
−1.49
1.10
−1.59
UL3
57
1
0.09
−1.06
0.13
−0.92


US26
45
1
0.04
−1.46
0.10
−1.03
RL10
57
1
0.10
−1.02
0.13
−0.92


UL80
57
1
0.04
−1.40
0.13
−0.92
UL57
426
3
1.09
−1.02
0.97
−1.13


UL60
500
3
0.76
−1.39
1.10
−1.00
UL31
62
1
0.12
−0.94
0.14
−0.88


UL141a
500
4
1.31
−1.36
1.10
−1.59
UL86
424
3
1.21
−0.91
0.96
−1.13


UL44
500
5
1.99
−1.29
1.10
−2.27
UL60
402
2
0.63
−0.89
0.91
−0.64


US12
500
3
0.85
−1.26
1.10
−1.00
UL92
394
3
1.26
−0.88
0.89
−1.21


UL117
500
3
0.90
−1.21
1.10
−1.00
UL52
377
3
1.34
−0.82
0.86
−1.26


UL98
500
3
0.96
−1.13
1.10
−1.00
UL67
183
1
0.20
−0.73
0.41
−0.47


UL92
500
4
1.58
−1.12
1.10
−1.59
UL87
182
2
0.79
−0.73
0.41
−1.19


UL112-
111
1
0.09
−1.05
0.24
−0.66
UL43
368
2
0.80
−0.72
0.84
−0.69


113






UL37
396
2
0.81
−0.71
0.90
−0.64


US10
500
3
1.07
−1.03
1.10
−1.00
UL79
329
2
0.81
−0.71
0.75
−0.76


UL40
51
1
0.12
−0.96
0.11
−0.98
UL123
92
1
0.22
−0.70
0.21
−0.72


UL26
97
1
0.12
−0.96
0.21
−0.72
US14
455
2
0.89
−0.65
1.03
−0.56


UL57
500
3
1.30
−0.85
1.10
−1.00
UL69
253
1
0.27
−0.63
0.57
−0.36


UL86
500
3
1.45
−0.75
1.10
−1.00
UL51
444
2
0.99
−0.59
1.01
−0.57


UL151
500
3
1.49
−0.73
1.10
−1.00
UL45
442
2
1.02
−0.56
1.00
−0.58


US24
20
1
0.21
−0.72
0.05
−1.36
UL95
379
2
1.03
−0.56
0.86
−0.67
















TABLE 5C







Best HCMV miRNA - 3′UTR target pairs based on hexamer complementary to


positions 2-8 in miRNA











Local 1st o.

Global 3rd o.



MM

MM















3′ UTR
L
MiRNA #
Act
Pred
Log (PV_SH)
PV_MH
Pred
Log (PV_SH)










Fix strain only















US9
500
15
2
0.033
−3.26
0.19
0.093
−2.39


UL141a
500
10
2
0.059
−2.77
0.23
0.073
−2.60


UL103
500
18
1
0.002
−2.75
0.14
0.017
−1.79


UL112-
111
8
1
0.002
−2.75
0.09
0.023
−1.65


113










UL103
500
15
2
0.076
−2.56
0.11
0.093
−2.39


UL34
14
14
1
0.004
−2.41
0.13
0.001
−2.96


UL61
500
7
2
0.102
−2.32
0.14
0.066
−2.68


UL153
161
21
1
0.005
−2.29
0.12
0.017
−1.78


UL123
92
14
1
0.006
−2.21
0.14
0.007
−2.14


UL80
57
10
1
0.006
−2.20
0.11
0.008
−2.08


UL69
323
24
1
0.007
−2.19
0.10
0.011
−1.95


UL57
500
21
2
0.128
−2.13
0.11
0.052
−2.89


UL92
500
15
2
0.140
−2.05
0.13
0.093
−2.39


UL7
314
21
1
0.012
−1.92
0.21
0.032
−1.50


US14
500
10
1
0.012
−1.91
0.20
0.073
−1.15


US7
383
19
1
0.014
−1.87
0.22
0.014
−1.85


UL67
213
7
1
0.015
−1.82
0.25
0.028
−1.56


UL102
500
24
1
0.015
−1.81
0.23
0.017
−1.76


UL98
500
6
1
0.016
−1.81
0.21
0.022
−1.66


UL61
500
20
1
0.016
−1.80
0.20
0.046
−1.35


RL4
246
1
1
0.016
−1.80
0.18
0.021
−1.68


UL101
500
16
1
0.016
−1.79
0.18
0.033
−1.48


UL153
161
23
1
0.016
−1.79
0.17
0.010
−2.00


UL138
318
5
1
0.017
−1.78
0.16
0.023
−1.64


UL60
500
17
1
0.017
−1.77
0.16
0.024
−1.62







Conserved among 6 strains















UL103
21
18
1
0.000
−4.11
0.04
0.001
−3.14


UL112-
67
8
1
0.001
−2.96
0.16
0.014
−1.85


113


RL10
57
17
1
0.003
−2.52
0.27
0.003
−2.49


UL31
62
14
1
0.003
−2.46
0.23
0.005
−2.29


UL80
34
10
1
0.004
−2.42
0.19
0.005
−2.31


UL34
14
14
1
0.004
−2.41
0.16
0.001
−2.94


UL3
57
10
1
0.005
−2.33
0.16
0.008
−2.09


UL69
253
24
1
0.005
−2.29
0.14
0.009
−2.03


UL57
426
21
2
0.108
−2.27
0.13
0.040
−3.12


UL123
92
14
1
0.006
−2.21
0.13
0.008
−2.12


US14
455
10
1
0.011
−1.95
0.31
0.065
−1.20


UL101
393
16
1
0.012
−1.91
0.32
0.030
−1.54


UL98
413
6
1
0.013
−1.89
0.32
0.024
−1.63


UL67
183
7
1
0.014
−1.86
0.32
0.025
−1.61


RL4
246
1
1
0.016
−1.80
0.38
0.022
−1.66


UL87
182
12
2
0.197
−1.77
0.39
0.047
−2.96


US28
416
24
1
0.018
−1.75
0.41
0.015
−1.82


UL16
430
16
1
0.019
−1.73
0.40
0.032
−1.50


UL16
430
6
1
0.021
−1.68
0.48
0.025
−1.61


UL18
330
22
1
0.022
−1.67
0.47
0.015
−1.83


UL93
406
15
1
0.022
−1.66
0.44
0.078
−1.13


UL60
402
19
1
0.024
−1.63
0.48
0.014
−1.86


UL104
387
11
1
0.025
−1.61
0.49
0.030
−1.53


UL86
424
8
2
0.245
−1.59
0.49
0.091
−2.41


US23
429
19
1
0.026
−1.59
0.47
0.015
−1.83

















TABLE 6A







KSHV miRNAs: Combined effect on all 3′ UTRs using



hexamers complementary to positions 3-8 in miRNA

















Local 1st o. MM
Global 3rd o. MM















miRNA name
miRNA#
Hexamer
Actual
Predicted
Log (PV_SH)
Predicted
Log (PV_SH)


















kshv-miR-K12-1
1
CCTGTA
25
24.65
−0.30
30.56
−0.06






kshv-miR-K12-2
2
CTACAG
34
23.31
−1.66
27.53
−0.89





kshv-miR-K12-3
3
GAATGT
32
24.56
−1.07
24.35
−1.11





kshv-miR-K12-3*
4
GACCGC
34
30.66
−0.53
33.83
−0.29





kshv-miR-K12-4-5p
5
GTTTAG
21
19.52
−0.40
19.67
−0.39





kshv-miR-K12-4-3p
6
GTATTC
21
16.22
−0.84
18.26
−0.54





kshv-miR-K12-5
7
GCATCC
36
31.64
−0.62
31.48
−0.63





kshv-miR-K12-6-5p
8
GCTGCT
42
33.53
−1.06
39.07
−0.47





kshv-miR-K12-6-3p
9
AACCAT
26
27.59
−0.19
21.67
−0.70





kshv-miR-K12-7
10
TGGGAT
34
31.74
−0.44
33.55
−0.31





kshv-miR-K12-8
11
CGCGCC
43
30.46
−1.73
47.81
−0.11





kshv-miR-K12-9*
12
AGCTGG
57
34.14
−3.67
45.27
−1.29





kshv-miR-K12-9
13
ATACCC
24
23.25
−0.33
25.83
−0.18





kshv-miR-K12-10a
14
CAACAC
42
41.04
−0.34
40.75
−0.35





kshv-miR-K12-10b
15
CAACAC
42
41.04
−0.34
40.75
−0.35





kshv-miR-K12-11
16
AGCATT
15
24.16
−0.01
19.88
−0.05





kshv-miR-K12-12
17
GGCCTG
51
44.65
−0.72
52.63
-0.22


Total:


579
502.16

552.89
















TABLE 6B







Best KSHV 3′ UTR targets: Combined effect of all microRNAs based on


heptamer complementary to positions 3-8 in miRNA










Local 1st o. MM
Global 3rd o. MM













3′ UTR
Length
Actual
Predicted
Log (PV_SH)
Predicted
Log (PV_SH)
















ORF_49
1123
11
5.12
−1.80
5.75
−1.49


ORF_73
1041
10
4.94
−1.53
5.33
−1.35


ORF_K8
1144
10
4.99
−1.51
5.86
−1.13


ORF_40
858
8
3.98
−1.31
4.39
−1.11


ORF_16
4069
26
18.33
−1.28
20.83
−0.82


ORF_56
1640
12
7.34
−1.16
8.40
−0.85


ORF_18
1544
11
6.63
−1.13
7.90
−0.76


ORF_K14
6226
37
29.11
−1.05
31.87
−0.69


ORF_25
1833
13
8.61
−1.01
9.38
−0.82


ORF_72
26
1
0.11
−0.98
0.13
−0.90


ORF_74
4756
28
22.14
−0.89
24.34
−0.60


ORF_63
2452
18
13.36
−0.89
12.55
−1.07


ORF_8
1337
10
6.69
−0.86
6.84
−0.81


ORF_50
2084
13
9.21
−0.86
10.67
−0.56


ORF_6
396
4
2.02
−0.84
2.03
−0.83


ORF_7
3858
24
19.13
−0.80
19.75
−0.71


ORF_28
1151
8
5.23
−0.80
5.89
−0.62


ORF_K13
50
1
0.18
−0.79
0.26
−0.65


ORF_75
38
1
0.18
−0.79
0.20
−0.75


ORF_59
1056
8
5.32
−0.77
5.41
−0.75


ORF_47
2061
12
9.07
−0.69
10.55
−0.44


ORF_K4
199
2
0.85
−0.68
1.02
−0.57


ORF_32
1303
8
5.72
−0.66
6.67
−0.45


ORF_26
890
6
4.04
−0.66
4.56
−0.51


ORF_57
63
1
0.27
−0.63
0.32
−0.56
















TABLE 6C







Best KSHV miRNA - 3′UTR target pairs based on hexamer complementary to


positions 3-8 in miRNA











Local 1st o. MM

Global 3rd o. MM




















Log


Log


3′ UTR
Length
miRNA #
Actual
Predicted
(PV_SH)
PV_MH
Predicted
(PV_SH)


















ORF_K8
1144
9
4
0.38
−3.20
0.09
0.23
−4.02


ORF_50
2084
9
5
0.73
−3.01
0.07
0.42
−4.13


ORF_74
4756
5
4
0.59
−2.50
0.19
0.87
−1.93


ORF_32
1303
3
3
0.47
−1.93
0.48
0.29
−2.47


ORF_K4
199
13
1
0.01
−1.92
0.41
0.05
−1.33


ORF_25
1833
14
3
0.47
−1.91
0.34
0.69
−1.48


ORF_25
1833
15
3
0.47
−1.91
0.28
0.69
−1.48


ORF_49
1123
6
2
0.17
−1.90
0.26
0.19
−1.80


ORF_18
1544
11
3
0.53
−1.79
0.30
0.68
−1.49


ORF_16
4069
4
4
0.99
−1.73
0.32
1.27
−1.39


ORF_57
63
6
1
0.02
−1.73
0.30
0.01
−1.98


ORF_28
1151
8
3
0.56
−1.72
0.27
0.42
−2.06


ORF_56
1640
7
3
0.58
−1.68
0.27
0.48
−1.89


ORF_K14
6226
5
4
1.03
−1.68
0.23
1.13
−1.55


ORF_49
1123
13
2
0.23
−1.66
0.23
0.27
−1.52


ORF_16
4069
8
6
2.14
−1.65
0.23
1.47
−2.39


ORF_31
2634
3
3
0.60
−1.64
0.23
0.59
−1.65


ORF_63
2452
2
3
0.64
−1.57
0.24
0.63
−1.59


ORF_72
26
5
1
0.03
−1.55
0.25
0.01
−2.33


ORF_K4
199
10
1
0.03
−1.51
0.26
0.06
−1.22


ORF_8
1337
8
2
0.28
−1.50
0.24
0.48
−1.07


ORF_59
1056
17
3
0.68
−1.50
0.23
0.51
−1.81


ORF_67
1866
13
2
0.28
−1.50
0.22
0.45
−1.13


ORF_27
1705
8
3
0.71
−1.46
0.24
0.62
−1.61


ORF_64
2848
6
2
0.29
−1.46
0.23
0.48
−1.07









Tables 3-6 show three pieces of information for each virus. First, there is a list (Table 3A-6A) for each miRNA of the total actual and predicted number of binding sites across all 3′UTRs with associated p-values. miRNAs with smaller p-values are more likely to regulate some (unspecified) viral genes. The total number of functional binding sites for miRNAs can be estimated from the difference of the total numbers of actual and predicted seed binding sites (21).


Second, there is a list (Table 3B-6B) of the top 25 3′UTR targets, sorted according to the p-value based on the total actual and predicted binding-site counts across all miRNAs. 3′UTRs with small p-values are likely to be regulated by some combination of viral miRNAs. Third, there is a list (Table 3 C-6C) of the top 25 miRNA-3′UTR pairs. Pairs with small p-values are most likely to be functional pairs. The ranks of the IE genes in Table 8 below are derived from this list.


Predicting targets of HCMV-coded miRNAs within the HCMV genome. To test our hypothesis that herpesvirus miRNAs might inhibit expression of viral genes needed for efficient lytic replication and thereby favor latency, we asked whether viral miRNAs had potential to target viral 3′UTRs. Instead of listing all conserved potential miRNA binding sites or computing scores based on various empirical rules, our algorithm uses a combination of analytical expressions and Monte Carlo simulations to determine exact probabilities that predicted miRNA targets would occur by chance. We use the standard assumption that the 3′UTR sequence has coevolved with the sequence of the miRNA and the experimental observation that miRNA binding requires a perfect complementarity of a “seed” sequence near the 5′ end of the miRNA to a sequence in the 3′UTR. This seed is usually a heptamer at positions 2-8 from the 5′ end of the miRNA. As a result of coevolution, the number of actual seed oligomers present in the 3′UTR of a targeted gene will be higher than the number that would appear by chance in a random sequence with similar composition. The algorithm predicts functional miRNA targets in two steps:


First, for each miRNA-3′UTR pair, our model computes an approximate probability PVSH (p-value for single hypothesis testing) that it would appear by chance in the random sequence; the smaller PVSH is, the more likely the given pair is to be biologically functional. (Probability PVSH is very nearly exact: The only approximation is that we assume independence between consecutive oligomers.) This procedure alone allows testing whether a given miRNA is likely to target a given 3′UTR.


Second, if we are interested in finding functional targets of multiple miRNAs among multiple 3′UTRs, we need to take into account multiple hypothesis testing. The model does this by performing a Monte Carlo simulation in which we compute the probability PVMH (P-value for multiple hypothesis testing) that the top, say 10, miRNA-target pairs in a randomly generated genome with similar properties would have their PVSH lower than the corresponding top 10 miRNA-target pairs in the real genome. We used this approach instead of the now standard False Discovery Rate analysis (FDR) of Benjamini and Hochberg (1995, J R. Statist. Soc. B 57:289-300) because of the discrete nature of our data. In our data, most PVSH values are 1 and so FDR analysis is not applicable since it requires a fairly uniform distribution of PVSH except a small overrepresentation at values close to 0.


Table 7 below shows the 10 most probable miRNA-target pairs of the 4896 total possible miRNA-3′UTR pairs for the HCMV genome. For each pair, the table shows the score PVSH and the statistical significance PVMH of all predictions up to this one. For instance, the 10th miRNA-target prediction, miR-UL112-1 targeting the IE transactivator protein 1 mRNA (IE1, encoded by the UL123 ORF, highlighted), has a score PVSH=10−2.21=0.0062 and PVMH=0.125, meaning only 12.5% of randomly generated genomes have top 10 p-values better or equal to PVSH=10−2.21. For top 25 most probable miRNA-target pairs in HCMV, see Table 5C above. In fact, the data set in that table suggests that the most significant predictions are the top 10 listed in Table 7 since there is a sharp increase in PVMH from the 10th to 11th prediction: PVMH (10)=0.125 and PVMH (11)=0.309. Naturally, PVMH (k) increases towards 1 for larger k. In our analysis, we required that a target be conserved in six sequenced strains of HCMV. If conservation among strains is not taken into account, PVMH suggests that there are many more significant targets (35 with PVMH<0.20, see SI Table 5C). Finally, the PVMH values listed in Table 7 are conservative upper bounds because we considered all published sequences of detected potential miRNAs although several are only slight variations of each other and some others are perhaps not real miRNAs.









TABLE 7







Top 10 predicted miRNA-target pairs in HCMV


when sorted by PVSH score








3′ UTR
1st order local MM













HCMV ORF
Length*
hcmv-miR
Act.
Exp.
Log10 PVSH
PVMH
















UL103
21
US5-2
1
0.000
−4.11
0.036


UL112-113
67
UL54-1
1
0.001
−2.96
0.155


RL10
57
US5-1
1
0.003
−2.52
0.273


UL31
62
UL112-1
1
0.003
−2.46
0.229


UL80
34
UL70-5p
1
0.004
−2.42
0.187


UL34
14
UL112-1
1
0.004
−2.41
0.155


UL3
57
UL70-5p
1
0.005
−2.33
0.155


UL69
253
US33-1
1
0.005
−2.29
0.144


UL57
426
US25-2-
2
0.108
−2.27
0.127




5p


UL123(IE1)
92
UL112-1
1
0.006
−2.21
0.125





The table shows the top 10 of 4896 possible miRNA-3′UTR pairs for the HCMV genome. The statistical significance of the top targets is measured by the multiple hypothesis p-value PVMH. The random background used is the 1st order local MM. IE1 (UL123) is highlighted.


*Length denotes the total number of all conserved heptamers in the 3′UTR.



Act. denotes the actual count (in the 3′UTR) of conserved heptamers complementary to the miRNA seed.




Exp. denotes the count expected in the random sequence.







Predictions of targets for miRNAs coded by other herpesviruses. As described above, the algorithm was applied to an analysis of three additional human herpesviruses. HSV-1, EBV, and KSHV each proved to encode miRNAs predicted to inhibit the expression of viral proteins, including IE proteins. Table 8 displays the rank of the IE-targeting miRNAs among all possible miRNA-3′UTR pairs (the total number is equal to the number of 3′UTRs times the number of miRNAs). The rank is again based on the p-value PVSH computed according to the local first order MM or the global third order MM. ICP0 in HSV-1, BZLF1 and BRLF1 in EBV, and Zta and Rta in KSHV are among the virus-specific targets most likely to be targeted virus-coded miRNAs (top 0.5-2% of virus-specific targets). The BZLF1/BRLF1 3′UTR of EBV is predicted to be targeted by two miRNAs.









TABLE 8







Whole genome ranks for predicted miRNA-IE target pairs in four herpesviruses.















Virus
3′ UTR*
Length
miRNA
Seed
Count
Rank A
Percentile
Rank B


















HSV-1
ICP0
186
hsv1-miR-LAT
3-8
1
4 of 154 
97.40
12 of 154 


EBV
BZLF1, BRLF1
53
ebv-miR-BART15
2-8
1
3 of 2720
99.89
4 of 2720


EBV
BZLF1, BRLF1
53
ebv-miR-BHRF1-3
2-8
1
4 of 2720
99.85
3 of 2720


HCMV
IE1
92
hcmv-miR-UL112-1
2-8
1
10 of 4896 
99.80
9 of 4896


KSHV
Zta, Rta
1144
kshv-miR-K12-6-3p
3-8
4
1 of 1394
99.93
1 of 1394





The table reports the top miRNA-IE target pairs for HSV-1, EBV, KSHV and HCMV after sorting by PVSH score.


*BZLF1 and BRLF1 as well as Zta and Rta give rise to 3′ coterminal transcripts and therefore genes in each pair have the same 3′UTRs.



Rank A (resp. rank B) denotes the rank among all possible miRNA - 3′UTR pairs sorted by p-values computed for the random sequence based on the 1st order local (resp. the 3rd order global) MM. Percentile corresponds to Rank A.







Besides the IE genes, the top predicted miRNA targets include many genes involved in viral DNA replication as well as several inhibitors of apoptosis and other genes involved in immune evasion. Brief descriptions of the predicted targets in these functional groups are summarized in Tables 1 and 2 above.


Table 9 below sets forth each of the miRNAs and mRNA targets mentioned in Tables 1-8, along with representative sequences for each. The skilled artisan will appreciate that these are representative sequences only, as both miRNAs and 3′UTR targets may possess variation with their sequences, while still maintaining the sequence elements that enable recognition and binding of the miRNAs, or derivatives or analogs thereof, to their respective targets in mRNA (SID NO:=SEQ ID NO:).









TABLE 9





3′UTRs and miRNAs and representative sequences.



















SID




3′UTR
NO:
Representative sequence











3′UTR targets:



Heepes simplex virus










RL1
1
ATGGCAGGAGCCGCGCATATATACGCTTGGAGCCAGCCCGCCCTCACAGGGCGGGCCGCCTCGGGGGCGGGA



(ICP

CTGGCCAATCGGCGGCCGCCAGCGCGGCGGGGCCCGGCCAACCAGCGTCCGCCGAGTCTTCGGGGCCCGGCC


34.5)

CATTGGGCGGGAGTTACCGCCCAATGGGCCGGGCCGCCCACTTCCCGGTATGGTA





RL2
2
GGGACGCCCCCCGTGTTTGTGGGGAGGGGGGGGTCGGGCGCTGGGTGGTCTCTGGCCGCGCCCACTACACCA


(ICPO)

GCCAATCCGTGTCGGGGAGGGGAAAAGTGAAAGACACGGGCACCACACACCAGCGGGTCTTTTGTGTTGGCC




CT





UL1
3
CGATGCCTCGACGGAAACCCGTCCGGGTTCGGGGGGCGAACCGGCCGCCTGTCGCTCGTCAGGGCCGGCGGC




GCTCCTCGCCGCCCTAGAGGCTGGTCCCGCTGGTGTGACGTTTTCCTCGTCCGCGCCCCCCGACCCTCCCAT




GGATTTAACAAACGGGGGGGTGTCGCCTGCGGCGACCTCGGCGCCTCTGGACTGGACCACGTTTCGGCGTGT




GTTTCTGATCGACGACGCGTGGCGGCCCCTGATGGAGCCTGAGCTGGCGAACCCCTTAACCGCCCACCTCCT




GGCCGAATATAATCGTCGGTGCCAGACCGAAGAGGTGCTGCCGCCGCGGGAGGATGTGTTTTCGTGGACTCG




TTATTGCACCCCCGACGAGGTGCGCGTGGTTATCATCGGCCAGGACCCATATCACCACCCCGGCCAGGCGCA




CGGACTTGCGTTTAGCGTGCGCGCGAACGTGCCGCCTCCCCCGAGTCTTCGGAATGTCTTGGCGGCCG





UL2
4
AAGGCATCGACGTCCGGGGTTTTTGTCGGTGGGGGCTTTTGGGTATTTCCGATG





UL5
5
CCCGCCGTCCCCTTACAGTTCCACCGAACCCGGCCCGGGGGACTCACTACCCACCGCGAGATGTCCAATCCA




CAGACGACCATCGCGTATAGCCTATGCCACGCCAGGGCCTCGCTGACCAGCGCACTGCCCGACGCCGCGCAG




GTGGTGCATGTTTTTGAGTACGGCACCCGCGCGATCATGGTACGGGGCCGGGAGCGCCAGGACCGCCTGCCG




CGCGGAGGCGTTGTTATCCAGCACACCCCCATTGGGCTGTTGGTGATTATCGACTGTCGCGCCGAATTTTGT




GCCTACCGCTTTATAGGCCGGGACAGCAACCAGAAGCTCGAACGCGGGTGGGACGCCCATATGTACGCGTAT




CCGTTCGACTCCTGGGTCAGCTCCTCGCGCGGCGAAAGCGCCCGGAGCGCCACGGCCGGCATTTTGACCGTG




GTCTGGACCGCGGACACCATTTACATCACTGCAACCATTTACGGGTCGCCCCCAGAGGAGACGCCAGG





UL9
6
GTCTCGGGACCGCACTCGTTCGGTACGTGGTCGTCCGCGGACCGGCGGCGCTGTTGCCGGAACGCACCGAGG




GGCCAAGTTGGCCCCCGGACCCGGGCCGTTTCCCACCCCCACCCCAACCCCAAAAACCGCCCCCCCCCCGTC




ACCGGTTTCCGCGACCCACCGGGCCCGGCCAGGCACGGCAGCATGGGACCCACAGACCGCCCGTGATCCTTA




GGGGCCGTGCGATGGACACCGCAGATATCGTGTGGGTGGAGGAGAGCGTCAGCGCCATTACCCTTTACGCGG




TATGGCTGCCCCCCCGCGCTCGCGAGTACTTCCACGCCCTGGTGTATTTTGTATGTCGCAACGCCGCAGGGG




AGGGTCGCGCGCGCTTTGCGGAGGTCTCCGTCACCGCGACGGAGCTGCGGGATTTCTACGGCTCCGCGGACG




TCTCCGTCCAGGCCGTCGTGGCGGCCGCCCGCGCCGCGACGACGCCGGCCGCCTCCCCGCTGGAGCCC





UL11
7
AAACCAAAACAATGTTCTGTATACGGTCGCACGCGTGTCGTTTTTAAAAAACCCACAATCGCCGGGGTGAGG




GGGGGGGGGGGACGGTGATAGTAACGGGATCGGACGCCACACACCAGACATACACCACGGTCGGGTTAAACA




CAAACGGTTTATTAAAACGGAACCAAACAGCTACCAACGGCGGACGGTGCTGTACACGGGGTCCTCGGCGGG




CTCGGGGTCGTACCCCCCAACGGTGTCATAGATGGGATCGTCGTCGGGCAGGTGCCGCGGGTGTTGTATCTT




GGCGTACAATACGTCGGTTTGGTCGTCCGCCACCTCGTCGTAAATCGGCTCCCCGTCGGAATCTCCGTACCG




GTCGAGCTGGCCGCCGTATGAGATCGCGTAGGGGTCTTCCGCATATTCGGGAATCCCGGGCGGGCTGCCGGG




TGCGGGCCTGTGGCGGCCGTCTCGCGATCCGCGCATGGAACTGCGTACGCGCTTGAGGGCGGAATGT





UL13
8
GAATCAGCGTTCACCCGGCGGCGCGCTCAACCACCGCTCCCCCCACGTCGTCTCGGAAATGGAGTCCACGGT




AGGCCCAGCATGTCCGCCGGGACGCACCGTGACTAAGCGTCCCTGGGCCCTGGCCGAGGACACCCCTCGTGG




CCCCGACAGCCCCCCCAAGCGCCCCCGCCCTAACAGTCTTCCGCTGACAACCACCTTCCGTCCCCTGCCCCC




CCCACCCCAGACGACATCAGCTGTGGACCCGAGCTCCCATTCGCCCGTTAACCCCCCACGTGATCAGCACGC




CACCGACACCGCAGACGAAAAGCCCCGGGCCGCGTCGCCGGCACTTTCTGACGCCTCAGGGCCTCCGACCCC




AGACATTCCGCTATCTCCTGGGGGCACCCACGCCCGCGACCCGGACGCCGATCCCGACTCCCCGGACCTTGA




CTCTATGTGGTCGGCGTCGGTGATCCCCAACGCGCTGCCCTCCCATATACTAGCCGAGACGTTCGAGC





UL14
9
GCCGCTCGTCTCATCGCCGCGCGTCCCCCGAGACGCCCGGTACGGCGGCCAAACTGAACCGCCCGCCCCTGC




GCAGATCCCAGGCGGCGTTAACCGCACCCCCCTCGTCCCCCTCGCACATCCTCACCCTCACGCGCATCCGCA




AGCTATGCAGCCCCGTGTTCGCCATCAACCCCGCCCTACACTACACGACCCTCGAGATCCCCGGGGCCCGAA




GCTTCGGGGGGTCTGGGGGATACGGTGACGTCCAACTGATTCGCGAACATAAGCTTGCCGTTAAGACCATAA




AGGAAAAGGAGTGGTTTGCCGTTGAGCTCATCGCGACCCTGTTGGTCGGGGAGTGCGTTCTACGCGCCGGCC




GCACCCACAACATCCGCGGCTTCATCGCGCCCCTCGGGTTCTCGCTGCAACAACGACAGATAGTGTTCCCCG




CGTACGACATGGACCTCGGTAAGTATATCGGCCAACTGGCGTCCCTGCGCACAACAAACCCCTCGGTC





UL16
10
AAATCAGTGCCCACGGGGCAGACTTTCCTCCCGCGTCTGGTTGTGTGTGTATGTGGGTGGGTGGGTGTGGGT




CGGGTCGACCCGGGGCCCCTTGGGAGAGCCATGCGAAAGAAAAGAGGACTTACGTTTGTGTTGTGGCTGGAG




GCAAACACGATGGTACTGCGCGACCCGTCCGGAAACGAGAAGGAGATGGTTTCCCCTTTAACGTGGTCCACT




CGGGCCGAACCGAACCAGCCCCGCAGGCAGGCGTCGATCTCCTCAAACACCGGCTCGGTCGCCTTGCGGATG




TGCGCCGTGTAGCCGATCTTGATCCCCCGAAAGGAGGCCAGCGACAGCGCGATGAGGGGCACCAGAAACCAG




GTCTTGCCGTGGCGCCGGGGGACGAGAAACACGGTGGCGCGCTGGCGGAAGTGGCGCACGGCCGCGTCGCTA




AACAGGGGGATCTCAAACACGAGACGCAGGAACGTGTTGACCTGCTCCGCGTGGTCCCCGAGGAGCAC





UL20
11
CGGGGGTGGGGCGGGGGGGGGGGTATATAAGGCCTGGGATCCCACGTCCCCGGGTCTGTTGGGGACACTGGG




TTCTCCTGGAACGAGGCCGCAGCCTTCTCCCGGTGCCTTTCCCCCCCGACCGGCACCCGGCCTCTCACACAG




CATCCCCCGCCTTTTTGGGTCCGGGCCCGTCGTGTCTTTCGGTGGACCTTGGGCCGTCGGGCACGTACACGG




GTGGCCGGGCGTTGGGGTGGATCTTAGCCTCCCCGGGCCAATATCGCTAGAGACAGCCGATCTCCACGCGAC




CCCATGGCCGCTCCCAACCGCGACCCTCCGGGATACCGGTATGCCGCGGCCATGGTGCCGACCGGGTCCCTC




CTTAGCACGATCGAGGTGGCGTCGCATCGACGCCTGTTTGATTTTTTTTCCCGCGTGCGCTCCGATGCAAAC




AGCCTGTACGACGTCGAGTTCGACGCCCTGCTGGGGTCGTATTGCAACACCCTGTCGCTCGTGCGCTT





UL24
12
GAGTGTTTCGTTCCTTCCCCCTCCCCCCGCGTCAGACAAACCCTAACCACCGCTTAAGCGGCCCCCGCGAGG




TCCGAAGACTCATTTGGATCCGGCGGGAGCCACCCGACAACAGCCCCCGGGTTTTCCCACGCCAGACGCCGG




TCCGCTGTGCCATCGCGCCCCCTCATCCCACCCCCCATCTTGTCCCCA





UL34
13
AAAAGGACGCACCGCCGCCCTAATCGCCAGTGCGTTCCGGACGCCTTCGCCCCACACAGCCCTCCCGACCGA




CACCCCCATATCGCTTCCCGACCTCCGGTCCCGATGGCCGTCCCGCAATTTCACCGCCCCAGCACCGTTACC




ACCGATAGCGTCCGGGCGCTTGGCATGCGCGGGCTCGTCTTGGCCACCAATAACTCTCAGTTTATCATGGAT




AACAACCACCCGCACCCCCAGGGCACCCAAGGGGCCGTGCGGGAGTTTCTCCGCGGTCAGGCGGCGGCGCTG




ACGGACCTTGGTCTGGCCCACGCAAACAACACGTTTACCCCGCAGCCTATGTTCGCGGGCGACGCCCCGGCC




GCCTGGTTGCGGCCCGCGTTTGGCCTGCGGCGCACCTATTCACCGTTTGTCGTTCGAGAACCTTCGACGCCC




GGGACCCCGTGAGGCCCGGGGAGTTCCTTCTGGGGTGTTTTAATC





UL35
14
GGCCCGGGGAGTTCCTTCTGGGGTGTTTTAATC





UL37
15
AGCTTTATTATGTTACGCCCACCCCCGTGTGTTGTTCTCGGTGTTATGGTGTGCGGGCGGGCGGGGGGGGGG




GTGGAAGACCAAGACAGACAAACGCAGCTCGGTTTTTGGGAAGCGATCACCGCGACTCGTAGCCTAATCAGG




GGAACCGGGGCCATGGTACGGGGGCATGGGTGGCGGAAACAACACTAACCCCGGGGGTCCGGTCCATAAACA




GGCCGGGTCTCTGGCCAGCAGGGCACATATGATCGCGGGCACCCCACCGCACTCCACGATGGAACGCGGGGG




GGATCGCGACATCGTGGTCACCGGTGCTCGGAACCAGTTCGCGCCCGACCTGGAGCCGGGGGGGTCGGTATC




GTGCATGCGCTCGTCGCTGTCCTTTCTCAGCCTCATATTTGATGTGGGCCCTCGCGACGTCCTGTCCGCGGA




GGCCATCGAGGGATGTTTGGTCGAGGGGGGCGAGTGGACGCGCGCGACCGCGGGCCCTGGGCCGCCGC





UL39
16
CCGACAAACCCCCTCCGCGCCAGGCCCGCCGCCACTGTCGTCGCCGTCCCACGCTCTCCCCTGCTGCCATGG




ATTCCGCGGCCCCAGCCCTCTCCCCCGCTCTGACGGCCCTTACGGACCAGAGCGCGACGGCGGACCTGGCGA




TCCAGATTCCAAAGTGCCCCGACCCCGAGAGGTACTTCTACACCTCCCAGTGTCCCGACATTAACCACCTGC




GCTCCCTCAGCATCCTTAACCGCTGGCTGGAAACCGAGCTTGTTTTCGTGGGGGACGAGGAGGACGTCTCCA




AGCTTTCCGAGGGCGAGCTCAGCTTTTACCGCTTCCTCTTCGCTTTCCTGTCGGCCGCCGACGACCTGGTTA




CGGAAAACCTGGGCGGCCTCTCCGGCCTGTTTGAGCAGAAGGACATTCTCCACTACTACGTGGAGCAGGAAT




GCATCGAAGTCGTACACTCGCGCGTGTACAACATCATCCAGCTGGTGCTTTTCCACAACAACGACCAG





UL42
17
CGGGGCGGGGCCTTGGCGGCCGCCCAACTCTCGCACCATCCCGGGTTAATGTA





UL47
18
GCTCCTCCCGATAAAAAGCGCCCCGATGGCCCTGGACGCGGCATAACTCCGACCGGCGGGTCCCGACCGAAC




GGGCGTCACCATGCAGCGCCGGACGCGCGGCGCGAGCTCCCTGCGGCTGGCGCGGTGCCTGACGCCTGCCAA




CCTGATCCGCGGCGACAACGCGGGCGTTCCCGAGCGGCGCATCTTCGGCGGGTGTCTGCTCCCCACCCCGGA




GGGGCTCCTTAGCGCGGCCGTGGGCGCCTTGCGGCAGCGCTCCGACGACGCGCAGCCGGCGTTTCTGACCTG




CACCGATCGCAGCGTCCGGTTGGCCGCGCGGCAACACAACACGGTTCCCGAGAGTTTGATCGTGGACGGGCT




CGCCAGCGACCCGCACTACGAGTACATCCGGCACTACGCTTCGGCCGCCACCCAGGCGCTGGGCGAGGTGGA




GCTGCCCGGCGGCCAGTTGAGCCGCGCCATCCTCACGCAGTACTGGAAGTACCTGCAGACGGTGGTGC





UL49A
19
ACCCGCCCTGTGTGGGGTGAGGGGTGGGGGTGGAGGGTGTCCCAGGACTTCCCCTTCCTCGCGGAAACCGAG




ACCGTTTGGGGCGTGTCTGTTTCTTGGCCCCTGGGGATTGGTTAGACCCATGGGTTGTGGTTATATGCACTT




CCTATAAGACTCTCCCCCACCGCCCACAGAGGGCCACTCACGCATCCCCAGTGGGTTTTGCGGACCCTCTCT




TCTCTCCCGGGCCGCCCCTATCGCTCGACCTCTCCACACCTGCACCACCCCCGCCGTCCGAACCCAGGCCTA




ATTGTCCGCGCATCCGACCCTAGCGTGTTCGTGGAACCATGACCTCTCGCCGCTCCGTGAAGTCGGGTCCGC




GGGAGGTTCCGCGCGATGAGTACGAGGATCTGTACTACACCCCGTCTTCAGGTATGGCGAGTCCCGATAGTC




CGCCTGACACCTCCCGCCGTGGCGCCCTACAGACACGCTCGCGCCAGA





UL51
20
ATGCGTGTTTTCATCCAACCCGTGTGTTTTGTGTTTGTGGGATGGAGGGGCGGGTGTGATAGACCCACAGGC




ATCCAACATAAACAACTACACACAGGAAAGATGCGATACAAACGTTTTTTATTGCCCGGAACGAACCCAAAG




CTGTGGGCTAAATACCGGTAGAACCAAAACCCCCGGTCCCGCGCTCGCTCGGGGGGGCCTCCGCGTCAAACT




CGTTCGTAAACACCAGGAGCGGCGGGTTCCTGGGTTCGGCGGTTGAGTCCGGAACACCCCTGGGGTAGTTTC




GAAGCGCTTTGGTCCCGTGAAAGTTGTCCGGGGGGATCCAAGGAAGAGCGTCCGCCCCCGCAACCAGGAGCT




GGGCGACCTTGGCGCCGGCCTCGAGGGTCACAGGAACCCCCGTAAGGTTGTAAACAACAAACGCACATACGT




GCCCGGGGAGCCAGCGCGTAGGAACGACCAGGAGGCCGCGGGCGTTGAGCGACGACCGCCCCAACACA





UL52
21
TAACGGCGTACGGCCTCGTGCTCGTGTGGTACACCGTCTTCGGTGCCAGTCCGCTGCACCGATGTATTTACG




CGGTACGCCCCACCGGCACCAACAACGACACCGCCCTCGTGTGGATGAAAATGAACCAGACCCTATTGTTTC




TGGGGGCCCCGACGCACCCCCCCAACGGGGGCTGGCGCAACCACGCCCATATCTGCTACGCCAATCTTATCG




CGGGTAGGGTCGTGCCCTTCCAGGTCCCACCTGACGCCATGAATCGTCGGATCATGAACGTCCACGAGGCAG




TTAACTGTCTGGAGACCCTATGGTACACACGGGTGCGTCTGGTGGTCGTAGGGTGGTTCCTGTATCTGGCGT




TCGTCGCCCTCCACCAACGCCGATGTATGTTTGGCGTCGTGAGTCCCGCCCACAAGATGGTGGCCCCGGCCA




CCTACCTCTTGAACTACGCAGGCCGCATCGTATCGAGCGTGTTCCTGCAGTACCCCTACACGAAAATT





US1
22
GTCCGGTCGCCCCGACCCCCTTGTATGTCCCCAA


(US 1.5)


(1CP22)





US8
23
GGCGCCCCATCCCGAGGCCCCACGTCGGTCGCCGAACTGGGCGACCGCCGGCGAGGTGGACGTCGGAGACGA




GCTAATCGCGATTTCCGACGAACGCGGACCCCCCCGACATGACCGCCCGCCCCTCGCCACGTCGACCGCGCC




CTCGCCACACCCGCGACCCCCGGGCTACACGGCCGTTGTCTCCCCGATGGCCCTCCAGGCTGTCGACGCCCC




CTCCCTGTTTGTCGCCTGGCTGGCCGCTCGGTGGCTCCGGGGGGCTTCCGGCCTGGGGGCCGTCCTGTGTGG




GATTGCGTGGTATGTGACGTCAATTGCCCGAGGCGCATAAAGGGCCGGTGGTCCGCCTAGCCGCAGCAAATT




AAAAATCGTGAGTCACAGCGACCGCAACTTCCCACCCGGAGCTTTCTTCCGGCCTCGATGACGTCCCGGCTC




TCCGATCCCAACTCCTCAGCGCGATCCGACATGTCCGTGCCGCTTTATCCCACGGCCTCGCCAGTTTC





US8A
24
AGGGCCGGTGGTCCGCCTAGCCGCAGCAAATTAAAAATCGTGAGTCACAGCGACCGCAACTTCCCACCCGGA




GCTTTCTTCCGGCCTCGATGACGTCCCGGCTCTCCGATCCCAACTCCTCAGCGCGATCCGACATGTCCGTGC




CGCTTTATCCCACGGCCTCGCCAGTTTCGGTCGAAGCCTACTACTCGGAAAGCGAAGACGAGGCGGCCAACG




ACTTCCTCGTACGCATGGGCCGCCAACAGTCGGTATTAAGGCGTCGACGCAGACGCACCCGCTGCGTCGGCA




TGGTGATCGCCTGTCTCCTCGTGGCCGTTCTGTCGGGCGGATTTGGGGCGCTCCTGATGTGGCTGCTCCGCT




AAAAGACCGCATCGACACGCGCGTCCTTCTTGTCGTCTCTCTTCCCCCCCATCACCCCGCAATTTGCACCCA




GCCTTTAACTAC





US9
25
AAGACCGCATCGACACGCGCGTCCTTCTTGTCGTCTCTCTTCCCCCCCATCACCCCGCAATTTGCACCCAGC




CTTTAACTAC





US11
26
CCCGGGCAAGTATGCCCCCCTGGCGAGCCCAGACCCCTTCTCCCCACAACATGGAGCATACGCTCGGGCCCG




CGTCGGGATCCACACCGCGGTTCGCGTCCCGCCCACCGGAAGCCCAACCCACACGCACTTGCGGCAAGACCC




GGGCGATGAGCCAACCTCGGATGACTCAGGGCTCTACCCTCTGGACGCCCGGGCGCTTGCGCACCTGGTGAT




GTTGCCCGCGGACCACCGGGCCTTCTTTCGAACCGTGGTCGAGGTGTCTCGCATGTGCGCTGCAAACGTGCG




CGATCCCCCGCCCCCGGCTACAGGGGCCATGTTGGGCCGCCACGCGCGGCTGGTCCACACCCAGTGGCTCCG




GGCCAACCAAGAGACGTCGCCCCTGTGGCCCTGGCGGACGGCGGCCATTAACTTTATCACCACCATGGCCCC




CCGCGTCCAAACCCACCGACACATGCACGACCTGTTGATGGCCTGTGCTTTCTGGTGCTGTCTGACAC





US12
27
GTCCCGGGTACGACCATCACCCGAGTCTCTGGGCGGAGGGTGGTTCCCCCCCGTGGCTCTCGAGATGAGCCA


(1CP47)

GACCCAACCCCCGGCCCCAGTTGGGCCGGGCGACCCAGATGTTTACTTAAAAGGCGTGCCGTCCGCCGGCAT




GCACCCCAGAGGTGTTCACGCACCTCGAGGACACCCGCGCATGATCTCCGGACCCCCGCAACGGGGTGATAA




TGATCAAGCGGCGGGGCAATGTGGAGATTCGGGTCTACTACGAGTCGGTGCGGACACTACGATCTCGAAGCC




ATCTGAAGCCGTCCGACCGCCAACAATCCCCAGGACACCGCGTGTTCCCCGGGAGCCCCGGGTTCCGCGACC




ACCCCGAGAACCTAGGGAACCCAGAGTACCGCGAGCTCCCAGAGACCCCAGGGTACCGCGTGACCCCAGGGA




TCCACGACAACCCCGGTCTCCCAGGGAGCCCCGGTCTCCCCGGGAGCCCCGGTCTCCCCGGGAGCCCC










Epstein Barr virus










BALF2
28
AGACCCCTGGGGCGGCGATGTCGGGGCTGCTGGCGGCGGCGTACAGCCAGGTGTACGCCCTGGCGGTTGAGC





TGAGCGTGTGCACCCGGCTGGACCCCCGGAGTCTGGACGTGGCTGCGGTGGTGCGCAACGCCGGCCTGCTGG




CCGAGCTGGAGGCCATCCTCCTTCCCCGTTTGAGACGGCAGAATGACCGTGCATGCAGCGCCCTGTCCCTGG




AGCTGGTGCACCTGCTAGAGAACTCGAGAGAGGCCTCTGCCGCGCTGCTCGCCCCTGGTAGAAAGGGTACCC




GGGTCCCGCCTCTCCGTACCCCCTCAGTCGCGTACTCTGTGGAGTTTTACGGGGGGCATAAAGTCGATGTAA




GTTTGTGCCT





BALF3
29
GGTGCTAAGCGTGGTCGTGCTGCTAGCCGCCCTGGCGTGCCGTCTCGGTGCGCAGACCCCAGAGCAGCCCGC




ACCCCCCGCCACCACGGTGCAGCCTACCGCCACGCGTCAGCAAACCAGCTTTCCTTTCCGAGTCTGCGAGCT




CTCCAGCCACGGCGACCTGTTCCGCTTCTCCTCGGACATCCAGTGTCCCTCGTTTGGCACGCGGGAGAATCA




CACGGAGGGCCTGTTGATGGTGTTTAAAGACAACATTATTCCCTACTCGTTTAAGGTCCGCTCCTACACCAA




GATAGTGACCAACATTCTCATCTACAATGGCTGGTACGCGGACTCCGTGACCAACCGGCACGAGGAGAAGTT




CTCCGTTGACAGCTACGAAACTGACCAGATGGATACCATCTACCAGTGCTACAACGCGGTCAAGATGACAAA




AGATGGGCTGACGCGCGTGTATGTAGACCGCGACGGAGTTAACATCACCGTCAACCTAAAGCCCACCG





BALF5
30
GACCCAAAGTGAGGGGGCCTGAGACTGGACCCTACTACTATTCTCTCGTTTAAACGAGAGAAGAGAGCGGCG




AGAGCAGACTCCGAATATCCCCAAAGTCAAGGGAAAGGAAGGGGGCCCTTAGCATGGGAGGCGCGGCGACGA




GCGGGATAGCAGGACGGGGGGCTGGCGAAGATTCCCAACCGGGGGATCGCTGAATCTAGTATGAAGGCTGGC




AAAGATCCCCAGTGGAGCGAAGCTAGTGCAGGGGGCTCGGCATTCCTAGGAGAAGGAGCCTCGCCTTGAGGG




CAAAGACCCCCCCAAGCCTCTCATCAGAATCTCAACCGATTTCGTCAGCCGCTTCAGACAGCCGCGGTTGTC




ATCATCATCGGGAAAGGCGGTGGGATCATGAAGCCCCCAGGGGAGCGTGGCCCGTGGATCTGTGAAACTCAC




AGTTTATTTTCTCCAAATCGCTCCTTGCAACAATGGACACGCAAGGGCGAATGCAGAAAATAGTCTGG





BARF0
31
AATCTCTATGTCATTTATTAGGCACAAACTTACATCGACTTTATGCCCCCCGTAAAACTCCACAGAGTACGC




GACTGAGGGGGTACGGAGAGGCGGGACCCGGGTACCCTTTCTACCAGGGGCGAGCAGCGCGGCAGAGGCCTC




TCTCGAGTTCTCTAGCAGGTGCACCAGCTCCAGGGACAGGGCGCTGCATGCACGGTCATTCTGCCGTCTCAA




ACGGGGAAGGAGGATGGCCTCCAGCTCGGCCAGCAGGCCGGCGTTGCGCACCACCGCAGCCACGTCCAGACT




CCGGGGGTCCAGCCGGGTGCACACGCTCAGCTCAACCGCCAGGGCGTACACCTGGCTGTACGCCGccGcCAG




CAGCCCCGACATCGCCGCCCCAGGGGTCTCTAGACCTCGAGTCCGGGGAGAACGGTGGCCAGACGGCGCTTG




CGTCTGCCCCCGGAGCCCTGCCCTCCTCCACCCAGCAGCAGCCCGGCCGAGGCCTGCGACGCGGTGCT





BaRF1
32
GTCAGGGTGGCTACTTGCTCAGGTTTCTGGGCATAAATTCTCCTGCCTGCCTCTGCTCTGGTACGTTGGCTT




CTGCTGCTGCTTGTGATCATGGAAACCACTCAGACTCTCCGCTTTAAGACCAAGGCCCTAGCCGTCCTGTCC




AAGTGCTATGACCATGCCCAGACTCATCTCAAGGGAGGAGTGCTGCAGGTAAACCTTCTGTCTGTAAACTAT




GGAGGCCCCCGGCTGGCCGCCGTGGCCAACGCAGGCACGGCCGGGCTAATCAGCTTCGAGGTCTCCCCTGAC




GCTGTGGCCGAGTGGCAGAATCACCAGAGCCCAGAGGAGGCCCCGGCCGCCGTGTCATTTAGAAACCTTGCC




TACGGGCGCACCTGTGTCCTGGGCAAGGAGCTGTTTGGCTCGGCTGTGGAGCAGGCTTCCCTGCAATTTTAC




AAGCGGCCACAAGGGGGTTCCCGGCCTGAATTTGTTAAGCTCACTATGGAATATGATGATAAGGTGTC





BARF1
33
ACGCACTTGCCTATTTCACCTTGTTTTAGTGTGGCATTGGGGGGGTGGCATTGCGGGTGGATAGCCTCGCGA




CTCGTGGGAAAATGGGCGGAAGGGCACCGTGGGAAAATAGTTCCAGGTGACAGCAGCAGTGTGTGAAGATTG




TCACAGCTGCTGGTTTGGAGAAAACGGGGGTGGGCGGTGATCAGGGAGAACAATTCCCCGGGGACACCTGCA




CGAGACCCCTGGGCTCTCAGGAACTCCGCCCAGGTCTTGCCAATTGGGGTGATCCTGTAGCGCCGCGGTTTC




AGCATCACAGGTTATTTTGCCTGAAGCTTGCTGGGGCGTAAATCCCTCTCGCCTTGTTTCTCAGAGAGCATT




TCAGGCCGGTTTTGCAGTCGCTGCTGCAGCTATGGGGTCCCTAGAAATGGTGCCAATGGGCGCGGGTCCCCC




TAGCCCCGGCGGGGATCCGGATGGGTACGATGGCGGAAACAACTCCCAATATCCATCTGCTTCTGGCT





BBLF4
34
ATAAAACAACAGACATGCAGACTCCAGGTTATGACATTTTATTTACAGCCATGGCCAATTGTAGTTGTTATT




GCCCTTAATGGGGGGGGTGGTTTCCATCATGTGTTTATTGTATGTATTGGGACTTGAAGGTGGAGGGGGGCG




GCGTGGAGCTGGGCCTCTAAGTACAGGTCGCGTAGGTCTATGGGGACCCTTGTCTTTGGTGGATTGCTGAAC




TGGGGCTGGTGGCCTGGGAGGTGCTGAGGCCCGTCCCCTGACCGGCGCGGGAGCCGGCGGCCTCGGAGGTGC




CCGGGTGCGTGGTCGGGAGAACGAAGGCGTGGGTGTCAGACCTGAAGACTGTTGGGTAGATGGCGAGACTCT




TGAAGATCGTGAGGCCTGAGAGCCGGGGGTTGCTTCATCCTCGTCGCTCTCGCTGTAGTCAGACTCGTCTGA




ATCTGAAGGATGCCACGAGGGGTCGCTATCACTGCCCTCAGATGGGTCTTCGTCACTGGGGTACTCTT





BDLF
35
GCCTCCCGCGGGGGGAGGGGGGCACGGATGAGCCCAATCCTCGCCACCTGTGCTCGTATAGTAAGCTGGAGT


3.5

TCCATCTCCCGTTACCTGAGAGCATGGCCTCCGTGTTTGCCTGCTGGGGCTGTGGCGAGTACCACGTATGTG




ATGGATCCAGCGAGTGCACCCTGATTGAGACCCATGAGGGAGTGGTGTGCGCCCTTACAGGCAACTACATGG




GGCCGCATTTCCAGCCGGCGCTGAGGCCCTGGACCGAGATCCGACAAGACACACAGGACCAGCGGGACAAGT




GGGAGCCTGAACAAGTCCAGGGCCTGGTTAAGACTGTGGTCAATCACCTCTATCACTACTTTCTGAATGAGA




ATGTCATCTCCGGGGTCAGCGAGGCCCTCTTTGATCAGGAGGGGGCGCTGAGGCCTCACATCCCGGCCCTGG




TTTCCTTTGTGTTCCCTTGCTGCCTGATGCTGTTTAGGGGGGCCTCCTCCGAGAAGGTGGTGGATGTG





BDLF4
36
GTGGCCTCGGGACCCCCCTCCTCGTGCACCTATTTGTTCCCGACACGGTTATGGCAGAGCTTTGCCCCAATC




GCGTGCCAAACTGCGAGGGGGCCTGGTGCCAGACTCTCTTCAGTGACCGGACGGGTCTCACGAGGGTCTGCC




GCGTGTTTGCTGCTCGGGGCATGCTGCCCGGACGGCCTAGCCATCGGGGCACGTTTACCAGTGTGCCAGTGT




ACTGCGATGAGGGCCTTCCAGAGCTCTACAACCCCTTCCACGTGGCCGCCCTTCGATTTTACGATGAAGGAG




GGCTGGTTGGGGAGCTACAGATTTATTACCTGTCTCTCTTTGAGGGGGCCAAAAGGGCTCTGACCGACGGGC




ATCTTATCAGAGAGGCCTCTGGGGTCCAGGAGTCTGCTGCGGCTATGCAGCCCATACCTATAGATCCTGGGC




CCCCCGGAGGGGCGGGTATAGAGCATATGCCGGTGGCCGCGGCCCAGGTCGAGCACCCTAAAACGTAT





BFRF2
37
ATTTCAAGAGCTGAACCAGAATAATCTCCCCAATGATGTTTTTCGGGAGGCTCAAAGAAGTTACCTGGTATT




TCTGACATCCCAGTTCTGCTACGAAGAGTACGTGCAGAGGACTTTTGGGGTGCCTCGGCGCCAACGCGCCAT




AGACAAGAGGCAGAGAGCCAGTGTGGCTGGGGCTGGTGCTCATGCACACCTTGGCGGGTCATCCGCCACCCC




CGTCCAGCAGGCTCAGGCCGCCGCATCCGCTGGGACCGGGGCCTTGGCATCATCAGCGCCGTCCACGGCCGT




AGCCCAGTCCGCGACCCCCTCTGTTTCTTCATCTATTAGCAGCCTCCGGGCCGCGACTTCGGGGGCGACTGC




CGCCGCCTCCGCCGCCGCAGCCGTCGATACCGGGTCAGGTGGCGGGGGACAACCCCACGACACCGCCCCACG




CGGGGCACGTAAGAAACAGTAGAGGGCACGAAACATGGTGTATGCACTTTATT





BGLF1
38
CCGGGAACAGCTTCGCAAGTTCCTCAACAAGGAGTGCCTCTGGGTGCTGAGCGATGCCTCTACGCCCCAGAT




GAAAGTCTATACGGCCACAACCGCCGTGTCAGCTGTGTACGTGCCTCAGATAGCCGGACCTCCTAAAACCTA




CATGAATGTTACCCTCATTGTGCTGAAGCCCAAGAAGAAGCCCACCTATGTGACCGTCTACATCAATGGAAC




CCTAGCCACCGTGGCCAGGCCCGAGGTTCTCTTCACTAAGGCAGTCCAGGGGCCACACAGCCTGACTCTCAT




GTACTTTGGGGTATTCTCAGATGCAGTGGGTGAGGCGGTGCCTGTGGAGATTAGGGGTAACCCTGTAGTCAC




CTGCACAGATCTGACCACGGCCCACGTCTTTACCACCTCAACCGCCGTTAAAACAGTAGAAGAACTGCAAGA




TATCACACCCTCGGAGATCATCCCACTGGGACGGGGTGGTGCCTGGTATGCAGAAGGGGCCCTGTACA





BGLF2
39
AGCAGGTGGCACACATTACGGTGCTGGAGATTTTCCCACTGTGCCTAAACGTGATGGTGCTGGTCTCCTTGT




TGACCTCTACACGCTTGGAGTCGAAGCTCTTGGTCAAGGTGTCAATAATTTCAGTGAAAACGGCGGACGCGA




CATGTTTCTGGTGAGCCACGTAGCCTATTTGCACGTTGGAGAGATTCGAGAGGATGAGGCTGATGATGGCCA




CGACTATCCAGGTCTTGCCGTGGCGCCTGGGGATAAGAAACACGCTGGCTTTTTGCTTAAAAATGTGCAGCT




TCTCCAGCGTCATTTCTTCCAATCCGAAAGCACTTTGAAAGATGTCAAACATGGTGTCTGTAATCTCTAAAG




ATTTGATTGAGATCAGAA





BGLF3
40
TTCTAAGCGAGATCTGGTGGCCCAGCAACTAAGAGCCTCGGTAGAAAAGAGAGCGGCTGTGAGCGCACGTGA




CAGATTTGGGAGGGACCACGCTCTGTTTGAAACACAGTTTACATCTGCTCGGGGTGCCTTAGAGTCCCTGCG




CCACGCAAGGGAGACGTTTGAGTCCAAACAGCTAATTTCTACCTATCAGAGGGTGGTCACCGCGACCAAGAC




TCAATTTCCAAAAATCAACTACAAGCAGCTAGAGCGGGTGGAGGAGCTCCGTGAGCAGGAGCTTGAGGCCAG




AGACGAGCTGCGACAGGCCCTCGAGCCATTTGAGGAACATGGATGTGAATATGGCTGCGGAGTTGAGCCCGA




CGAACTCCTCCAGCAGTGGCGAGTTGAGTGTCTCCCCAGAACCCCCTCGAGAGACCCAGGCCTTTTTGGGGA




AGGTGACTGTCATTGATTACTTCACCTTTCAGCACAAACACCTGAAGGTGACCAACATTGATGACATG





BGLF
41
TTACTTCACCTTTCAGCACAACACCTGAAGGTGACCAACATTGATGACATGACGGAGACCCTCTATGTAAA


3.5

GCTGCCGGAGAACATGACGCGCTGTGATCACCTCCCCATTACCTGCGAGTATCTGCTGGGGCGGGGGAGCTA




CGGGGCCGTGTATGCACATGCAGATAATGCCACGGTCAAACTCTATGACTCTGTGACGGAGCTGTATCACGA




GCTCATGGTGTGTGACATGATTCAGATTGGGAAGGCCACGGCCGAGGATGGGCAGGACAAGGCCCTGGTGGA




CTACCTGTCGGCCTGCACGTCCTGCCACGCCCTGTTTATGCCCCAGTTCAGATGCAGTCTCCAGGATTATGG




CCACTGGCATGATGGTAGTATTGAGCCCCTGGTGCGGGGCTTTCAGGGCCTCAAAGATGCCGTTTACTTTCT




GAATCGGCACTGCGGCCTCTTCCATTCGGACATTAGCCCCAGCAACATCCTGGTGGATTTCACAGACA





BHLF1
42
TGCAGTGTCCCTGCTGCCCATGGAATGCTCAGACCCCGGGTTGGTGGCACTGTTGCGCCCGGCCCTGTACAC




TACACTCTAAAAGTAACCTGTCTACTTCGCCATGCTTCTTACACTACTCACCTACATGTCAACCGCCTCTAC




CCTCCCCATGGGATGGCGGCGGTTATGTTTTCCCCATGTTGCGGGTGCCGGCCCTTACAACAGGTTTTGGCA




ACGAGAGCAATACACAATTAGGCTAAAAGCAGCCACCTATC





BHRF1
43
TCTATACATTTTCTCAGCACTTTATATGAATCAGGGTCATTGGGCCTGCGGGGAACTGAGCCAGTAGGATAT




TAGGCAAGGGTGACACAGTGCCCATGCATTATAATTTAACCAAACAGTGGTCGTGAGTTTTAGGCCGGCCAT




GGGGGCTTACAAGAATAACATGCCAATGACCCGGCCCCCACTTTTAAATTCTGTTGCAGCAGATAGCTGATA




CCCAATGTTATCTTTTGCGGCAGAAATTGAAAGTGCTGGCCATATCTACAATTGGGTGTCCTAGGTGGGATA




TACGCCTGTGGTGTTCTAACGGGAAGTGTGTAAGCACACACGTAATTTGCAAGCGGTGCTTCACGCTCTTCG




TTAAAATAACACAAGGACAAGATACTAAAGAAATAACTGAGGTGAGTGTGGGAAGATGGGAATACTATGTGT




TATGTTAACGGGTGAGAGCCTATACTGCAGCCCAGACTCGGGGGGAGGAGGAAATGGTAAGAGTTATA





BLLF3
44
CACCTTCATATCCCTTGTTTTACC





BMRF1
45
CACCATGTTCTCGTGCAAGCAGCACCTGTCCCTGGGGGCCTGTGTCTTCTGTCTCGGCCTCCTGGCCAGCAC




CCCCTTCATTTGGTGCTTTGTCTTTGCCAACCTGCTCTCTCTGGAGATCTTCTCACCGTGGCAGACACACGT




GTACAGGCTTGGATTCCCGACGGCATGCCTAATGGCCGTCCTCTGGACGCTGGTACCCGCCAAGCACGCGGT




GAGGGCCGTCACTCCAGCCATCATGCTGAATATTGCCAGCGCCTTGATCTTCTTCTCCCTCAGAGTCTACTC




GACCAGCACGTGGGTTTCTGCCCCCTGTCTCTTTCTGGCCAACCTGCCTCTCTTATGCCTGTGGCCCCGGCT




GGCCATCGAGATTGTTTACATCTGCCCGGCTATACACCAAAGGTTCTTTGAACTTGGGTTGCTCTTGGCCTG




CACCATCTTTGCCCTGTCCGTGGTCTCCAGGGCCCTGGAGGTGTCGGCTGTCTTCATGTCTCCATTTT





BNRF1
46
CCAGTCACCTTCCAGACTATGCATACACTGAATTTAGCCTGATATTGTCCCCCTAGCCCCGGGCCCAGCCCT




CCTCAGAAAACTCTGCATGGAGAAGCTGGACGTGAACCTCCCCCCCAGACCTGTGTGCTGTATTTACAAACA




CTAC





BOLF1
47
CGGCGACTGGGGGCAAAGCCAGCGCACCCGGGGAACCGGCCCCGTGCGCGGAATCAGGACCATGGATGTGAA




TGCCCCCGGGGGCGGGAGTGGAGGCTCGGCCCTCCGCATCCTAGGCACGGCCTCGTGCAACCAGGCCCACTG




CAAGTTTGGCCGCTTTGCCGGCATCCAGTGCGTCAGCAACTGCGTCCTCTACCTGGTCAAGAGCTTCCTGGC




CGGCCGCCCCCTGACCTCCCGCCCTGAGCTGGACGAGGTCCTGGACGAGGGGGCGCGGCTGGATGCCCTCAT




GCGCCAGAGCGGCATCCTCAAGGGGCACGAGATGGCCCAGTTGACGGACGTGCCCAGCTCCGTGGTCCTGAG




GGGCGGTGGGCGCGTGCACATATACCGCTCGGCGGAGATCTTTGGCCTCGTCCTATTCCCTGCCCAGATCGC




AAACTCGGCAGTTGTTCAGTCCCTGGCCGAGGTCCTGCACGGCAGTTACAACGGGGTGGCCCAGTTCA





BRLF1
48
ACACTTCTGAAAACTGCCTCCTCCTCTTTTAGAAACTATGCATGAGCCACAGGCATTGCTAATGTACCTCAT




AGACACACCTAAATTTAGCACGTCCCAAACCATGACATCACAGAGGAGGCTGGTGCCTTGGCTTTAAAGGGG




AGATGTTAGACAGGTAACTCACTAAACATTGCACCTTGCCGGCCACCTTTGCTATCTTTGCTGAAGATGATG




GACCCAAACTCGACTTCTGAAGATGTAAAATTTACACCTGACCCATACCAGGTGCCTTTTGTACAAGCTTTT




GACCAAGCTACCAGAGTCTATCAGGACCTGGGAGGGCCATCGCAAGCTCCTTTGCCTTGTGTGCTGTGGCCG




GTGCTGCCAGAGCCTCTGCCACAAGGCCAGCTAACTGCCTATCATGTTTCAACCGCTCCGACTGGGTCGTGG




TTTTCTGCCCCTCAGCCTGCTCCTGAGAATGCTTATCAAGCTTATGCA





BSLF2/
49
ATGGTTAAACTGAATCTCCACCTGTGTAACCTCACTGTAATTCTATGGGAATAACAAGGGAAGAGGGAAAAG


BMLF1

AGACTGCGAAAATTCAGTCATATCGGATGCCTCACGCGAAGGGAAACGTGGGAGGCGAATGTAGCCCCTAGG




CCTGCCACGTGGGTCTCATGGGGGAATGAGGGAAAAGGCCCTAATTCAGCCACCTCCCCTGTGGCCGACTTC




TGGAACATTTGAGGAGGCACACAAAATGAGGAACGGTGATTAGGCACTGGACACACATGGCACTCATGGTAC




GGTGATAACTGACAGAGCCGTGTCTCCTGACGCCAATGCCAACTCCCCCAAACATGTCCTGTTAGCTGGTGC




GGTTATAACTGCCAGAGCTGTGTTTCCCGACGCCAATGCTAACTCCCCAAACATGTCCTGTGAGTTTTGCCC




ATAAATGACCCCATCCACTGCCACCCCTGGGTTCATTTCCTCCCGTTAGCCCAATGTAATAAGAGGAA





BVLF1
50
CCCAGCGTCAGGAAGTACAGCCGGTCGTAGTCATCCGAGGCTGAGAACTGACGCTCCAGGATCTCCCGCGCC




GCAAGCATGGGCGAGGGGCGCCCCAGGGCAACACCGACGCCGTCCTCGAAGGCTAGACGCAGCTGTGTGCGC




GCCGCCAGCATGGCAGCCGGGTCGTGA





BXLF1
51
GATGCAGTTGCTCTGTGTTTTTTGCCTGGTGTTGCTATGGGAGGTGGGGGCTGCCAGCCTCAGCGAGGTTAA




GCTGCACCTGGACATAGAGGGGCATGCTTCGCATTACACCATCCCATGGACCGAACTGATGGCAAAGGTCCC




AGGCCTTAGCCCAGAGGCGCTGTGGAGAGAGGCAAATGTCACCGAAGATTTGGCGTCTATGCTTAACCGCTA




CAAGTTAATTTACAAGACGTCTGGTACCCTTGGTATTGCGCTGGCCGAGCCTGTCGATATCCCTGCTGTCTC




TGAAGGATCCATGCAAGTGGATGCATCTAAGGTCCATCCCGGAGTCATTAGCGGCCTGAATTCCCCTGCCTG




CATGCTTAGTGCCCCCCTTGAGAAGCAGCTCTTCTACTATATTGGCACCATGCTGCCCAACACGCGGCCACA




CAGCTATGTCTTTTATCAGCTGCGCTGTCACTTGTCTTATGTGGCCCTGTCCATCAACGGGGACAAGT





BXRF1
52
GCTGCTCCGCGTGGAGCTGGACGGCATCATGCGTGACCACCTGGCCAGGGCGGAGGAGATCCGCCAGGACCT




GGATGCTGTAGTGGCCTTCTCTGATGGCCTGGAGAGCATGCAGGTCAGGTCCCCCTCCACGGGAGGGCGCTC




TGCGCCAGCCCCGCCCTCCCCATCCCCAGCCCAGCCGTTCACTCGGCTCACCGGGAACGCCCAGTATGCAGT




CTCAATCTCTCCCACGGACCCCCCTCTGATGGTGGCCGGCAGCCTGGCTCAAACGCTGCTTGGTAATCTGTA




CGGGAACATCAACCAGTGGGTACCGTCCTTCGGACCCTGGTACAGGACCATGTCGGCTAATGCCATGCAGCG




GCGCGTGTTCCCTAAGCAGCTGAGGGGCAACCTGAACTTTACCAACTCCGTCTCCCTAAAGCTGATGACAGA




AGTGGTGGCGGTGCTTGAGGGCACCACCCAGGACTTTTTCTCAGACGTCAGGCACCTGCCAGACCTCC





BZLF1
53
CTCCCGTTATTGAAACCACGCCTGCTTCACGCCTCGTTTACTAATGGAATATT





BZLF2
54
CAGGGGTCACCTTGGATCCCCTTAATCTAGCTCACTTTCAGTGGATGCATCGTAGTCAGTCTGCTTCGCGTC




CTTTGGGAACACGGAGATCTCAGAATTGTCACTGAGAATCTCCTGTGCTTCAGCAGTAGCTTGGGAACACCG




GGCAGGTCCGTGAGAACTTTCTTCTACTCGAGGCCTTTTTGGCGTGGTGGCATTAATGTCCAGTGGGGTAAA




TGCACCTTGACTGTAATCACTGGCAAAGGGCATGCTTGGGCATGCTGTACCTGATGAGTCACACCCCACGGC




CATGCTATCTTGTAACGGCATAGGGGGAGGGGGGAATCTTGTTGGAATGGGGCGTATGGGGGCTCGGGGCTG




GGGAGATGACCATGATGGTGCAGAGGATGAGACCAGTGGCACCAATGAAAGTTGAAGACGTGGTGGGCCTGT




CTCCGATTGCAGATGTGGGAACTGGGAGACCTGATCCTGGCCATGTCCTGCAGATCCATCCCACTGAG





LF3
55
TAGAATGACAGCCTGGTCCAAGAGTAAAAGCAGAACAGTAAACACTGCCATAAGTCCTCATGGCAGGAGAGG




CGGGGGGTATGTGCTGCGTTGGGAACTGAGTAGGCTTGATAGCAGTGACTGGTTGTAACCTATGCCTGGAAG




AATCATGGCCTACCCGAGACCCCCAACGTCTTGGGTAGGCCATACGTCTAGCCACATAGCAGGTCTCCAGAG




GGCAGACGTTAGTAACATTTGTATTGTGAGGAAAGGCCTTTAGATATAGAGGCTCTCCCAACACAATAGAAT




TTTTGCAGCTAAGTTTTCTAAGGGCACGTGCCTTTCCCCCACCCTGGAACAAACATGGGCTGCTATAGTGAG




CCAGGCTTTCTATGCCTGAAACCCAAGTTTCCTTGCCATCTAAAGCTGCAACTTTCAGTTTAGATCTGTGGT




TACATGGTGCATTTGCAGGTGTGAAATGCTTGGCCTTGAGTTACTCTAAGGCTAGTCCGATCCCCGGG





LMP-1
56
CCTTTCTTTACTTCTAGGCATTACCATGTCATAGGCTTGCCTGACTGACTCTCCCTCCATTTACTGGGAATG




CCTTAGCTAATCACCTTAACTGGCACACACTCCCTTAGCCACACTGTCTGTCTAGGCTGAAAAGCCACATTC




ATATTCTATTTCAAAACAAGGGGAAAGGAGGACATGCGAGAATTGGCAGACACCTTTACCCAGCCCTTAACA




CACCACACAGGTAGCAAGGACCCGGGCGTTGCCAGACTCCGCCACCAACGCCCCTGCGTTGAACCCACCCCT




CCTACACACATCAGACCTCTGCACAACACAACTACCAGGCAGATGAGGCCCCTTACTTCCACAGGGTACTGG




CATACCAGCGGGGGACCACATACATCCCTGTCTCCCACCCAGTAACTCCAGCAACTTTGCTTTCCATCTTGT




GCCAATACACATTTGGATTCAGCCCAAGCCACACCTAACTCATGCCAGCAGAGGCAGGAACACCTGTT





LMLP-
57
AGGTAAGTATTATTAAATTTTAGAGACACTATCACGTGTAACTTGACGTGCAAGGATGGAAGAGAGGGGCAG


2A

GGAAACGCAAATGCCGGTTGCCCGGTATGGGGGCCCGTTTATTATGGTAAGGCTCTTCGGGCAAGATGGAGA




GGCAAACATACAGGAGGAAAGGCTATATGAGCTACTCTCTGACCCACGCTCCGCGCTCGGCCTAGACCCGGG




GCCCCTGATTGCTGAGAACCTGCTGCTAGTGGCGCTGCGTGGCACCAACAACGATCCCAGGCCTCAGCGTCA




GGAGAGGGCCAGAGAACTGGCCCTCGTTGGCATTCTACTAGGAAACGGCGAGCAGGGTGAACACTTGGGCAC




GGAGAGTGCCCTGGAGGCCTCAGGCAACAACTATGTGTATGCCTACGGACCAGACTGGATGGCAAGGCCTTC




CACATGGTCCGCGGAAATCCAGCAATTCCTGCGACTCCTGGGCGCCACGTACGTGCTTCGCGTGGAGA





LMP-
58
AGGTAAGTATTATTAAATTTTAGAGACACTATCACGTGTAACTTGACGTGCAAGGATGGAAGAGAGGGGCAG


2B

GGAAACGCAAATGCCGGTTGCCCGGTATGGGGGCCCGTTTATTATGGTAAGGCTCTTCGGGCAAGATGGAGA




GGCAAACATACAGGAGGAAAGGCTATATGAGCTACTCTCTGACCCACGCTCCGCGCTCGGCCTAGACCCGGG




GCCCCTGATTGCTGAGAACCTGCTGCTAGTGGCGCTGCGTGGCACCAACAACGATCCCAGGCCTCAGCGTCA




GGAGAGGGCCAGAGAACTGGCCCTCGTTGGCATTCTACTAGGAAACGGCGAGCAGGGTGAACACTTGGGCAC




GGAGAGTGCCCTGGAGGCCTCAGGCAACAACTATGTGTATGCCTACGGACCAGACTGGATGGCAAGGCCTTC




CACATGGTCCGCGGAAATCCAGCAATTCCTGCGACTCCTGGGCGCCACGTACGTGCTTCGCGTGGAGA















SID
Representative sequence
Representative sequence



3′UTR
NOs
(FIX strain)
(conserved among six strains)










Human cytomegalovirus











IE1
59/60
ACTATTGTATATATATCAGTTACTGTTATGGATC
ACTATTGTATATATATCAGTTACTGTTATGGATC



(UL123)

CCACGTCACTATTGTATACTCTATATTATACTCT
CCACGTCACTATTGTATACTCTATATTATACTCT




ATGTTATACTCTGTAATCCTACTC
ATGTTATACTCTGTAATCCTACTC





1E2
61/62
GTGAAAAACTGGAAAGAGAGACATGGACTCTTGT
GTGAAAAACTGGAAAGAGACATGGACTCTTGTAC


(UL122)

ACATAGTGATTCCCCGTGACAGTATTAACGTGTG
ATAGTGATTCCCCGTGACAGTATTAACGTGTGGT




GTGAGAAGGCTGTTT
GAGAAtGCTGTTT





RL1
63/64
ACGTGGTAGGGGGATCTACCAGCCCAGGGATCGC
ACGgGGTAGGGGGATCTACCAGCCCAGGGaTCGC




GTCTTTCGCCGCCACGCTGCTTCACCGATATCC
GTaTTTCGCCGCCACGCTGCTTCACCGATATCC





RL10
65/66
CAAGGAAGGCGAGAACGTGTTTTGCACCATGCAG
caAGGAAGgCGAGAACGTGTTTTGCACCATGCAG




ACCTACAGCACCCCCCTCACGCTTGTCATAGTCA
ACCTACAGCAcCcCCCTCACGCTTGTCATAGTCA




CGTCGCTGTTTTTGTTCACAACTCAGGGAAGTTC
CGTCGCTGTTTTTgTtcacaactcagggaagttc




ATCGAACGCCGTCGAACCAACCAAAAAACCCCTA
atcgaacgccgtcgaaccaaccaaaaaaccccta




AAGCTCGCCAATTACCGCGCCACCTGCGAGGACC
aagctcgccaattaccgcgccacctgcgaggacc




GTACACGTACTCTGGTTACCAGGCTTAACACTAG
gtacacgtactctggttaccaggcttaacactag




CCATCACAGCGTAGTCTGGCAACGTTATGATATC
ccatcacagcgtagtctggcaacgttatgatatc




TACAGCAGATACATGCGTCGTATGCCGCCACTTT
tacagcagatacatgcgtcgtatgccgccacttt




GCATCATTACAGACGCCTATAAAGAAACCACGCA
gcatcattacagacgcctataaagaaaccacgca




TCAGGGTGGCGCAACTTTCACGTGCACGCGCCAA
tcagggtggcgcaactttcacgtgcacgcgccaa




AATCTCACGCTGTACAATCTTACGGTTAAAGATA
aatctcacgctgtacaatcttacggttaaagata




CGGGAGTCTACCTCCTGCAGGATCAGTATACCGG
cgggagtctacctcctgcaggatcagtataccgg




TGATGTCGAGGCTTTTTACCTCATCATCCACCCA
tgatgtcgaggctttttacctcatcatccaccca




CGTAGCTTCTGCCGAGCTTTGGAAACGCGTCGAT
cgtagcttctgccgagctttggaaacgcgtcgat




GCTTTTATCCGGGACCAGGGAGAG
gcttttatccgggaccagggagag





UL3
67/68
CGACGACGCATACCCGTCGTTCGGCACCCTACCC
cgACGaCGCATAcCCGTCGTTCGGCAcCCTACCC




GCTTCGCACGCTCAGTACGGCTTTCGACTACTAC
GCtTCGCACGCTCAGTACGGCTTTCGAcTaCTaC




GCGGCATATTTTTGATTACGCTCGTCATCTGGAC
GCGGCATATTTTTgattAcGCTcGTcATcTGGAC




CGTAGTGTGGCTCAAACTGCTTCGAGACGCTCTT
CGtAGTGTGGCTCAAaCTGCTTCGAGACGCTCTT




TTATAAAAACATACGCAGAAAACATTTATGTTCC
TTaTAAAAacatACGcAGAAAAcaTtTaTGTTcc




GTGATCTCCTGTGGTAACATAGCAACAGGAACCT
gTgATctcctgtggtAACAtagcaacAggAAcct




GCACTTTCCTTGAATTATGTTCTCATAAACTGTA
gcACTTtccttgaattatgttctcataaactgta




CCGTCCTGGAGTACGCTATGTATCACGCGTCTTT
ccgtcctggagtacgctatgtatcacgcgtcttt




TCATGGAGCGCACTGTATGCCGACACACGGAGAT
tcatggagcgcactgtatgccgacacacggagat




AACGAAGGAAATTCCACTCGCAGATCTGCCTTGT
aacgaaggaaattccactcgcagatctgccttgt




CTGGAGATGGGGTAGGAATACAACGGCGTTTAAA
ctggagatggggtaggaatacaacggcgtttaaa




GTAAAGACAGATGAGGCACATGGTGAA
gtaaagacagatgaggcacatggtgaa





UL16
69/70
ACGGATAACCGCAAAGGCCACGTGCAACGTTCAC
ACGGATAACCGCAAAGGCCACGTGCAACGTTCAC




GCTGCTATAAGAAGGCCATGTCCCCCGTGGACGG
GCTGCTATAAGAAGGCCATGTCCcCCGTGGACGG




GTCTCTTTGACACGAGCGCGGCACGCCGTTGCCA
GTCTCTTTGACACGAGCGCGGCACCCGTTGCCAC




CGAGCATGGATCACGCGCTCTTCACACACTTCGT
GAGCATGGATCACGCGCTCtTCACACACTTCGTC




CGGCCGGCCCCGTCACTGTCGGTTGGAAATGTTG
GGCCGgCCCCGTCACTGTCGGTTGGAAATGTTGA




ATTCTGGACGAACAGGTGTCTAAGAGATCCTGGG
TTCTGGACGAACAGGTGTCTAAGAGATCCTGGGA




ACACCACGGTTTACCACAGGCGCCGCAGACATCT
CACCACGGTTTACCACAGGCGCCGCAaACATCTA




ACCTCGACGCCGCGCTCCGTGCGGCCCCCAGAGG
CCTCGACGtCGCGCTCCGTGCGGCCCCCAGAGGC




CCCGCCGAGATTCCCAAAAGAAGAAAAAAGGCGG
CCGCCGAGATTCCCAAAAGAAGAAaAAAGGCGGC




CCGTCCTTCTATTTTGGCACGATTTGTGCTGGCT
CGTCCTTCTgTTTTGGCACGATTTGTGCTGGCTG




GTTTCGACGACTTTTCTTTCCTCGGGAGGACTCG
TTTCGACGACTTTTCTTTCCTCGGGAGGACTCgG




GAGCCACTGATGTCGGATCCGGCACGGTCTCCCG
AGCCACTGATGTCGGATCCGGCACGGTCTCCCGA




AAGAGGAGGAGThAACAACACACGGCTAAGAGGA
AGAGGAGGAGTAAACAACACACGGCTAAGAGGAT




TACATCATCAAAGAAGATAGGAGGGGTCAAAACG
ACATCATCAAAGAAGATAGGAGGGGTCAAAACGt




CGGACTGAAAGTATATAACGCCGA
GGACTGAAAGTATATAACGCcGA





UL17
71/72
ACAACACACGGCTAAGAGGATACATCATCAAAGA
ACAACACACGGCTAAGAGGATACATCATCAAAGA




AGATAGGAGGGGTCAAAACGCGGACTGAAAGTAT
AGATAGGAGGGGTCAAAACGcGGACTGAAAGTAT




ATAACGCCGATCATGTCCGAGGAACTGTT
ATAACGCcGATCATGTCCGAGGAACTGTT





UL20
73/74
CGGACTTTGGACTGAGCCCCAAGCGGTACGGACT
CGgACTTTGgACtcTGAGCCCCAAGCGGTACGgA




ATATATTTTCCACAAGTCTACACTGAACTTGAGC
CTAcATATTTTCCAtAAaTCTAtACTGAACTTaA




ACACAAATACTGACAATAGACTGGATATATAGAC
GCACAaAaATACTGACAATgGACTGgATATAcAG




TTTTATATGATCCCTGTACAGATGTA
ACTTTTATATaATCCcTGTACAGATGTA





UL26
75/76
CAAAACAGGAAGGAAAAAAACACACACATGAAAA
CAAAAtAGGAAGgAAAAaaaccacACgtgaAaaA




ACCCGGAGAAGACAGAGAGGACGAGCGTCCACAC
AAAAacCCGGAGAAGACAGAGagGACGAGCGTCC




ACCGCTTTGGTCGTAGACGTACTTTTTAT
ACACACCGCTTTGGTCGTAGACGcATTTTTAT





UL29
77/78
GTCATCAGTGTACACACGTCCAGAAATAGGGCGA
GTCATCAGTGTACACgCCCAGAAATAGgGCGACG




CGGTGTTTTTATAACCGAAAGTAGCGTGTTTGAG
GTGTTTTTATAACCGAAAGTAGCGTGTTTGAGAC




ACACGCGCTTATAGTCGGTTTTTTCACCGTCGTC
ACGCGCTTcTggTCGGTTTTTTCACCGTCGTCGC




GCTCTAGGTTTGATTTTCGCGCTCTTGTGTCTCC
TCTAGGTTTGATTTTCGCGCTCTTGTGTCTCCCG




CGACAGGCTCGTCGTGGGCTACTTTGACTCGCTA
ACAGGCTCGTCGTGGGCTACTTTGACTCGCTcTC




TCGTCGCTCTATCTGCGCGGGCAGCCCAAGTTCA
GTCGCTCTATCTGCGCGGGCAGCCCAAGTTCAGC




GCAGCATCTGGCGCGGTCTGCGTGATGCCTGGAC
AGCATCTGGCGCGGTCTGCGTGATGCCTGGACCC




CCACAAGCGCCCGAAGCCGCGCGAGCGTGCGAGC
ACAAGCGCCCGAAGCCGCGCGAGCGTGCGAGCGG




GGGGTTCACCTGCAGCGCTACGTACGCGCCACGG
GGTTCACCTGCAGCGCTACGTgCGCGCCACGGCG




CGGGTCGTTGGCTCCCGCTGTGCTGGCCGCCGCT
GGTCGTTGGCTCCCGCTGTGCTGGCCGCCGCTGC




GCACGGCATCATGCTGGGCGACACTCAGTACTTT
ACGGCATCATGCTGGGCGACACTCAGTACTTTGG




GGGGTGGTGCGCGATCACAAGACCTACCGGCGCT
GGTGGTGCGCGATCACAAGACCTACCGGCGCTTC




TCTCGTGCCTGCGCCAGGCTGGCCGCTTGTACTT
TCGTGCCTaCGCCAGGCTGGCCGCTTGTACTTTA




TATCGGCCTCGTCAGTGTGTACGAATGCGTGCCG
TCGGCCTCGTCAGTGTGTACGAATGCGTGCCGGA




GACGCAAACACGGCGCCCGAGATC
cGCAAACACGGCGCCCGAGATCtg





UL31
79/80
CCCTCCGTCCGTCCTCCTTTCCCGACACGTCACT
CCCTCCGTCCGTCCTCCTTTCCCGACACGTCACT




ATCCGATGATTTCATTAAAAAGTACGTCTGCGTG
ATCCGATGaTTTCATTAAAAAGTACGTCTGCGTG




TGTGTTTCTTAACTATTCCTCCGTGTTCTTAATC
TGTGTTTcTtaactattcctccgtgttcttaatc




TTCTCGATCTTTTGAAGGATGTTCTGCACGGCGT
ttctcgatcttttgaaggatgttctgcacggcgt




CCGACGGCGTTTTGGCGCCCCCCATGCCGGCAGA
ccgacggcgttttggcgccccccatgccggcaga




ACCCGGTTGCGGCCCCGTACCGCTCTTCTGGGGC
acccggttgcggccccgtaccgctcttctggggc




GACGATAGGTCGAAAGCCACCGTTTTCATGCCCG
gacgataggtcgaaagccaccgttttcatgcccg




TCGTGCTCTTGACGGGGGAACCTACGGCGGCGGT
tcgtgctcttgacgggggaacctacggcggcggt




CCCCGTCGAGCGGCGTGATTGCAAAGCCGCGCTC
ccccgtcgagcggcgtgattgcaaagccgcgctc




GCCCCCGGTTTCAGGATGGAGGGGGAGGCCACAG
gcccccggtttcaggatggagggggaggccacag




GCGGCGCATTCGATACGCTGCTTTTGGCCGTAGA
gcggcgcattcgatacgctgcttttggccgtaga




CGACGGTGGGTAAACGGTGGTTACCGCGGGATAC
cgacggtgggtaaacggtggttaccgcgggatac




GTCGGCGTGGTCGAGGCGGCCCGGCTGCTGCCGG
gtcggcgtggtcgaggcggcccggctgctgccgg




ACAGGCGACCCGGCGCGCTACCGCTCACGGGGAC
acaggcgacccggcgcgctaccgctcacggggac




CGAGGGCGGTCGACCTACCACCGC
cgagggcggtcgacctaccaccgc





UL32
81/82
TTAAGAAACACACACGCAGACGTACTTTTTAATG
Ttaagaaacacacacgcagacgtactttttaatg




AAATCATCGGATAGTGACGTGTCGGGAAAGGAGG
aaaccatcggatagtgacgtgtcgggaaaggagg




ACGGACGGAGGGTCAGGGATGGGGAGATGTGAGA
acggacggagggtcagggatggggagacgtgaga




AAGTTGTCCGCGGGCAATTGCATGTCGCCCAGAA
aagttgtccgcgggcaattgcatgtcgcccagaa




AGAACGTGGTTGCTCCGGCGGCGTGCATCTGCCG
agaacgtggttgctccggcggcgtgcatctgccg




AAACACCGTGTGGTGATTGTACGAGTACACGTTA
aaacaccgtgtggtggttgtacgagtacacgtta




CCGTCGCCCTCGGTGATTTGATACAACGTGGCGA
ccgtcgccctcgqtgatttgatacaacgtgqcga




TGGGGGTGCCCTGCGGGATCACGATGGAACGCGT
tgggggtgccctgcgggatcacgatggaacgcgt




GCGCGTCCACAGCGTGACTTTGAGCGGCTCGCCG
gcgcgtccacagcgtgactttgagcggctcgcca




CCGCGCCACACGCTGAGCCCCGTGTAAAAGGCGT
ccgcgccacacgctgagccccgtgtaaaaggcgt




CCTCGTGTGGCAAGTTGGCCACCAAGAAACACCG
cctcgtgtggcaagttggccaccaagaaacaccg




GTCTGTGATCTGCACGTAGCGCAAGTCCAACTCC
gtctgtgatctgcacgtagcgcaagtccaactcc




ACCGTCTGCCGCGGTTGCACTCCGAAGTGGATAT
accgtctgccgcggttgcaccccgaagtggatat




CGTAAGGCGCGTGCACCGTGAGCGAAAACACGTT
cgtaaggcgcgtgcaccgtgagcgaaaacacgtt




GGGCTCGTTGAGAAGCGGACAGTT
gggctcattgagaagcggacagTT





UL33
83/84
GCTTTCCTGTTACTTTAT
GCTTTCCTGTTACTTTAT





UL34
85/86
CGTCACTGGAGAAC
CGTCACTGGAGAAC





UL37
87/88
CGTCAACGCTGATAGTGTCTATAAAGGCCGTGCC
CGTCAACGCTGATAGTGTCTATAAAGGCCGTGCC




GCCGCGCCGTAGTTCTCCGAAGGCGGACGGAGGA
GCCGCGCCGTAGTTCTCCGAAGGCGGACGgAGGA




GTCTGTCGACCGCAGCGGTGGCTGGAGAAGCGCA
GTCTGTCGACCGCAGCGGTGGCTGGAGAAGCGCA




GCGTCGGCGAGCGAAGGTAGAGGAGTCCGTCATG
GCGTCGGCGAGCGAAGGTAGAGGAGTCCGTCATG




GACGACCTACGGGACACGCTGATGGCCTACGGCT
GACGACCTACGGGACACGcTGATGGCCTACGGCT




GCATCGCCATCCGAGCCGGGGACTTTAACGGTCT
GCATCGCCATcCGAGCCGGGGACTTTAACGGTCT




CAACGACTTTCTGGAGCAGGAATGCGGCACCCGG
CAACGACTTTCTGGAGCAgGAATGCGGCACCCGG




CTGCACGTGGCCTGGCCTGAACGCTGCTTCATCC
CTGCACGTGGCCTGGCCtGAACGCTGCTTCATCC




AGCTCCGTTCGCGCAGCGCCCTGGGGCCTTTCGT
AGCTCCGTTCGCGCAgCGCCCTGGGGCCtTTCGT




GGGCAAGATGGGCACCGTCTGTTCGCAAGGTAAG
GGGCAAGATGGGCACCGTCTGTTCGCAAGGTAAG




CCCCACGTCGTTGAAGACACCTGGAAAGAGGACG
CCCCACGTCGTTGAAGACACCTGGAAAGAGGACG




TTCGCTCGGGCACGTTCTTTCCAGGTGTTTTCAA
TTCGCTCGGGCACGTTCTTTCCAGGTGTTTTCAA




CGTGCGTGGATTTTTTCTCTCTACCAGGTGCTTA
CGTGcGTGGATTTTTtctCTCtACCAGGTGCTTA




CGTCTGCTGTCAGGAGTACCTGCACCCCTTTGGC
CGTcTGCTGTCAGGAgTACCTGCACCCCTTtGGC




TTCGTCGAGGGTCCGGGCTTTATG
TTCGTCGAGGGTCCGGgCtttatg





UL38
89/90
AAGGAGAACTTTGCTGCTAGATGACCATGTTCAG
AAGGAGAACTTTGCTGCTAGATGACCATGTCAGC




CTTTTTTTTTGTAGTATTTTTTCATAGTTGCTAT
TTTTTTTTTGTAGTATTTTTTcATAGTTGCTATA




ACCTCAGTTATCCCCCCTATTAGCCCCACATGCT
CCTCAGTTATCCCCCCTATTAGCCCCACATGCTG




GCTT
CTT





UL40
91/92
TAATGATAACTGCACATCCTCACGAGTGCCCTTA
Taatgataactgcacatcctcacgagtgccttac




CCTATCATCACACTAAG
ctatcatcacactaag





UL43
93/94
GCCGCGGACGCCGTCGGTACCGTCTCCACCACAG
gCCGCGGACGCCGTCGGTACCGTCTCCACCCAGT




TTGCCACCGTCGCCGTCACTGCCACCGACATGGA
TaCCACCGTCGCCGTCACTGCCACCGACATGGAG




GCCCACGCCGATGCTCCGCGAGCGGGATCACGAC
CCCACGCCGATGCTCCGCGAcCGGGATCACGACG




GACGCGCCCCCCACCTACGAGCAAGCCATGGGCC
ACGCGCCCCCCACCTACGAGCAgGCCATGGGtCT




TGTGCCCAACGACGGTTTCCACGCCACCGCCGCC
GTGCCCgACGACGGTTTCCACaCCACCGCCGCCA




ACCACCCGATTGCAGCCCACCGCCCTATCGACCC
CCACCcGAcTGCAGCCCACCGCCCTATCGACCCC




CCGTACTGCCTGGTTAGTTCGCCGTCGCCGCGAC
CGTACTGCCTGGTTAGTTCGCCGTCGCCGCGACA




ACACGTTCGACATGGATATGATGGAAATGCCCGC
CACGTTCGACATGGAtATGATGGAAATGCCCGCC




CACCATGCATCCCACCACGGGGGCGTACTTTGAC
ACCATGCATCCCACCACGGGGGCGTACTTTGACA




AACGGCTGGAAATGGACTTTTGCTCTCTTAGTGG
ACGGCTGGAAATGGACTTTTGCTCTCTTAGTGGT




TCGCTATATTAGGGATCATTTTCTTGGCCGTGGT
cGCTATATTAGGGATCATTTTCTTGGCCGTGGTG




GTTCACCGTGGTGATTAACCGGGACAGTGCCAAT
TTCACCGTGGTGATTAACCGGGACAaTtCCAcTa




ACAACAACGGGGGTTTCCTCATCATCGGGGTAAC
CAACGGGtacAtCATCGGGgTAACGGGaAaTAGA




GGGGATAGAGCATGTGCTTGACTGTACCATCATT
gCATGTGCTTGACTGTACCATCATTGCTGCTACG




GCTGCTACGGAATAATAACTACGC
GAATAATAACTacgctacgacct





UL44
95/96
AGCGCGTGCCCGGGAACGCGGCCCGCGCGCACGG
AGCGtGgGCCgcGtgcCtgGGaacGCGCGCACGG




CGCGGTCCCGCGATGGAGAAAACGCCGGCGGAGA
CGCGGTCCCGtGATGGAGAAAACGCCGGCGGAGA




CGACGGCGGTTTCAGCTGGCAACGTGCCACGTGA
CGACGGCGqTTTCAGCTGGCAACGTGCCACGTGA




CTCAATCCCGTGTATAACTAACGTGTCCGCGGAC
CTCAATtCCGTGTATAACTAACGTGTCCGCGGAC




ACCCGCGGCCGTACCCGCCCCAGCAGACCAGCCA
ACCCGCGGCCGTACCCGtCCCAGCAGACCAGCCA




CCGTTCCTCAGCGACGTCCCGCGCGGATCGGACA
CCGTcCCTCAGCGACGTCCCGCGCGGATCGGACA




CTTTAGGCGGCGCAGCGCCAGCCTTAGCTTTCTT
CTTTAGGCGGCGCAGCGCCAGCCTTAGCTTTCTT




GACTGGCCGGACGACAGCGTCACAGAGGGCGTTC
GACTGGCCGGACGaCAGCGTCACAGAGGGCGTTC




GGACGACCTCCGCGTCGGTCGCCGCCTCCGCGGC
GGACGACCTCCGCGTCGGTCGCCGCCTCCGCGGC




CCGTTTCGACGAAATCCGGCGACGCCGCCAGAGC
cCGTTTCGACGAAATCCGGCGgCGCCGcCAGAGC




ATTAACGACGAGATGAAGGAACGCACGCTGGAGG
ATcAACGACGAGATGAAGGAACGtACGCTGGAGG




ACGCGCTGGCTGTCGAGCTGGTCAACGAGACCTT
ACGCGCTGGCTGTCGAGCTGGTcAACGAGACCTT




CCGCTGCTCTGTCACCGCCGACGCCCGCAAGGAC
CCGCTGCTCTGTCACCgCCGACGCcCGCAAGGAC




CTGCAGAAGCTGGTTCGTCGCGTCAGTGGCACGG
CTGCAGAAGCTGGTTCGTCGCGTCAGcGGCACGG




TGCTGCGTCTCAACTGGCCGAACG
TGCTGCGTCTCAgCTGGCCgAACG





UL45
97/98
TCGGGGGCCCGCTGGCTCGGCGCGGCTGTATTAT
TCGGGGGCCCGCTGGCTCGGCGCGGCTGTATTAT




TAGACGCCGGGCGTCTTCGCAGCGTTCCCGGTCG
TAGACGCCGGGCGTCTTCGCAGCGTTCCCGGTCG




TCGTGTGTGCTCTCTATAAAACTTTCGCTCGCTC
TCGTGTGTGCTCTCTATAAAACTTTCGCTCGCTC




GCGCCCGCTCCTTAGTCGAGACTTGCACGCTGTC
GCGCCCGCTCCTTAGTCGAGACTTGCACGCTGTC




CGGGATGGATCGCAAGACGCGCCTCTCGGAGCCG
CGGGATGGATCGCAAGACGCGCCTCTCGGAGCCg




CCGACGCTGGCGCTGCGGCTGAAGCCGTACAAGA
CCGACGCTGGCGCTGCGGCTGAAGCCGTACAAGA




CGGCTATCCAGCAGCTGCGATCTGTGATCCGTGC
CGGCTATCCAGCAGCTGCGATCTGTGATCCGTGC




GCTCAAGGAGAACACCACGGTTACCTTCTTGCCC
GCTCAAGGAGAACACCACGGTTACCTTCTTGCCC




ACGCCGTCGCTTATCTTGCAAACGGTACGCAGTC
ACGCCGTCGCTTATCTTGCAAACGGTACGCAGTC




ACTGCGTGTCAAAAATCACTTTTAACAGCTCATG
AcTGCGTGTCAAAAATCACTTTTAACAGCTCATG




CCTCTACATCACTGACAAGTCGTTTCAGCCCAAG
cCTCTACATCACtGACAAGTCGTTTCAGCCCAAG




ACCATTAACAATTCCACGCCGCTGCTGGGTAATT
ACCATTAACAATTCCACGCCGCTGCTgGGtAATT




TCATGTACCTGACTTCCAGCAAGGACCTGACCAA
TcATGTACCTGACtTCCAGCAAGGACCTGACCAA




GTTCTACGTGCAGGACATCTCGGACCTGTCGGCC
GTTCTACGTGCAGGACATCTCGGACCTgTCGGCC




AAGA
AAGATCTCCATGTGCGCGCCCGAT





UL50
 99/100
CGAGTTCCACCAGGCTCTGTGCCGTCTCTTCGCG
tGAGTTCCACCAGGCTCTGcGCCGTCTCTTCGCG




CCCCTCTGCGTTCACGAGGACCATTTCCATGTGC
CCCCTCTGCGTTCACGAGGACCATTTCCATGTGC




AGCTGGTGATCGGCCGCGGTGCGCTGCAGCCGGA
AGCTGGTGATCGGCCGCGGTGCGCTGCAGCCGGA




GGAAGCGGCGGTAGAAACGTCGCAGCCACCGGCG
GGAAGCGGCGGTAGAAACGTCGCAGCCACCGGCG




CAGTTTGCGGCGCAGACGTCGGCGGTCCTCCAGC
CAGTTTGCGGCGCAGACGTCGGCGGTCCTCCAGC




AGCAGCTGGTGCATCACGTGCCACGTTCTTGCGT
AGCAGCTGGTGCATCACGTGCCACGTTCTTGCGT




CCTTCATCTCTTCGTGACGGATAAGCGCTTTCTG
CCTTCATCTCTTCGTGACGGATAAGCGCTTTCTG




AATCGCGAGCTGGGCGACCGTCTCTACCAACGCT
AATCGcGAGCTGGGCGACCGTCTCTACCAACGCT




TCCTGCGCGAATGGCTGGTGTGTCGGCAGGCCGA
TCCTGCGCGAATGGCTGGTGTGTCGGCAaGCCGA




GCGGGAGGCGGTGACGGCGCTCTTTCAGCGTATG
GCGGGAGGCGGTGACGGCGCTcTTTCAGCGTATG




GTTATGACCAAGCCCTACTTTGTGTTTCTCGCTT
GTTATGACCAAGCCCTACTTTGTGTTTCTCGCTT




ACGTCTACAGCATGGACTGTCTGCACACCGTGGC
ACGTCTACAGCATGGACTGTCTGCACACCGTGGC




CGTCCGCACGATGGCCTTTCTGCGTTTCGAACGC
CGTCCGCACGATGGCCTTTCTGCGTTTCGAACGC




TACAACACCGACTACCTGCTGCGCCGTCTGCGGC
TACgACgCCGACTACCTGCTGCGCCGTCTGCGGC




TCTACCCGCCCGAGCGGCTGCACG
TCTACCCGCCCGAGCGGCTGCACG





UL51
101/102
ATCGGCGGTGGCGTCGGTGCGATGGAGATGAACA
ATCGGCGGTGGCGTCGGTGCGATGGAGATGAACA




AGGTTCTCCATCAGGATCTGGTGCAGGCCACGCG
AGGTTCTCCATCAGGATCTGGTGCAGGCCACGCG




GCGTATCCTCAAGTTGGGTCCCAGCGAGCTGCGC
GCGTATCCTCAAGTTGGGTCCCAGCGAGCTGCGC




GTCACCGATGCCGGCCTCATCTGTAAAAACCCCA
GTCACCGAcGCCGGCCTcATCTGTAAAAAcCCCA




ATTACTCGGTGTGCGACGCCATGCTCAAGACAGA
ATTACTCGGTGTGCGACGCCATGCTCAAGACAGA




CACGGTCTATTGTGTCGAGTATCTGCTCAGCTAC
CACGGTCTATTGTGTCGAGTATCTgCTCAGCTAC




TGGGAGAGCCGCACAGACCACGTGCCTTGTTTTA
TGGGAGAGCCGCACAGACCACGTGCCTTGTTTTA




TCTTTAAAAACACTGGCTGTGCCGTCTCCCTCTG
TCTTTAAAAACACTGGCTGtGCCGTCTCCCTCTG




CTGTTTTGTGCGAGCGCCCGTCAAGCTCGTTTCG
CTGTTTTGTgCGAGCGCCCgTCAAGCTCGTcTCG




CCGGCGCGCCACGTAGGTGAGTTCAATGTGCTTA
CCGGCGCGCCACGTAGGTGAGTTCAATGTGCTTA




AGGTGAACGAGTCGCTCATCGTCACGCTCAAGGA
AGGTGAACGAGTCGCTCATCGTCACGCTCAAGGA




CATCGAGGAGATCAAGCCCTCGGCCTACGGAGTG
CATCGAGGAGATCAAGCCCTCGGCCTACGGAGTG




CTGACGAAGTGCGTGGTGCGCAAATCCAATTCGG
CTGACGAAGTGCGTGGTGCGCAAATCCAATTCGG




CGTCGGTCTTCAACATCGAGCTCATCGCCTTCGG
CGTCGGTCTTCAACATCGAGCTCATCGCCTTCGG




ACCCGAAAACGAGGGCGAGTACGA
ACCCGAAAACGAGGGCGAGTACGA





UL52
103/104
CGTGAGCGGCGTGCGCACGCCGCGCGAACGACGC
CGTGAGCGGCGTGCGCACGCCGCGCGAACGACGC




TCGGCCTTGCGCTCCCTGCTCCGCAAGCGCCGCC
TCgGCCTTGCGCTCCCTGCTCCGCAAGCGCCGCC




AACGCGAGCTGGCCAGCAAAGTGGCGTCAACGGT
AACGCGAaCTGGCCAGcAAAGTGGCGTCgACGGT




GAACGGCGCTACGTCGGCCAACAACCACGGCGAA
GAACGGCGCTACGTCGGCCAACAACCACGGCGAA




CCGCCGTCGCCGGCCGACGCGCGCCCGCGCCTCA
cCGCCGTCgCCGGCCGACGCGCGCCCGCGCCTCA




CGCTGCACGACTTGCACGACATCTTCCGCGAGCA
CGCTGCACGACcTGCACGACATCTTCCGCGAGCA




CCCCGAACTAGAGCTCAAGTACCTCAACATGATG
CCCCGAACTgGAGCTCAAGTAcCTcAACATGATG




AAGATGGCCATCACGGGCAAAGAGTCCATCTGCT
AAGATGGCCATcACGGGCAAAGAGTCCATCTGCT




TACCCTTCAATTTCCACTCGCACCGGCAGCACAC
TACCCTTCAATTTCCACTCGCAcCGGCAGCACAC




CTGCCTCGACATCTCGCCGTACGGCAACGAGCAG
CTGCCTCGACATCTCGCCGTACGGCAACGAGCAG




GTCTCGCGCATCGCCTGCACCTCGTGCGAGGACA
GTCTCGCGCATCGCCTGCACCTCGTGCGAGGACA




ACCGCATCCTGCCCACCGCCTCCGACGCCATGGT
ACCGCATCCTGCCCACCGCCTCCGACGCCATGGT




GGCCTTCATCAATCAGACGTCCAACATCATGAAA
GGCCTTCATCAATCAGACGTCCAACATCATGAAA




AATAGAAACTTTTAT
AATAGAAACTTTTAT





UL54
105/106
GAAACAGCGGCGGCGGTGGTGACTGGGGACGGTG
GAAACAGCGGCGGCGGTGGTGACTGGGGACGGTG




ATGATGCTGCTGAGACTGAGACTGGTGGTGAGAG
ATgATGCTGCTGAGACTGAGaCTGGTGGTGAGAG




TAGTGGTGGGGCTGCGTCGCCTGCGACGGCGGGT
TAGTGGTGGGGCTGCGTCGCCTGCGACGGCGGgT




GGAGATGAGGCGGCGTGGACTGGGACGAGGAGGA
GGAGATGAGGCGGCGTGGACTGGGACGAGGAGGA




GGGGCCGCAGCCGTTGGTGGAAACTACGTGCAAC
GGGGCCGCAGCCGTTGGTGGAAacTACGTGCAAC




GGCGACGCGGTTAAGGGAGACCGTATCGCGTAGG
GGCGACGCGGTTAaGGGAGACCGTATCGCGTAGG




ACGACGTGGCCTCCTCGTATAGGTTGTTGCCGCT
AcGACGTGGCCTCCTCGTATAGGTTGcTGCCGCT




GGACTGACACAGCTCCTGAATGAGCTCTTTGTAG
GGACTGACACAGCTCCTGAATGAGCTCTTTGTAG




CGCTCAAAGGACTCGCTCACGTCGTTGGGAATGT
CGCTCAAAGGACTCGCTCACGTCGTTGGGAATGT




CCATCTCGTCAATCTTGCGTTGCAAAATAGTCAC
CCATCTCGTCAATCTTGCGTTGCAAAATAGTCAC




GTCGATCTTGACGCTGCTGGCCGAGACGGCGTGA
GTCGATCTTGACGCTGCTGGCCGAGACGGCGTGA




CACAGCACGCTGATAACGACGTGGTCGCGCACGA
CACAGCACGCTGATAACGACGTGGTCGCGCACGA




TGTTGAGCGTGACGCTGTAGTCTTCGCGCGCCGC
TGTTGAGCGTGACGCTGTAGTCTTCGCGCGCCGC




CGTGAGCATCTGCGTGATGCAGTCGCAGGGGATG
CGTGAGCATCTGCGTGATGCAGTCGCAGGGGATG




TGCACGTCGGGGTTTTCGAAGATG
TGCACGTCGGgGTTTTCGAAGatg





UL57
107/108
CCGCCAGCAAACGCCGCGACAACGGCCGCCGCAG
CCGCCAGCAaACGCCGCGACAACGGCCGCCGCAG




CCACGAGCATCGCAACAACAGCAGCAACAGTCGC
CCACGAGCgTtGCAACAACAGCAgCAACAGTCGC




AGCCCCCGTGGCCGCTTTTCAGACCGCAACAACA
AGCCCCCGTGGCCGCTTTTCAGACCGCAACAACA




GCAGCAACAGCAGCCACCGACACAGCAGCACCAG
GCAGCAACAGCAGCCACCGACACAGCAGCACCAG




GCGACACCGTATCAGCTACCGCCGCAACAGCGGC
GCGAtACCGTATCAGCTACCGCCGCAACAGCGGC




GACAGACGGCGTCGCATCATCAACAGCAGCAACA
GACAGACGGCGTCGCATCATCAaCAGCAGCAACA




GCCCCGAAGGTTAGCGCCGCGGCACCAGAGACAG
GCCCCGAAGGTTaGCGCCGCGGCACCAGAGACAG




AGACCGCCGCCGCGCTGGCAAACTCCGACATTCG
AGACCGCCGCCGCGCTGGCAAaCTCCGACATTCG




CGTCGGCGCCCGGGCCGCCTGAGGAAGGGGAGGA
CGTCGGCGCCCGGGCCGCCTGAGGAAGGGGAGGA




GTGTCAGACACAGCCGGTCATCTCCGAGCCCCCG
GTGTCAGACACAGCCGGTCATCTCCGAGCCCCCG




TCGCCCGAGGCGGAGGAGCCGGCGGCGGCGGTGG
TCGCCCGAGGCGGAGGAGCCGGCGGCGGCGGTGG




TGGAGGAGGTTGCGCCGCAAGCGGCGGCAACAGC
TGGAGGAGGTTGCGCCGCAaGCGGCGGCAACAGC




TTCGGGAGCAGAACCCGCGTCGTCGACGACGTCG
tTCGGGAGCAGAACCCGCGTCGTCGACGACGTCG




TTATATATTAACGTCAACGTCAGTCGGCATAGCG
TTATATATTAACGTCAACGTCAGTCGGCATAGCG




AGCGGCCCGCGAGTTATTTGTGCA
AGCGGCCCGCGAGTTATTTGTgca





UL60
109/110
AACGGACTGATGACGTAGCTCGCTTCGCTCGCTA
AACGGACTGATGACGTAGCTCGCTTCGCTCGCTA




CGTCATCAGAGATGATTTCCGCCGGAGGTGGCGC
CGTCATCAGAGATGATTTCCGCCGGAGgTGaCGc




ACGCATACGTGACGTAGCTCGCTACGCTCGCTAC
ACGCATACGTGACGTAGCTCGCTACGCTCGCTAC




GTCATCGTATGTCCGGAATTCCACGGGATGACGT
GTCAcCGTATGTCCGGAATTCCACaGGATGACGT




ATATCCGGAGTGGGTGTGGTCACGCGAGTGTGAC
ATATCCGGAGTGGGTGTGGctACGCGAGTGTGAC




GTAGGCTTGTCAGGGGTCACGTGAGAAGCGGCGG
GTagGCTTGtCAGGGGTCACGTGAGAAGCGGCGG




CGTTAAGTTTACTAGGCCAAAACAGAGGAAGGGG
CGTTAAGTTTACTAGGcCAAAACAGAGGAAGGGG




GCGGATACCCTAAGTAAGGGGGCGTGCACGTAGC
GCGGATACCCTAgGTAAGGGGGCGTGCACGTAGC




CCTGTAGACACTCCCCCCTAGGGTCCAGTAGCTT
CCTGTAGACACTCCCCCCTAGGGTCCAGTAGCTT




ATGACGCGTATCCGGGAGTAGCGTCTACGTCAGC
ATGACGCGTATCCGGGAGTAGCGTCTACGTCAGC




AGGTGTATATTTCCGGTAAACGGAGAAGCCTGTA
AGGTGTATATTTCCGGTAgACGGAGAAGCCTGTA




CGTACACCGAGGACGGTGGAACCCTAACGGGTTC
CGTACACCGAGGACGGTGGAACCCTAACGGGTTC




CACCTATCTGAAATTTCCGTACAAGGGGTGGAGT
CACCTATCTGAAATTTCCGTACAAGGGGTGGAGT




CTAGGGAGGGGTCATTGTATATTCGTTTCTGTGA
CTAGGGAGGGgTCATTGTATATCCGTTTCTgTGA




TTGGTAGATAAGGTAGCGTACCTA
TTGGTAGATAAGGTgGCGTACCTA





UL61
111/112
GGCGGGAAGCAGGCGGGAGCGGGCGCAGCGTGCG
ggcgggaagcaggcgggagcgggcgcagcgtgcg




GACCGCAGCACGGCCGGAACCCTGCCGCGGACTG
gaccgcagcacggccggaaccctgccgcggactg




CGCCGGGGGGCGGCGGGCACGCCGGGTTTTATAG
cgccggggggcggcgggcacgccgggttttatag




GTTTTCAGATGCCCCGCCTAGGTGGGCGGAGCGG
gttttcagatgccccgcctaggtgggcggagcgg




TAATTTTCCACCGCCGCGGCCCATGCCCGGCACG
taattttccaccgccgcggcccatgcccggcacg




GGGCTCGCGCTCCCTAGGTGCGGCCGCCCAGTGG
gggctcgcgctccctaggtgcggccgcccagtgg




AAAAACACCGGCGCATGCGCACGGCGCACATCCA
aaaaacaccggcgcatgcgcacggcgcacatcca




GTGGAATTTTACCGACGCATGCGCACTGACCGCC
gtggaattttaccgacgcatgcgcactgaccgcc




TCCAGTGGAAAAATACTGGCGCATGCGCACGACA
tccagtggaaaaatactggcgcatgcgcacgaca




CACACCCGGTGGAATTTTACCGGCGCATGCGCAG
cacacccggtggaattttaccggcgcatgcgcag




GGCGACCCTCCCGCGGTCCCTGGCTCGCGCATGC
ggcgaccctcccgcggtccctggctcgcgcatgc




GCACCGGGGCCCCTGGTTCACCCCTCCTTATATA
gcaccggggcccctggttcacccctccttatata




TAGGTTTTCCATGCGGCATCCCCGGCGCATGCGC
taggttttccatgcggcatccccggcgcatgcgc




ACTCGAGTCCCCATCCCATAATCCGCGTGGCAAC
actcgagtccccatcccataatccgcgtggcaac




GCCCTGACAACCAAAAACTCGCCC
gccctgacaaccaaaaactcgccc





UL67
113/114
GGTTATAGCATCATCTAGTTTGTTCATTTCATAC
GGTTATAGCATCATCTAGTTTGTTCATTTCATAC




CTGTTGAGAACGTTTATGTTCTAGCAATTGATTT
CTGTTGAGAACGTTTATGTTCTAGCAATTGATTT




CGCGTCATAGGGCTGTGACGGTGATTCTTCAGAG
CGCGTCATAGGGCTGTGACGGTGATTCTTCAGAG




AATCAGAAAAAAAAAAGAGGCTCAACGAGCACCA
AATCAGgAAAAAAAAAaaGAGGCTCAACGAGCAC




GAGACTAAGTCGGAAAACTCGCGCCCGCTTCCCC
CAgAGaCTAAGTCGGAAAACTCGCGCCCGCTTCC




GGACGGTTTCAGCTTAGCCTCTGGCCTGCGATGG
CCGGACGGTTTCgGCTTAGCCTCTGGCCTGCGAT




TTTTTTTAT
GGTTTTTTTAT





UL69
115/116
AAAGAGAGTGAGGGGTGTTGTGCGTGATTGCTGT
AAAGAGAGTGAaGGGTGTTGTGCGTGAtgaTTGC




CCCTTATCCCGTTACAAAGAAAAAAGAAAAAATG
TGTCCCTTATCCCGTTACAAAGAAAAgaaaaAAT




GTGTTACACACTCCTTGGTACTACTATGACTCGT
GGTGTTACACACTCCTTGGTACTACTATGACcCG




GGTGAGATATCCGATGATGATAATGATGTACGCG
TGGTGAGATATCCGATGATGATAATaatGATGTA




TGCCTGAGCTTGGTGTTTTTTTTTCTCTCTGTGA
CGCGTGCCTGAGCTTGGTGTTTTTTCTCTCTGTG




GCTTTTTTCCCCATAAGCTGTGTACTGTTCGTGT
AGCTTTTTTCCCCATAAGCTGTGTACTGTTCGTG




CCGGACCCCATACACGGTTTCCGTTAATGACGGC
TCCGGACCCCATACACGGTTTcCGTTAATGACGG




CCCCTCCTTTTCCCCCACCGTAAAAAAAAAAAAC
CCCCCTCCTTTTCCCCcACCGTAAAAAaaaaaac




AAAGCACAATACACATGTGGTTTTTTGGTTCGAA
AAAGCACAATACACATGTGGTTTTTTGGTTCGAA




TCGAGCTTGGCGTTTAT
TCGAGCTTGGCGTTTAT





UL78
117/118
GCGGCGGCGCTGTACGGCAGCGGGGAGAAAAGTG
GCGGCGGCGcTGTACGgCAGCGGGGAGAAAAGTG




GCAGATAAATCACGTTAGGTTCACACGTCGTTAG
GCAGATAAATcACGTcAGGTTCACACGTCGtTAG




CCAGCGTCGGCATATGAAGGGCGCGGGCGGCCAG
CCAGCGTCGGCATATGAAGGGCGCGGGCGGCCAG




TACGGCCTCTGGGCTGAGACAGGACGAGGCAGGG
TACGGCCTCTGGGcTGAGACAGGACGAGGCAGGG




TGAGAAAGAGGAGGATGGGGGGGACCGGGGTGGT
TGAGAAAGAGGAGGATGGGGGGGACCGGGGTGGT




GGTGCTGCTGCTGTTGTGGGTGCGGACGGTGCGG
GGTGCTGCTGCTGTTGTGGGTGcGGACGGTGCGG




GTGCCGGGACAGCGTGCCGGCGAACGTTCTGTAA
gTGCCGGGACAaCGTGCCGGCGAACGTTCTGTAA




TCTTCCAT
TCTTCCAT





UL79
119/120
ACCTAACGTGATTTATCTGCCACTTTTCTCCCCG
ACCTaACGTgATTTATCTGCCACTTTTCTCCCCG




CTGCCGTACAGCGCCGCCGCTCATAATGCCGTCA
CTGcCGTACAgCGCCGCCGCTCATAATGCCGTcA




CCGTCGCGTCGGACGCGACGGTGTTTTCGCCGTC
CCGTCGCgTCgGaCGCGACGGTGTTTTCGCCGTC




GATGCAGAGGACGGAGGAACTTTCGGCCGAAACA
GaTGCAGAGGACGGAGGAACTtTCGGCCGAAACa




TCGATCGTAGTCCCAGGACACATTTCGGAAGCCA
TCGATCGTAGTCCCAGGACACATTTCGGAAGCCA




TGCCTTCCGCGTGCTTCACCAACGTGGCTTTCTC
TgCCTTCCGCGTGCTtcACCAACGTGGCTTTCTC




CGACGTGGTTGTCGTTACCACAACGGCCGCCGAC
cGACGTGGttGTCGTTACCACAACgGcCGCCGAc




GTCGCGTCGGCGTAACAACGGCTGGAGGACTTTT
GTCGCGTCgGCGTAACAACGGCTGGAGGACTTTT




TCACCGCCTCGGCGACGTCTCGAACGGACGTAGA
TCACCGCcTCGGCGACGTCTCGaACGGACGTAGA




AAAGTAACACACGGCCAGCTCCACGCTATACATA
AAAGTAACACaCGGCCAGCTCCACGCTATACATA




GCCCGTTTCAACGCCTGCACCAACCGACGTACGA
GCCCGtTTCAACGCCTGCACCAACCGACGTACGA




AATGACCGTGGCAGCTTTGCTGACATCTCTCGAC
AATGACCGTGGCAGCTtTGcTGACATcTCTCGAC




CAGATAATCAAAGGAGTCATCCAGATCCTTGGTG
CAGATAATCAAAGGAGTCATCCAGATCCTTGGTG




GGCTCGCGGGAGAAGAACGCAATGATAAAGAGCG
GGCTCGCGGGAgAAGAACGCAATGATAAAGAGCG




GCAGAATGCCAAGACGCATGGTGA
GCAGAATGCCAAGACGCATGGTGA





UL80
121/122
GAGAGACGCTATATTTAGGGCTTCCCTCTCTTTT
GAGAGACGCTATATTTAGGGcTTCCCTCTCTTTT




TTTTTTCTACACCGTGATACCCT
TTTTttCTACAcCgTGATACCCT





UL86
123/124
GGCCGTCCGGTGAGGAGGACGGCGACGACCGCAG
GGCCGTCCGGTGAGGAGGACGGCGACGACCGCAG




GTTAGCGGCGAGTCACCTAGACGCAAACGCGGGC
GTTAaCGGCGAaTCACCTAGACGCAAACGCGGGC




CCGGACGCGCCACGCTCGCTCTGACGCCGCGCCC
CCGGACGCGCCACGCTCGCTCTGACGCCGCGCCC




GGTGCAGACGTTGTTCGTCTCTGCTTCTCCTCCG
GGTGCAGACGTTGTTCGTCTCtGCtTCTCCTCCG




TCGCGGCCAGGATTTCACCGCCGCTATGGCGGCC
TCGCGGCCAgGATTTCACCGCCGCTATGGCGGCC




ATGGAGGCCAACATCTTCTGCACTTTCGACCACA
ATGGAGGCCAACATCTTCTGcACTTTCGACCACA




AGCTCAGCATCGCCGACGTAGGCAAACTGACCAA
AGCTCAGCATCGCCGACGTAGGCAAACTGACCAA




GCTAGTAGCGGCCGTTGTGCCCATTCCGCAGCGT
GCTAGTAGCGGCcGTtGTGCCCATTCCGCAgCGT




CTACATCTCATCAAGCACTACCAGCTGGGCCTAC
CTACATCTCATCAAaCACTACCAGCTGGGCCTAC




ACCAGTTCGTAGATCACACCCGCGGCTACGTACG
ACCAGTTCGTAGATCACACCCGCGGCTACGTaCG




ACTGCGCGGCCTGCTGCGCAATATGACGCTGACG
ACTGCGCGGCCTGCTGCGCAATATGACGCTGACG




TTGATGCGGCGCGTAGAAGGCAACCAGATCCTCC
TTGATGCGGCGCGTAGAAGGCAACCAGATCCTCC




TACACGTACCGACGCACGGACTGCTCTACACCGT
TACACGTACCgACGCACGGACTGCTCTACACCGT




CCTCAACACGGGACCCGTGACTTGGGAGAAGGGC
CCTCAACACGGGACCCGTGACTTGGGAGAAGGGC




GACGCGCTATGCGTGCTGCCGCCG
GACGCGCTATGCGTGCTGCCGCCG





UL87
125/126
TGGAAGCCGCGGCCGCTGCCGCCGCGGCGTTTCG
TGGAAGCCGCGGCCGCTGCCGCCGCGGCGTTTCG




TCCGGAGGAGCGTCCGACGCCGGGTTGGCACGAC
TCCGGAGGAGCGTCCGACGCCGGGTTGGCACGAC




GCGGCGTTGTTAATGGACGACGGTACGGTGCGCG
GCgGCGTTGTTAATGGACGACGGTACGGTGCGCG




AGCACGCGTTTCGCAACGGACCGCTGTCGCAACT
AGCACGCGTTTCGCAACGGACCGCTGTCGCAACT




GATTCGCCGTGTGTTACCGCCGCCGCCCGACGCC
GATTCGCCGTGTGTTACCGCCGCCGCCCGACGCC




GAAGACGACGTGGTTTTTGCTTCCGAGCTGTGTT
GAAGAcGACGTGGTTTTTGCtTCcGAgCTGTGTT




TTTAT
TTTAT





UL91
127/128
GGCACGTCCAGAACGCGTTTACCGAGGAGATCCA
GGCACGTCCAGAACGCGTTTACCGAGGAGATCCA




GTTACACTCGCTCTACGCGTGCACGCGCTGCTTT
GTTACAtTCgCTCTACGCGTGCACGCGCTGCTTT




CGCACGCACCTGTGTGATCTGGGCAGCGGCTGCG
CGCACGCACCTGTGTGATCTGGGCAGCGGCTGCG




CGCTCGTCTCCACGCTCGAGGGCTCCGTCTGCGT
CGCTCGTCTCCACGCTCGAGGGCTCCGTCTGCGT




CAAGACGGGCCTGGTATACGAAGCTCTCTATCCG
CAAGACGGGCCTGGTATACGAggCTCTcTATCCG




GTGGCGCGTAGCCACCTGTTGGAACCCATCGAGG
GTGGCGCGTAGCCACCTGTTGGAACCcATgGAGG




AGGCCGCACTGGACGACGTCAACATCATCAGCGC
AGGcCtCACTGGACGACGTCAACATCATCAGCGC




CGTGCTCAGCGGCGTGTACAGCTACCTCATGACG
CGTGCTCAGCGGCGTGTACAGCTACCTCATGACG




CACGCCGGCCGTTACGCCGACGTGATCCAAGAGG
CAcGCaGGCCGTTACGCCGACGTGATCCAaGAGG




TGGTCGAGCGCGACCGCCTCAAAAAGCAGGTGGA
TGGTCGAGCGCGACCGCCTCAAAAAGCAGGTGGA




GGACAGTATTTACTTCACCTTTAATAAGGTTTTC
GGACAGTATTTACTTCACCTTTAATAAGGTTTTC




CGTTCTATGCATAACGTCAATCGTATTTCGGTGC
CGTTCTATGCATAACGTCAAcCGTATTTCGGTGC




CCGTCATCAGCCAACTTTTTAT
CCGTCATCAGCCAACTTTTTAT





UL92
129/130
GGCGCGGTTCGCTGACGATGAGCAATTGCCTCTA
gGCGCGGTTCGCTGAcGATGAGCAATTGCCTCTA




CACCTGGTGCTCGACCAGGAGGTGCTGAGTAACG
CActTGGTGCTCGACCAGGAGGTGcTGAGTAACG




AGGAGGCCGAGACGCTGCGCTACGTCTACTATCG
AGGAGGCCGAGACGCTGCGCTACGTCTACTATCG




TAATGTAGACAGCGCTGGCCGATCCGCGGGCCGC
TAATGTAGACAGCGCTGGCCGATCCgCGGGCCGC




GTTCCGGGCGGAGATGAGGACGACGCACCGGCCT
GcTCCgGGcGGAGATGAGGACGACGCACCGGCCT




CCGACGACGCCGAGGACGCCGTGGGCGGCGATCG
CCGACGACGCCGAGgACGCCGTGGGCGGCGATCG




CGCTTTTGACCGCGAGCGGCGGACTTGGCAGCGG
CGCTTTTGAcCGCGAGCGGCGGACTTGGCAGCGg




GCCTGTTTTCGTGTACTACCGCGCCCACTGGAGT
GCCTGTTTTCGTGTAcTACCGCGCCCACTGGAGT




TGCTCGATTACCTACGTCAAAGCGGTCTCACTGT
TGCTcGATTACCTACGTCAAAGCGGTCTCACTGT




GACGTTAGAGAAAGAGCAGCGCGTGCGCATGTTC
GACGTTAGAGAAAGAGCAGCGCGTGCGCATGTTC




TATGCCGTCTTCACTACGTTGGGTCTGCGCTGCC
TATGCCGTCTTCACTACGTTgGGTCTGCGCTGCC




CCGATAATCGGCTCTCAGGCGCGCAGACGCTACA
CCGATAATCGGCTCTCAGGCGCGCAGACGCTACA




CCTGAGACTGGTCTGGCCCGACGGCAGCTATCGT
CCTGAGACTGGTCTGGCCCGACGGCAGCTATCGT




GACTGGGAGTTTTTAGCGCGTGACCTGTTACGAG
GACTGGGAgTTTTTAGCGCGTGACCTGTTACGAG




AAGAAATGGAAGCGAATAAGCGCG
AAGAAATGGAAGCGAAtAAGCGCG





UL95
131/132
CGTCGGTCAACAAACAGCTCTTAAAGGACGTGAT
CGTCGGTCAACAAACAGCTCTTAAAGGACGTGAT




GCGCGTCGACCTTGAGCGACAGCAGCATCAGTTT
GCGCGTCGACCTTGAGCGACAGCAGCATCAGTTT




CTGCGGCGTACCTACGGACCGCAGCACCGGCTCA
CTGCGGCGTACCTACGGACCGCAGCACCGGCTCA




CCACGCAGCAGGCTTTGACGGTGATGCGTGTGGC
CCACGCAGCAGGCTTTGACGGTGATGCGTGTGGC




CGCTCGGGAACAGACCCGATACAGTCAGCGAACG
CGCTCGGGAACAGACCCGATACAGTCAGCGAACG




ACGCAGTGCGTGGCCGCACACCTGTTGGAGCAAC
ACGCAGTGCGTGGCCGCACACCTGTTGGAGCAAC




GGGCGGCCGTGCAGCAAGAGTTGCAACGCGCCCG
GGGCGGCCGTGCAGCAAGAGTTGCAACGCGCCCG




ACAGCTGCAATCCGGTAACGTGGACGACGCGCTG
ACAGCTGCAATCCGGTAACGTGGACGACGCGCTG




GACTCTTTAACCGAGCTGAAGGACACGGTAGACG
GACTCTTTAACCGAGCTGAAGGACACGGTAGACG




ACGTGAGAGCCACCTTGGTGGACTCGGTTTCGGC
AcGTGAGAGCCACCTTGGTGGACTCGGTTTCGGc




GACGTGCGATTTGGACCTGGAGGTCGACGACGCC
GACGTGCGATTTGGACCTGGAGGTcGACGACGCC




GTCTAACAGGTATAGCAATCCCCGTCACGCCTCT
GTCTAACAGGTATAGCAATCcCCGTCACGCCTCT




GTTCAGATTTTAT
GTTCAgATTTTAT





UL97
133/134
CCGGGACGCGGAACGTGACGGTTGCTGAGGGGAA
CCGGGACGCGGAACGTGACGGTTGCtGAGGGGAA




AGGCAACAGAGAAGGTACAAACCCACCGGCGGGG
AGGcaACAGAGAAGGTACAAACCCACCGGCGGGG




AAAATACCGAGGCGCCGCCATCATCATGTGGGGC
AAAATACcGAGGCGCCGCCATCATCATGTGGGGC




GTCTCGAGTTTGGACTACGACGACGATGAGGAGC
GTCTCGAGTTTGGACTACGACGACGATGAGGAGC




TCACCCGGCTGCTGGCGGTTTGGGACGATGAGCC
TCACCCGGCTGCTGGCGGTTTGGGACGATGAGCC




CCTCAGTCTCTTTCTCATGAACACCTTTTTGCTG
cCTCAGTCTcTTTCTcATGAACACCTTTTTGCTG




CACCAGGAGGGCTTCCGTAATCTGCCCTTTACGG
CACCAGGAGGGCTTCCGTAATCTGCCCTTTACGG




TGCTGCGTCTGTCTTACGCCTACCGCATCTTCGC
TGCTGCGTtTGTCTTACGCCTACCGCATCTTCGC




CAAGATGCTGCGGGCCCACGGTACGCCAGTAGCC
CAAGATGcTGCGGGCCCACGGTACGCCAGTAGCC




GAGGACTTTATGACGCGCGTGGCCGCGCTGGCTC
GAGGACTTTATGACGCGCGTGGCCGCGcTGGCTC




GCGACGAGGGTCTGCGCGACATTTTGGGTCAGCG
GCGACGAGGGTCTGCGCGACATTTTGGGTCAGCG




GCACGCCGCCGAAGCCTCACGCGCCGAGATCGCC
GCACGCCGCCGAAGCcTCgCGCGCCGAGATCGCC




GAGGCCCTGGAGCGCGTGGCCGAGCGGTGCGACG
GAGGCCCTGGAGCGCGTGGCCGAGCGGTGCGACG




ACCGGCACGGCGGCTCGGACGACTACGTGTGGCT
ACCGGCACGGCGGCTCGGACGACTACGTGTGGCT




CAGCCGGTTGCTGGATTTGGCGCC
tAGCCGGTTGCTGGATTTgGCGCC





UL98
135/136
AAGATGCTCTGGGTCGCCAGGTGTCTCTACGCTC
AAGATGCTCTGGGTCGCCAGGTGTCTCTACGCTC




CTACGACAACATCCCTCCGACTTCCTCCTCGGAC
CTACGACAACATCCCTCCGACTTCCTCCTCGGAC




GAAGGGGAGGACGATGACGACGGGGAGGATGACG
GAAGGGGAGGACGATGACGACGGGGAGGATGACG




ATAACGAGGAGCGGCAACAGAAGCTGCGGCTCTG
ATAACGAGGAGCGGCAACAGAAGCTGCGGCTcTG




CGGTAGTGGCTGCGGGGGAAACGACAGTAGTAGC
CGGTAGTgGCTGCGGGGGAAACGACAgTAGTAGC




GGCAGCCACCGCGAGGCCACCCACGACGGCTCCA
GGCAGCCACCGCGAGGCCaCCCACGACgGCtCCA




AGAAAAACGCGGTGCGCTCGACGTTTCGCGAGGA
AGAAAAAcGCGGTGCGCTCGACGTTTCGCGAGGA




CAAGGCTCCGAAACCGAGCAAGCAGTCAAAAAAG
CAAGGCTCCGAAACCGAGCAAGCaGTCAAAAAAG




AAAAAGAAACCCTCAAAACATCACCACCATCAGC
AAAAAGAAACCCTCAAAACaTCACCACCATCAGC




AAAGCTCCATTATGCAGGAGACGGACGACCTAGA
AAAGCTCCATTATGCAGGAGACGGACGACcTAGA




CGAAGAGGACACCTCAATTTACCTGTCCCCGCCC
CGAAGAGGACACCTCAATTTACCTGTCCCCGCCC




CCGGTCCCCCCCGTCCAGGTGGTGGCTAAGCGAC
CCGGTCCCCCCCGTCCAGGTGGTGGCTAAGCGAC




TGCCGCGGCCCGACACACCCAGGACTCCGCGCCA
TGCCGCGGCCCGACACACCCAGGACTCCGCGCCA




AAAGAAGATTTCACAACGTCCACCCACCCCCGGG
AAAGAAGATTTCACAACGTCCAcCCACCCCCGGG




ACAAAAAAGCCCGCCGCCTCCTTG
ACAAAAAAGCCCGCCGCCtCCTTG





UL100
137/138
CCCCGCCGCCACCCGCACCAGACTTGGAGACATG
CCCCGCCGCCACCCGCACCAGACTTGGAGACATG




GACATAAAAAAGAGACACGCAGACCGTGGGTCGG
GACATAAAAAAGAGACACGCAGACCGTGGGTCGG




GAGCACATACTTTTTTTTTAT
GAGCACATACTTTTTTTTTtAT





UL103
139/140
GAAGCGAACTAGACACGCATATCATAGAAAAAAA
GAAGCGAACTAGACACGCATATCATAGaaaaaaa




AAAAACACGCAACACGTAGTGAGCTTTGACGTCC
aacacgcaacacgtagtgagctttgacgtccctt




CTTTTACTAGTATCCACGTCACACGCTGAGAACT
ttactagtatccacgtcacacgctgagaactttg




TTGACGCACTTTTTTTTTACTAGTATCCACGTCA
acgcacttttttttactagtatccacgtcactta




CTTACCCGCGTAGTTCCCCTACGTGACTCGTTAA
cccacgtagttctcctacgtgactcgttaagcgt




GCGTTGAGCCGGAAAAACCTCAGGCCCTCGGAAG
tgagccggaaaaaccgcaggccctcggaagccac




CCACCCGCTTAGCAGCGTGTTGCGCGTCAACCGC
ccgcttagcagcgtgttgcgcgtcaaccgccagc




CAGCGAACGCACCCACTCGTCGCGCTCCTCGAGC
gagcgcacccactcgtcgcgctcctcgagccaag




CAAGTCGCCGACGAAGAAGAACAAGACGGAGGAG
ttgccgacgaagaagaacaagacggaggagacac




ACACCGTCGCCGTGCCCGAAGAGGACGAAGTGAC
cgtcgccgtgcccgaagaggacgaagtgacggac




GGACGGCAAGGCGGAGGAGAGAACGGAAGAAGAA
ggcaaggcggaggagagaacggaagaagaagaac




CAAGCGGTGGTAGAAGCGGTGGAGGACGACAATA
aagtggtggtggaagcggtggaggacgacaataa




ACTCTCGCGCCCAGACCTCCACGCAAGCCGTGAG
ctctcgcgcccagacctccacgcaagccgtgagc




CATGGCAAAAGCCTTGTCCACATAGACGCCGTAG
atggcaaaggccttgtccacatagacgccgtagc




CCGATATCGGCCGCTAACGCCGTA
cgatatcggccgccaacgccgtat





UL105
141/142
CACAACACCGTGTAAGGAAAACGTGACTTTAT
CACAACACCGTGTAAggAAAACGTGACTTTAT





UL107
143/144
GGCATCCTCTCTGCCACACGCGCAGTCACGGATA
GGCATCCTCTCTGCCACACGCGCAGTCACGGATA




GGATCAGTGCGTATTCATTATAAAAAAAACACAA
GGATcAGTGCGTATTCATTATAAAAAAAAaCACA




ACAACCCATATATGTGAAGCAGAATGATGACCGA
AACAACCCATATATGTGAAGCAGAATGATGACCG




CCGCACGGAGCGACGCCGTCGACTGACCCACGCG
ACCgCACGGAGCGACGCCGTCGACTGACCCACGC




GGATGTACGCCGTCCGCGAACAACCAAAGGACGA
GGcATGTACGCCGTCCGCGAACaACCAAAGGACG




CCCGTCTCCCCCCGCATCCGGGTTTTTCTCTTGG
ACCCGTCTCCCCCCGCAcCCGGGTTTTTtCTCTT




TCGAACCCGGCTTGCGACGACGGGTTGTTGCTTT
GGTCGAACCCGGCTTGCGACGACGGGTtGTTcCT




ACCGGACGACGGTCAGCCGCGGGGTTGATACCCA
TTACCGGACGACGGTCAGCCGCGGGGTTGATACC




GCGACGGCGTCGCTCCCACCCGGGTTTCTTCTCT
CAGCGACGGCGTCGCTCCCACCCGGGTTTCTTCT




TGTAGGTACCACTCGTAGACTGTCAGCCTTACGA
CTTGcAGgTACCACcCGTcGACTGTCAGCCTcgC




GGAGACACCGCGGACCGGGGAAACGGATAAGTTT
GAgGAGACACCGCGGACCgGGGAAACGGATAAGT




ACGAACAGAAATCTCAAGAGAAAGATGCTGACCC
TTaCGAACAGAAATCtCAAAagAcGCTGACCCGa




GATAAGTACCGTCACGGAGACACGGTGGTTTTTA
tAAGTACcGTcACGgaGAcACGGTGGTTTTTAT




T





UL112-
145/146
AAAACAGAGCCGAGACCGGAAAAATTATGAAACA
AAAACaGAGCCGAGACCGGAAAAAtTATGAAACA


113

GGACGCGCTTGGACATTTGGGTTTCCACCCCTTT
GGACGCGCTTGGACATTTGGGTTTCCACCCCtTT




CGGTGTGTGTCTATATATATTGTGGTCACTGATT
cGGTGTGTGTCTATATATATTgtGGTcACTGATT




TTTTTTTAC
TTTTTTtac





UL117
147/148
AGCGGCGGCGGCGATGGCGGGGCTGGTTGCTTTT
AGCGGCGGCGGCGATGGCGGGGCTGGTTGCTTTT




CCTGGCCCTGTGCTTTTGCTTACTGTGTGAAGCG
CCcGGCcCTGTGCTTTTGCTTACTGtGTGAAGCG




GTGGAAACCAACGCGACCACCGTTACCAGTACCA
GTGGAAACCAACgCGACCACCGTTACCaGTACCA




CCGCTGCCGCCGCCACGACAAACACTACCGTCGC
CCGCTGCCGCCGCCACGACAAACACTACCGTCGC




CACCACCGGTACCACTACTACCTCCCCTAACGTC
CACCACCGGTACCACTACTACCTCCCCtAACGTC




ACTTCAACCACGAGTAACACCGTCATCACTCCCA
ACTTCAACCACGagtAaCaCCgtcaccactccca




CCACGGTTTCCTCGGTCAGCAATCTGACATCCAG
ccacggtttcctcgGTCagcAATctgAcgTCCAg




CGCCACGTCGATTCCCATCTCAACGTCAACGGTT
CaCcaCgtCGAttcccatctcaaCGTCAACgGTT




TCTGGAACAAGAAACACAAGGAATAATAATACCA
TCTGgaaCAAgAAAcACAgGGAATAAtaaTACCA




CAACCATCGGTACGAACGTTACTTCCCCCTCCCC
CAACCaTCGGTACGAACGcTACTTCCCCCTCCCC




TTCTGTATCCATACTTACCACCGTGACACCGGCC
TTCTGTATCCATACTTACCACCGtGACACCGGCC




GCGACTTCTACCACCTCCAACAACGGGGATGTAA
GCaACTTCTACcAtCTCCgtcgACGGtGtcGTcA




CATCCGACTACACTCCAACTTTTGACCTGGAAAA
CggcgTCaGACTACACTCCgACTTTTgacGAtCT




CATTACCACCACCCGCGCTCCCACGCGTCCTCCC
GGAAAACATTACCACCACCCGCGCTCCCACGCGT




GCCCAGGACCTTTGTAGCCATAAC
CCTCCCGCCCAGGACCTgTGTAGC





UL120
149/150
CGCGGCCCCCTGCCACATATAGCTCGTCCACACG
CGCGgCCcCctGCCACATATAGCTCGTCCACaCg




CCGTCTCGTCACACAGCAACATGTGTCCCGTGCT
CCGTCTcGTCACACaGCAACATGTGTcCCGtgCT




GGCGATCGTACTCGTGGTTGCGCTCTTGGGCGAC
GGCGATcGtaCTCgtgGttgCGCTcTTggGcgAC




ACGCACCCGGGAGTGGAAAGTAGCACCACAAGCG
AcGCACCCGgGagTGgaAAGTAGCACcACAAGcG




CCGTCACGTCCCCTAGTAATACCACCGCCACATC
CCGTcACgTCCCCtagTAATAcCACCGcCACaTc




CACTACGTCAATAAGTACCTCTAACAACGTCACT
cACTACGTCaATAAgTACCtCtAAcAACGTCACT




TCTGCTGTCACCACCACGGTACAAACCTCTACCT
TCtgCtGTCAcCACCACGGTACAAACCTCTAccT




CGTCCGCCTCCACCTCCGTGATAGCCACGACGCA
cgTCCGCCtCcACcTCCGTGatAgCCACGACGCA




GAAAGAGGGGCGCCTGTATACTGTGAATTGCGAA
GAAAGAGGGGCgCCTGTATAcTGTGAATTGCGAA




GCCAGCTACAGCTACGACCAAGTGTCTCTAAACG
GCCAGCTACAGCtACGACCAaGTGTCTCTaAACG




CCACCTGCAAAGTTATCCTGTTGAATAACACCAA
CCACCTGcAAAGTtatCCTGTTGAAtAAcACCaa




AAATCCAGACATTTTATCAGTTACTTGTTATGCA
AAATCCaGACATTTTaTCagTTACtTGTTATGCA




CGGACAGACTGCAAGGGTCCCTTCACTCAGGTGG
CGGACagACTGCAAgGGTCCcTTCACTCAGGTGG




GGTATCTTAGCGCTTTCCCCCCCGATAATGAAGG
GGTATCTTAGCGCtTTccCccCCgataAtgAAGG




TAAGTAGCACCTACCTTTCTGTTC
TAAgtagcacctacctttctgttc





UL137
151/152
TGTTACCCCGCCAGCACCTCCGCCGGCAACCGCG
tgttaccccgccagcacctccgccggcaaccgcg




TCGTCGTTGCTATCGTCGCCGGTTTCGGGCGATG
tcgtcgttgctatcgtcgccggtttcgggcgatg




ACAGCGCCGGCGGCGCGGGTCTCGTCTCGTCCAC
acagcgccggcggcgcgggtctcgtctcgtccac




CATTTCCACCGTGTCGAAGCGACAGCCGCTGCCG
catttccaccgtgtcgaagcgacagccgctgccg




TAGTACATGGCCCCGTTCAACGGCCGGCGGGCCG
tagtacatagctccgttcaacggccggcgggccg




GGTCGCCGAGTTCCGGGTCGGGCACATCCATGGC
ggtcgccgagttccgggtcgggcacatccatggc




TCGCCGTCTGCTTCTCTGCCGCTCGTGGTGCCGA
ttgccgtctccttctctgccgctcgtggtgccga




CGGCACTTCTCAGGATAATGACAGCCGCAAAATA
cggcacttctcgggataatgacagccgcaaaata




GATCGTGGAGCATGTCTCGCCAACTGTCCTGGTG
gatcgtggagcatgtctcgccaactgtcctggtg




GTAATATCTTAAGTACGCGATGAGCGCGCCGATG
gtaatatcttaagtacgcgatgagcgcgccgatg




GCCATAATCATAAGCGTAAGCAAAACGGCACAGA
gccataatcataagcgtaagcaaaacggcacaga




TAACGTGAAACACCGCGGTCATCCAAGTCGGGCG
taacgtgaaacaccgcggtcatccaagtcgggcg




GCGTCGGGGACGCGGTGGGTCGGTTTCTCTTACG
gcgtcggggacgcggtgggtcggtttctcttacg




CCGGCGTCACTCAGCCACCACACCCGTAGTCGAC
ccggcgtcactcagccaccacacccgtagccgac




ATTCCCAGAACCGGTGAATGCGAC
attcccagaaccggtgaatgcgac





UL141a
153/154
GCTGCCCGCGACTCCTCGAATATTCTTCCTCTTC
gctgcccgcgactcctcgaatattcttcctcttc




GTTCCCCTTCGCCACCGCTGACATTGCCGAAAAG
gttccccttcgccaccgctgacattgccgaaaag




ATGTGGGCCGAGAATTATGAGACCACGTCGCCGG
atgtgggccgagaattatgagaccacgtcgccgg




CGCCGGTGTTGGTCGCCGAGGGAGAGCAAGTTAC
cgccggtgttggtcgccgagggagagcaagttac




CATCCCCTGCACGGTCATGACACACTCCTGGCCC
catcccctgcacggtcatgacacactcctggccc




ATGGTCTCCATTCGCGCACGTTTCTGTCGTTCCC
atggtctccattcgcgcacgtttctgtcgttccc




ACGACGGCAGCGACGAGCTCATCCTGGACGCCGT
acgacggcagcgacgagctcatcctggacgccgt




CAAAGGCCATCGGCTGATGAACGGACTCCAGTAC
caaaggccatcggctgatgaacggactccagtac




CGCCTGCCGTACGCCACTTGGAATTTCTCGCAAT
cgcctgccgtacgccacttggaatttctcgcaat




TGCATCTCGGCCAAATATTCTCGCTGACTTTCAA
tgcatctcggccaaatattctcgctgactttcaa




CGTATCGACGGACACGGCCGGCATGTACGAATGC
cgtatcgacggacacggccggcatgtacgaatgc




GTGCTGCGCAACTACAGCCACGGCCTCATCATGC
gtgctgcgcaactacagccacggcctcatcatgc




AACGCTTCGTAATTCTCACGCAACTGGAGACGCT
aacgcttcgtaattctcacgcaactggagacgct




CAGCCGGCCCGACGAACCTTGCTGCACGCCGGCG
cagccggcccgacgaaccttgctgcacgccggcg




TTAGGTCGTTACTCGCTGGGAGAC
ttaggtcgttactcgctgggagac





UL151
155/156
AGAAGGGGAGGACGACGTTCTCGCCACAATCCGC
ctggaacgtcgtacgctgccgcggcacaggcttt




AACACGTTGTCCGCCCCAACCTCACCTGCTGCGG
cgcgcacacgattccgaggacggcgtctctgtct




CTACCACGCATCGACTGTCGTTCCCTGGAGAATC
cgcgtcagcacttggtttttttactcggaggcca




GACCTTCTGCCTCACCGCTGTTTCCGAGTGCTCA
cggccgccgtgtacagttagaacgtccatccgcg




CAACGTCGAACATCAACGGCTGCATTAACGCCGC
ggagaagcccaagctcgaggcctattgccacgca




CGCCGCCAGCGGTAGCTGCTGCGTTCTCTTTTTC
tccggatcacccccatctccacatctccacgccc




GTCCACGGTCTCCGAGACCGGCACTTTTCCGCAG
aaaaccaccccagcccaccatatccaccgcatcg




AGCACAACAGGCCGCACACGTGTCGACGACACCG
cacccacatgctacgactcgcccacatcacacgc




CCGTCGTTACCGCCGGAGACCCGCGCTCTCCTGT
tctttcctatcccttctacaccctcagccacggt




GACACACGTAACTCTCCTCCAGATATTCCGTCTG
tcacaatccccgaaactacgccgtccaacttcac




CGTAGCTCGCTGCTGACGAGCAGGTCCGGCGGCG
gccgaaacgacccgcacatggcgctgggcacgac




CTCTCCGCGGAGGTGAGCACGAGGCCATCCCCAA
gcggtgaacgtggcgcgtggatgccggccgagac




AGTCGCGTCGCTGTTCTGGACGCTGCTCAAAGCA
atttacatgtcccaaggataaacgtccctggtag




ACACAGATAGTTGACATGACTCACAAAACACCGA
acggggtagggggatctaccagcccagggatcgc




GTGCCGACTCTCACCGCAACCCAC
gtatttcgccgccacgctgcttca





UL151a
157/158
ACGCCGTGCACCACAAACTCTGCGGCGCGATGAT
acgccgtgcaccacaaactctgcggcgcgatgat




ATCTTCGTCGTGTTCCACCACTTGCACACCGCTG
atcttcgtcgtgttccaccacttgcacaccgctg




ATTATGGACTTGCCGTCGCTGTCCGTGGAACTAT
attatggacttgccgtcgctgtccgtggaactat




CTGCAGGACACAAGAAAAAAGAAACACCAACCGA
ctgcaggacacaagaaaaaagaaacaccaaccga




GGGTGGGTGGGGCGGTGAAGAAGGGGAGGACGAC
gggtgggtggggcggtgaagaaggggaggacgac




GTTCTCGCCACAATCCGCAACACGTTGTCCGCCC
gttctcgccacaatccgcaacacgttgtccgccc




CAACCTCACCTGCTGCGGCTACCACGCATCGACT
caacctcacctgctgcggctaccacgcatcgact




GTCGTTCCCTGGAGAATCGACCTTCTGCCTCACC
gtcgttccctggagaatcgaccttctgcctcacc




GCTGTTTCCGAGTGCTCACAACGTCGAACATCAA
gctgtttccgagtgctcacaacgtcgaacatcaa




CGGCTGCATTAACGCCGCCGCCGCCAGCGGTAGC
cggctgcattaacgccgccgccgccagcggtagc




TGCTGCGTTCTCTTTTTCGTCCACGGTCTCCGAG
tgctgcgttctctttttcgtccacggtctccgag




ACCGGCACTTTTCCGCAGAGCACAACAGGCCGCA
accggcacttttccgcagagcacaacaggccgca




CACGTGTCGACGACACCGCCGTCGTTACCGCCGG
cacgtgtcgacgacaccgccgtcgttaccgccgg




AGACCCGCGCTCTCCTGTGACACACGTAACTCTC
agacccgcgctctcctgtgacacacgtaactctc




CTCCAGATATTCCGTCTGCGTAGC
ctccagatattccgtctgcgtagc





UL153
159/160
CATTCCCCTGGGAATTCATGCTGTATGGGCGGGT
cattcccctgggaattcatgctgtatgggcgggt




ATAGTGGTATCTGTGGCACTTATAGCCTTATACA
atagtggtatctgtggcacttatagccttataca




TGGGTAGCCGTCGCGTCCCCAGAAGACCGCGTTA
tgggtagccgtcgcgtccccagaagaccgcgtta




TACAAAACTTCCCAAATACGACCCAGATGAATTT
tacaaaacttcccaaatacgacccagatgaattt




TAGACTAAAACCTAACATGCACATC
tagactaaaacctaacatgcacatc





US7
161/162
TAAACTGTTAGGTTCGTTATAAGCGTGGATGGTC
taaactgttaggcttgttataagcgtggatgatc




ATATATAAACCGTATGCACAAAAGGTATGTGTGA
atatataaaccgtatgcacaaaaggtatgtgtga




ATGGAAATACATGATGAATGTCATCATCACGCAA
atggaaatacatgatgaatgtcatcgtcacgcaa




AGCAGCCGTGGGAATGGTAAAGACATCGTCACAC
agcagccgtgggaatggtaaagacatcgtcacac




CTATCATAAAGAATGCAACGCTTTCAGGATAGGT
ctatcataaagaatgcaacgctttcaggataggt




GTGGCGAAAGCCTCCTCCGTTCCGTATTCTATCG
gtggcgaaagcctcctccgttccgtattctatcg




TAACAAATATATGGAGTTTGTGTAATGCGTACTT
taacaaatatatagagtttatgtaatgcgtactt




CATGCCCCGATGAACGCTCTCGTCAGGCTTGTCA
catgccccgatgaacgctctcgtcaggcttgtca




TGGTCTGTAAAAGCTGCATGAAAAACACGACGAA
tggtccgtaaaagttgcatgaaaaacacgacgaa




AGCGTTCAGTGTTGGATCAGACTCCCACGTTAAT
agcgttcagtgttggatcagactcacgtcacacg




TAAGGGCGGCCGGATCCATGTTTAAACAGGCGCG
ttacatcatacaacgtagggcggtattgttgaga




CCTAGCTTC
acatatataatcgccgtttcgtaagtacgtcgat





atcgctccttcttcactatggacctcttgatccg





tctcggttttctgttgatgtgtgcgttgccgacc





cccggtgagcggtcttcgcgtgac





US10
163/164
AATGATTTGTTATGATGTCATTGTTGTTTACTGA
aatgatttgttatgatgtcattgttgtttactga




AAAGGAATGTGCTTTCCCGGCATGGGCCCGATTC
aaaggaatgtgctttcccggcatgggcccgattc




CGAGAAATGGTATGATGAATCATGTGGTCAGGCG
cgagaaatggtatgatgaatcatgtggtcaggcg




CTGCTCTCAACGTCCATATAAACGTGGGTTTCGG
ctgctctcaacgtccatataaacgtgggtttcgg




TGACCACAACCACGTCGGGGCTGACGCGGATCGG
tgaccacaaccacgtcggggctgacgcggatcgg




ACATCATACTGACGTGAGGCGCTCCGTCACCTCT
acatcatactgacgtgaggcgctccgtcacctct




CGGGCCGAACCCCGTCAGCACCCCGCGTCACTTA
cgggccgaaccccgtcagcaccccgcgtcactta




CAAATCACGTTCGTCGTGACGGGGGTTTCCCCTG
caaatcacgttcgtcgtgacgggggtttcccctg




ACACGTAATACTCGCGTCACGTCGGGACGATATA
acacgtaatactcgcgtcacgtcgggacgatata




AAGAGGCACGGTGTTTCGGCTCCCGCACACAGAC
aagaggcacggtgtttcggctcccgcacacagac




GACGCGCCGGGCGGCTTCCTGCGGCCGGCCGCGG
gacgcgccgggcggcttcctgcggccggccgcgg




TGCCGGCGGCTATGATCCTGTGGTCCCCGTCCAC
tgccggcggctatgatcctgtggtccccgtccac




CTGTTCCTTCTTCTGGCACTGGTGTCTGATCGCA
ctgttccttcttctggcactggtgtctgatcgca




GTAAGTGTACTCTCGAGCCGCTCCAAGGAGTCGC
gtaagtgtactctcgagccgctccaaggagtcgc




TCCGGTTGTCGTGGTCCAGCGACG
tccggttgtcgtggtccagcgacg





US12
165/166
AAAAAAAACGTTTCTATCACCTAATCTGTCGTAC
aaaaaaaacgtttctatcacctaatctgtcgtac




TGTCCTTTGTCCCCCGCACCCTAAAACACCGTGT
tgtcctttgtcccccgcaccctaaaacaccgtgt




TCTCCCGACGTCACTAGATCACCACCCTGTTCCC
tctcccgacgtcactagatcaccaccctgttccc




CATGACGTGCAAGACTACATGCTATAAGACAGCC
catgacgtgcaagactacatgctataagacagcc




TTACAGCTTTTGAGTCTAGACAGGGGAACAGCCT
ttacagCttTtGagtctagaCaggggaaCagcCt




TCCCTTGTAAGACAGAATGAATCTTGTAATGCTT
tcccTtGtaAgacagAatgaatCttgtaatGCtt




ATTCTAGCCCTCTGGGCCCCGGTCGCGGGTAGTA
aTtctagccctctGGGccccgGtcgcggGtaGta




TGCCTGAATTATCCTTGACTCTTTTCGATGAACC
tgcCtgaattatccttgactcttttcGatgaaCc




TCCGCCCTTGGTGGAGACGGAGCCGTTACCGCCT
tccgcccttggTGgagaCggaGccGttacCgcct




CTGCCCGATGTTTCGGAGTACCGAGTAGAGTATT
ctgccCGatGtttcGgagtaccgagtAgagtatt




CCGAGGCGCGCTGCGTGCTCCGATCGGGCGGTCG
ccgagGCgcgcTgcgtgctcCGatcggGcggtcg




ATTGGAGGCTCTGTGGACCCTGCGCGGGAACCTG
AttggagGctcTgtggaCcctgcGcgggaacctG




TCCGTGCCCACGCCGACACCCCGGGTGTACTACC
TccGtgcccaCgccgacaccccGggtgtaCTacc




AGACGCTGGAGGGCTACGCGGATCGAGTGCCGAC
aGacgctGgagggctacgcGgaTcGagtGCCgac




GCCGGTGGAGGACGTCTCCGAAAG
GccggtggaGgAcgtctccGaAaG





US14
167/168
GCTCCGCTGGTTTATAAGAAGACTCCACCGAGAC
GctCCGCTGGTTTATAAGAAGACTCCACCGAGAC




GCTCACCCGTTCACTCGGGCGCATCACCCGCCTC
GCTCACCCGTTCACTCGGGcGCATCACCCGCCTC




ATGGACTCGCCGCTACCGTCGCTACATTCGCCGC
ATGGACtCGCCGCTaCCGTCGCTACATTCGCCGC




AATGGGCTTCCCTCCTGCAGCTGCACCACGGCCT
AATGGGCTTCcCTCCTGCAGCTGCACCACGGCCT




TATGTGGCTGCGCCGTTTTGCTGTCCTCGTCCGG
TATGTGGCTGCGCCGTTTTGCTGTCCTCGTCCGG




GTCTACGCCCTAGTGGTCTTTCACATCGCCATCA
GTCTACGCCCTAGTGGTCTTTCACATCGCCATCA




GTACGGCTTTCTGCGGAATGATTTGGCTGGGTAT
GTACGGCTTTCTGCGGAATGATTTGGCTGGGtAT




CCCCGATTCCCACAACATATGTCAACATGAATCT
CCCCGATTCCCACAACATATGTCAACATGAATCT




TCCCCTCTGCTGCTGGTTTTTGCCCCCTCCCTTC
TCCCCTCTGCTGCTGGTTTTTGCCCCCTCCCTTC




TCTGGTGTTTGGTCTTGATACAGGGCGAAAGGCA
TCTGGTGTTTGGTCTTGATACAGGGCGAAAGGCA




CCCCGACGACGTGGTATTGACCATGGGCTACGTA
CCCCGACGACGTGGTATTGACCATGGGCTACGTA




GGCCTCCTCTCCGTTACCACGGTTTTCTACACCT
GGCCTCCTCTCCGTTACCACGGTTTTCTACACCT




GGTGCTCCGACCTGCCCGCCATCCTCATCGACTA
GGTGCTCCGACCTGCCCGCCATCCTCATCGACTA




CACACTGGTCCTCACGCTGTGGATAGCTTGCACC
CACACTGGTCCTCACGCTGTGGATAGCTTGCACC




GGCGCTGTCATGGTTGGGGACAGC
GGCGCTGTCATGGTTGGGGACAGc





US24
169/170
GCGTCGAGCGGAGGACGCGG
gCGTCGAGCGGAGgACGCgG





US26
171/172
AAACAACGTCAACAGTTTACGAGTACAAAACAGG
AAACAACaTCAACAGTTTACGAGTACAAAACAGG




AAAGGAACACA
AAAGGAAtACA





US27
173/174
TTCGATCCTCTCTCACGCGTCCGCCGCACATCTA
TTCGATCCTCTCTCACGCGTCCGCCGCACATCTA




TTTTTGCTAATTGCACGTTTCTTCGTGGTCACGT
TTTTTGCTAATTGCACGTTTCTTCGTGGTCACGT




CGGCTCGAAGAGGTTGGTGTGAAAACGTCATCTC
CGGCTCGAAGAGGTTGGTGTGAAAACGTCATCTC




GCCGACGTGGTGAACCGCTCATATAGACCAAACC
GCCGACGTGGTGAACCGCTCATATAGACCAAACC




GGACGCTGCCTCAGTCTCTCGGTGCGTGGACCAG
GGACGCTGCCTCAGTCTCTCGGTGCGTGGACCAG




ACGGCGTCCATGCACCGAGGGCAGAACTGGTGCT
ACGGCGTCCATGCACCGAGGGCAGAACTGGTGCT




ATCATGACACCGACGACGACGACCGCGGAACTCA
AtCATGACaCCGACGACGACGACCGCGGAACTCA




CGACGGAGTTTGACTACGATGAAGACGCGACTCC
CGACGGAGTTTGACTACGATGAAGaCGCGACTCC




TTGTGTTTTCACCGACGTGCTTAATCAGTCAAAG
TTGTGTTTTcACCGACGTGCTTAATCAgTCAAAG




CCAGTTACGTTGTTTCTGTACGGCGTTGTCTTTC
CCaGTtACGTTGTTTCTGTACGGCGTTGTCTTTc




TCTTCGGTTCCATCGGCAACTTCTTGGTGATCTT
TcTTCGGTTCCATCGGCAACTTcTTGGTGATCTT




CACCATCACCTGGCGACGTCGGATTCAATGCTCC
CACCATCACCTGGCGACGTCGGATTCAATGCTCC




GGCGATGTTTACTTTATCAACCTCGCGGCCGCCG
GGCGATGTTTACTTTATCAACCTCGCGGCCGCCG




ATTTGCTTTTCGTTTGTACACTACCTCTGTGGAT
ATTTGCTTTTCGTTTGTACACTACCTCTGTGGAT




GCAATACCTCCTAGATCACAACTC
GCAATACCTCCTAGATCACAACTC





US28
175/176
TAAAAAAGCGCTACCTCGGCCTTTTCATACAAAC
TAAAAAAGCGCTACCTCGGtCTTTTCgTACAAAC




CCCGTGTCCGCCCCTCTTTTCCCCGTGCCCGATA
CCCGTGTCCGCCCCTcTTTTCCCCGTgCCCGATA




TACACGATATTAAACCCACGACCATTTCCGTGCG
TACACGATATTAAACCCACGACCATTTCCGTgCG




ATTAGCGAACCGGAAAAGTTTATGGGGAAAAAGA
ATTAGCGAACCGGAAAAGTTTATGGGGAAAAAGA




CGTAGGAAAGGATCATGTAGAAAAACATGCGGTG
CGTAGGAAAGGATCATGTAGAAAAACATGCGGTG




TTTCCAATGGTGGCTCTACAGTGGGTGGTGGTGG
TTTCCgATGGTGGCTCTACAGTGGGTGGTGGTGG




CTCACGTTTGGATGTGCTCGGACCGTGACGGTGG
CTCACGTTTGGATGTGCTCGGACCGTGACGGTGG




GTTTCGTCGCGCCCACGGTCCGGGCACAATCAAC
GTTTCGTCGCGCCCACGGTCCGGGCACAATCAAC




CGTGGTCCGCTCTGAGCCGGCTCCGCCGTCGGAA
CGTGGTCCGCTCTGAGCCGGCTCCGCCGTCGaAA




ACCCGACGAGACAACAATGACACGTCTTACTTCA
ACCCGACGAGACAACAATGACACGTCTTACTTCA




GCAGCACCTCTTTCCATTCTTCCGTGTCCCCTGC
GCaGCACCTCTTTCCATTCTTCCGTGTCCCCTGC




CACCTCAGTGGACCGTCAATTTCGACGGACCACG
CACCTCAGTGGACCGTCAATTTCGACGGCCCACG




TACGACCGTTGGGACGGTCGACGTTGGCTGCGTA
TACGACCGTTGGGACGGTCGACGTTGGCTGCGcA




CCCGCTACGGGAACGCCAGCGCCTGCGTGACGGG
CCCGCTACGGGAACGCCAGCGCCTGCGTGACGGG




CACCCAATGGAGCACCAACTTTTT
CACCCaATGGAGCACCAACTTTTt





New
177/178
AAAATGATAATGATGATAATAACGATTACGACCG
AAAATGATAATGATGATAATAACGATTACGaCCG


ORF1

CTAAAACCCAGAGGGCGTGTGTAGCCACGTGTTG
CTAAAACCCAGAGGGCGTGTGTaGCCACGTGTTG




GTGCTGTGGGCTTGGTTGTAACGGTGTTTCCGCT
GTgCTGTGGGCTTGGTTGTAACGGTGTTTCCGCT




GCTGTGGCTTCAAAACCAACGTGATGTTCTACGT
gCTGTGGCTtCaAAACCaACGTGAtGTTCTACGT




GACTGTTAGGGGTGGTGGATTTTTTGGGACTGGA
GacTgTTAGGGGTGgTGGATTtTTTGGGAcTGGa




GTGTTTATGATGGGTAGTGCTTATCGTCGTCTTC
GTGTttATGATGGGTAGTGCTTaTCGTCGTCTTC




TTGGCGGTGGTGGTTGTTCTCGTGGTGGTTGTTT
TTGGcGGtgGtGGTtGTtCTCGTGGTGGTTGTTt




TTTGTGTTGTGGTAGTTGTCGTTCTCGTAGTCGT
TtTgTGTTGTgGTAGTTGTCGTTCTCGtaGTCGT




AGTGGGCTTTTTGGTGGTGGTAGTGGGGAATGTA
AGTGGGcTTTTTGGTGGTGGTAGTGGGgAaTGTa




CCGTTTTCGTTCACTGTCAGATTGTAACATGTGT
CCGTTTTcGtTcACtgtcAgATtgTAACATGTGT




CTAAAGTCCATCGAAAACCATGGTTATGTTGTTG
CTAAAGTCCATcgaaaaCCaTGGtTaTGttgtTg




GTGACGCCAATCGTCTAGCGATGTCATAGTACGA
gTGacgCcaATcgtCtAgcGatGTCATaGTaCGA




TAGGTAGTACTATACTGCGCGGTAACGTTAATGA
TAGgtagtacTatactgcgcggtaacgttaatga




GGAGGAGGCTGTAATTACTCAGACATGAAAAATT
ggaggaggctgtaattactcagacatgaaaaatt




AAAGCGCGTGCTGTTAAACGTTGT
aaagcgcgtgctgttaaacgttgt





New
179/180
TTTTCTCCCCCATCCGACAAAACCGTGTCCCTTA
AACACCGTTtGACtGCACCCCAACCGGCGCCATC


ORF3

AAATTCCCCACCTTTCTCTGTTCAAATGGCCCCG
TTGGTGACCttcTCGACGGTTCTCTCGCTCGTCA




AAACTGTAAAACACCGTTTGACCGCACCCCAACC
TGCCGTTCTGAGCTCCGACATGGCGGACGAGAGA




GGCGCCATCTTGGTGACCTCGACGGTTCTCTCGC
AAATGGtGTCGAGAGCcgAGGAGCGTTTTcGCTC




TCGTCATGCCGTTCTGAGCTCCGACATGGCGGAC
CAGGCGGGTAAAAaAATAGCACGATAACTTTTCT




GAGAGAAAATGGCGTCGAGAGCCTAGGAGCGTTT
GTGCTTTTTTGAGACGTTTTtGAAGAGCTTTTTT




TCGCTCCAGGCGGGTAAAAAAATAGCACGATAAC
tCTGCTCAGAGCGAAAAAATGATAGCCCTGAAAA




TTTTCTGTGCTTTTTTTGAGACGTTTTAGAAGAG
TCTCGACGAGTCTGGCCGAGCGGCGCCATCTTGG




CTTTTTTCTGCTCAGAGCGAAAAAATGATAGCCC
AGGAGGGGCGAGTCGCGGGCACCgCCTCGGTACC




TGAAAATCTCGACGAGTCTGGCCGAGCGGCGCCA
CCCcTGGCcGAGGCGAGTCCGCGgTCGCCGCCTG




TCTTGGAGGAGGGGCGAGTCGCGGGCACCGCCTC
TTCCGTGATGCTACCTAGAGGGCgccgtcgaggc




GGTACCCCCTGGCTGAGGCGAGTCCGCGGTCGCC
gactcttcctgttttcgccctgagggctaacggt




GCCTGTTCCGTGATGCTACCTAGAGGGCGCTGTC
cgctgacgtcaaaccatctcgtgctcgctgagtc




GAGGCGACTCTTCCTGTTTTCGCCCTGAGGGCTA
acatccggttgttgacaagcgatggaggaccgca




ACGGTCGCTGACGTCAAACCATCT
cccaaagtgcgccctctagtcatc














SID




3′UTR
NO
Representative sequence










Kaposi's sarcoma-associated herpesvirus










ORF6
181
TTGTGTACCCGTAACGATGGCAAAGGAACTGGCGGCGGTCTATGCCGATGTGTCAGCCCTAGCCATGGACCT



(HHV8

CTGTCTTCTTAGTTACGCAGACCCGGCAACACTGGACACTAAAAGTCTGGCCCTCACTACAGGGAAGTTTCA


gp03)

GAGCCTTCACGGCACACTACTCCCCCTCCTCAGACGACAAAACGCACACGAATGCTCAGGTCTGTCACTAGA




ATTGGAGCACTTTTGGAAAACGTGGCTGATGCTCTGGCCACGTTGGGAGTGTGCACTAGCAGAAAACTGTCT




CCAGAAGAGCATTTTTCCCTCCTGCATTTGGACACAACATGCAACAAGCAACCGGAGCGTTAGGTTTAATTT




TTACGGAAATTGGGCCTTGGAGTTAAAGCTGTCACT





ORF7
182
ATTGGCCACCCTGGGGACTGTCATCCTGTTGGTCTGCTTTTGCGCAGGCGCGGCGCACTCGAGGGGTGACAC


(HHV8

CTTTCAGACGTCCAGTTCCCCCACACCCCCAGGATCTTCCTCTAAGGCCCCCACCAAACCTGGTGAGGAAGC


gp04)

ATCTGGTCCTAAGAGTGTGGACTTTTACCAGTTCAGAGTGTGTAGTGCATCGATCACCGGGGAGCTTTTTCG




GTTCAACCTGGAGCAGACGTGCCCAGACACCAAAGACAAGTACCACCAAGAAGGAATTTTACTGGTGTACAA




AAAAAACATAGTGCCTCATATCTTTAAGGTGCGGCGCTATAGGAAAATTGCCACCTCTGTCACGGTCTACAG




GGGCTTGACAGAGTCCGCCATCACCAACAAGTATGAACTCCCGAGACCCGTGCCACTCTATGAGATAAGCCA




CATGGACAGCACCTATCAGTGCTTTAGTTCCATGAAGGTAAATGTCAACGGGGTAGAAAACACATTTACTGA




CAGAGACGATGTTAACACCACAGTATTCCTCCAACCAGTAGAGGGGCTTACGGATAACATTCAAAGGTACTT




TAGCCAGCCGGTCATCTACGCGGAACCCGGCTGGTTTCCCGGCATATACAGAGTTAGGACCACTGTCAATTG




CGAGATAGTGGACATGATAGCCAGGTCTGCTGAACCATACAATTACTTTGTCACGTCACTGGGTGACACGGT




GGAAGTCTCCCCTTTTTGCTATAACGAATCCTCATGCAGCACAACCCCCAGCAACAAAAATGGCCTTAGCGT




CCAAGTAGTTCTCAACCACACTGTGGTCACGTACTCTGACAGAGGAACCAGTCCCACTCCCCAAAACAGGAT




CTTTGTGGAAACGGGAGCGTACACGCTTTCGTGGGCCTCCGAGAGCAAGACCACGGCCGTGTGTCCGCTGGC




ACTGTGGAAAACCTTCCCGCGCTCCATCCAGACTACCCACGAGGACAGCTTCCACTTTGTGGCCAACGAGAT




CACGGCCACCTTCACGGCTCCTCTAACGCCAGTGGCCAACTTTACCGACACGTACTCTTGTCTGACCTCGGA




TATCAACACCACGCTAAACGCCAGCAAGGCCAAACTGGCGAGCACTCACGTCCCTAACGGGACGGTCCAGTA




CTTCCACACAACAGGCGGACTCTATTTGGTCTGGCAGCCCATGTCCGCGATTAACCTGACTCACGCTCAGGG




CGACAGCGGGAACCCCACGTCATCGCCGCCCCCCTCCGCATCCCCCATGACCACCTCTGCCAGCCGCAGAAA




GAGACGGTCAGCCAGTACCGCTGCTGCCGGCGGCGGGGGGTCCACGGACAACCTGTCTTACACGCAGCTGCA




GTTTGCCTACGACAAACTGCGGGATGGCATTAATCAGGTGTTAGAAGAACTCTCCAGGGCATGGTGTCGCGA




GCAGGTCAGGGACAACCTAATGTGGTACGAGCTCAGTAAAATCAACCCCACCAGCGTTATGACAGCCATCTA




CGGTCGACCTGTATCCGCCAAGTTCGTAGGAGACGCCATTTCCGTGACCGAGTGCATTAACGTGGACCAGAG




CTCCGTAAACATCCACAAGAGCCTCAGAACCAATAGTAAGGACGTGTGTTACGCGCGCCCCCTGGTGACGTT




TAAGTTTTTGAACAGTTCCAACCTATTCACCGGCCAGCTGGGCGCGCGCAATGAGATAATACTGACCAACAA




CCAGGTGGAAACCTGCAAAGACACCTGCGAACACTACTTCATCACCCGCAACGAGACTCTGGTGTATAAGGA




CTACGCGTACCTGCGCACTATAAACACCACTGACATATCCACCCTGAACACTTTTATCGCCCTGAATCTATC




CTTTATTCAAAACATAGACTTCAAGGCCATCGAGCTGTACAGCAGTGCAGAGAAACGACTCGCGAGTAGCGT




GTTTGACCTGGAGACGATGTTCAGGGAGTACAACTACTACACACATCGTCTCGCGGGTTTGCGCGAGGATCT




GGACAACACCATAGATATGAACAAGGAGCGCTTCGTAAGGGACTTGTCGGAGATAGTGGCGGACCTGGGTGG




CATCGGAAAAACGGTGGTGAACGTGGCCAGCAGCGTGGTCACTCTATGTGGCTCATTGGTTACCGGATTCAT




AAATTTTATTAAACACCCCCTAGGTGGCATGCTGATGATCATTATCGTTATAGCAATCATCCTGATCATTTT




TATGCTCAGTCGCCGCACCAATACCATAGCCCAGGCGCCGGTGAAGATGATCTACCCCGACGTAGATCGCAG




GGCACCTCCTAGCGGCGGAGCCCCAACACGGGAGGAAATCAAAAACATCCTGCTGGGAATGCACCAGCTACA




ACAAGAGGAGAGGCAGAAGGCGGATGATCTGAAAAAAAGTACACCCTCGGTGTTTCAGCGTACCGCAAACGG




CCTTCGTCAGCGTCTGAGAGGATATAAACCTCTGACTCAATCGCTAGACATCAGTCCGGAAACGGGGGAGTG




ACAGTGGATTCGAGGTTATTGTTTGATGTAAATTTAGGAAACACGGCCCGCCTCTGAAGCACCACATACAGA




CTGCAGTTATCAACCCTACTCGTTGCACACAGACACAAATTACCGTCCGCAGATCATGGATTTTTTCAATCC




ATTTATCGACCCAACTCGCGGAGGCCCGAGAAACACTGTGAGGCAACCCACGCCGTCACAGTCGCCAACTGT




CCCCTCGGAGACAAGAGTATGCAGGCTTATACCGGCCTGTTTCCAAACCCCGGGGCGACCCGGCGTGGTTGC




CGTGGACACCACATTTCCACCCACCTACTTCCAGGGCCCCAAGCGGGGAGAAGTATTCGCGGGAGAGACTGG




GTCTATCTGGAAAACAAGGCGCGGACAGGCACGCAATGCTCCTATGTCGCACCTCATATTCCACGTATACGA




CATCGTGGAGACCACCTACACGGCCGACCGCTGCGAGGACGTGCCATTTAGCTTCCAGACTGATATCATTCC




CAGCGGCACCGTCCTCAAGCTGCTCGGCAGAACACTAGATGGCGCCAGTGTCTGCGTGAACGTTTTCAGGCA




GCGCTGCTACTTCTACACACTAGCACCCCAGGGGGTAAACCTGACCCACGTCCTCCAGCAGGCCCTCCAGGC




TGGCTTCGGTCGCGCATCCTGCGGCTTCTCCACCGAGCCGGTCAGAAAAAAAATCTTGCGCGCGTACGACAC




ACAACAATATGCTGTGCAAAAAATAACCCTGTCATCCAGTCCGATGATGCGAACGCTTAGCGACCGCCTAAC




AACCTGTGGGTGCGAGGTGTTTGAGTCCAATGTGGACGCCATTAGGCGCTTCGTGCTGGACCACGGGTTCTC




GACATTCGGGTGGTACGAGTGCAGCAATCCGGCCCCCCGCACCCAGGCCAGAGACTCTTGGACGGAACTGGA




GTTTGACTGCAGCTGGGAGGACCTAAAGTTTATCCCGGAGAGGACGGAGTGGCCCCCATACTCAATCCTATC




CTTTGATATAGAATGTATGGGCGAGAAGGGTTTTCCCAACGCGACTCAAGACGAGGACATGATTATACAAAT




CTCGTGTGTTTTACACACAGTCGGCAACGATAAACCGTACACCCGCATGCTACTGGGCCTGGGGACATGCGA




CCCCCTTCCTGGGGTGGAGGTCTTTGAGTTTCCTTCGGAGTACGACATGCTGGCCGCCTTCCTCAGCATGCT




CCGCGATTACAATGTGGAGTTTATAACGGGGTACAACATAGCAAACTTTGACCTTCCATACATCATAGCCCG




GGCAACTCAGGTGTACGACTTCAAGCTGCAGGACTTCACCAA





ORF8
183
CAGTGGATTCGAGGTTATTGTTTGATGTAAATTTAGGAAACACGGCCCGCCTCTGAAGCACCACATACAGAC


(HHV8

TGCAGTTATCAACCCTACTCGTTGCACACAGACACAAATTACCGTCCGCAGATCATGGATTTTTTCAATCCA


gp05)

TTTATCGACCCAACTCGCGGAGGCCCGAGAAACACTGTGAGGCAACCCACGCCGTCACAGTCGCCAACTGTC




CCCTCGGAGACAAGAGTATGCAGGCTTATACCGGCCTGTTTCCAAACCCCGGGGCGACCCGGCGTGGTTGCC




GTGGACACCACATTTCCACCCACCTACTTCCAGGGCCCCAAGCGGGGAGAAGTATTCGCGGGAGAGACTGGG




TCTATCTGGAAAACAAGGCGCGGACAGGCACGCAATGCTCCTATGTCGCACCTCATATTCCACGTATACGAC




ATCGTGGAGACCACCTACACGGCCGACCGCTGCGAGGACGTGCCATTTAGCTTCCAGACTGATATCATTCCC




AGCGGCACCGTCCTCAAGCTGCTCGGCAGAACACTAGATGGCGCCAGTGTCTGCGTGAACGTTTTCAGGCAG




CGCTGCTACTTCTACACACTAGCACCCCAGGGGGTAAACCTGACCCACGTCCTCCAGCAGGCCCTCCAGGCT




GGCTTCGGTCGCGCATCCTGCGGCTTCTCCACCGAGCCGGTCAGAAAAAAAATCTTGCGCGCGTACGACACA




CAACAATATGCTGTGCAAAAAATAACCCTGTCATCCAGTCCGATGATGCGAACGCTTAGCGACCGCCTAACA




ACCTGTGGGTGCGAGGTGTTTGAGTCCAATGTGGACGCCATTAGGCGCTTCGTGCTGGACCACGGGTTCTCG




ACATTCGGGTGGTACGAGTGCAGCAATCCGGCCCCCCGCACCCAGGCCAGAGACTCTTGGACGGAACTGGAG




TTTGACTGCAGCTGGGAGGACCTAAAGTTTATCCCGGAGAGGACGGAGTGGCCCCCATACTCAATCCTATCC




TTTGATATAGAATGTATGGGCGAGAAGGGTTTTCCCAACGCGACTCAAGACGAGGACATGATTATACAAATC




TCGTGTGTTTTACACACAGTCGGCAACGATAAACCGTACACCCGCATGCTACTGGGCCTGGGGACATGCGAC




CCCCTTCCTGGGGTGGAGGTCTTTGAGTTTCCTTCGGAGTACGACATGCTGGCCGCCTTCCTCAGCATGCTC




CGCGATTACAATGTGGAGTTTATAACGGGGTACAACATAGCAAACTTTGACCTTCCATACATCATAGCCCGG




GCAACTCAGGTGTACGACTTCAAGCTGCAGGACTTCACCAA





ORF9
184
TGACTCAGACGCGGAAACAGCGCCTAGAAAGTTTCCTCTTGCGCTATGTGGGACAACTAGAGTCCAACCTGG


(HHV8

CAAGCAGTGGAGCAAGACGCCAGACAGCCGATCTCGAAAAAAATAATGCAGACAGAGGCAACGTTCATCCTA


gp06)

GGTGACTGGGAGATAACGGTGTCTAACTGCCGGTTTACTTGCAGCAGCCTAACATGTGGCCCCCTTTACAGA




TCTAGCGGCGACTACACGCGGCTAAGAATCCCCTTCTCTCTGGATCGACTAATACGTGACCATGCCATCTTT




GGGCTAGTGCCAAATATTGAGGATCTGTTAACCCATGGGTCATGCGTCGCCGTAGTGGCCGACGCAAACGCC




ACAGGCGGCAACGCGCGACGCATCGTCGCGCCTGGCGTGATAAACAATTTTTCAGAACCCATCGGCATTTGG




GTACGCGGCCCTCCGCCGCAAACGCGCAAGGAAGCTATTAAGTTCTGCATATTTTTTGTCAGTCCCCTGCCC




CCGCGGGAGATGACCACATATGTGTTCAAGGGCGGCGATTTGCCTCCCGGAGCAGAGGAACCCGAAACACTA




CACTCCGCCGAGGCACCCCTACCGTCGCGCGAGACGCTGGTAACTGGACAGCTGCGATCCACCTCGCCGCGA




ACGTATACGGGATACTTTCACAGTCCTGTCCCGCTCTCTTTTTTGGACCTCCTGACATTCGAGTCCATTGGG




TGTGACAACGTGGAAGGTGACCCCGAGCAATTGACACCCAAGTACTTGACGTTCACGCAGACGGGAGAAAGA




CTTTGCAAAGTAACCGTTTACAACACCCATTCGACAGCATGCAAGAAGGCCCGTGTTCGTTTCGTCTACAGA




CCGACGCCGTCCGCCCGTCAGCTTGTCATGGGTCAGGCTTCACCCCTCATAACAACCCCTCTGGGAGCCAGG




GTATTCGCAGTCTATCCAGACTGTGAGAAAACTATCCCACCTCAGGAAACCACCACCCTGAGGATTCAATTG




CTGTTCGAGCAGCATGGTGCCAACGCCGGAGACTGCGCCTTTGTCATCATGGGGCTCGCCCGTGAAACAAAG




TTTGTCTCATTTCCCGCAGTACTCCTTCCGGGCAAGCACGAACACCTTATTGTATTCAACCCACAGACACAT




CCTCTGACCATTCAACGGGACACAATAGTGGGCGTGGCAATGGCTTGCTATATCCACCCCGGTAAGGCAGCC




AGCCAGGCACCATACAGCTTCTACGACTGCAAGGAAGAGAGCTGGCACGTGGGGCTCTTCCAGATCAAACGC




GGACCGGGAGGGGTCTGTACACCACCTTGCCACGTAGCGATTAGGGCCGACCGCCACGAGGAACCCATGCAA




TCGTGACTGTCCGAGCACATATGGCGCAGGAGTCAGAGCAGTGCTCCCGTGCGTTTGCAGTGTGCAGTAGTA




AACGACAGCTCGGGCGCGGCGAGCCCGTGTGGGATTCCGTCATTCACCCGAGCCACATCGTCATCTCTAATC




GAGTACCCCTCTTACTAAGAGAACAGCACATATGTCTCCCTTCGTGCCCCAGCGTCGGCCAGATCCTCCACA




GAGCCTACCCCAACTTTACATTTGACAACACGCACCGCAAGCAGCAAACGGAGACCTACACTGCATTCTACG




CTTTTGGGGACCAAAATAACAAGGTTAGGATCTTGCCCACTGTTGTGGAAAGCTCCTCGAGCGTGCTGATTT




TTAGACTGCGTGCATCGGTCTCTGCGAACATCGCCGTGGGAGGGCTCAAAATAATAATACTTGCTCTCACCC




TGGTGCATGCCCAAGGAGTGTACCTGCGTTGCGGTAAGGACCTTTCTACACCACACTGCGCACCGGCTATTG




TTCAGCGTGAGGTGCTGAGCAGCGGGTTTGAGCCGCAGTTTACCGTAACTGGCATTCCAGTGACATCCTCGA




ACTTAAACCAATGCTACTTTCTGGTAAGAAAGCCAAAAAGCCGGCTGGCAAAGCCGTTTGCACGCCTGTCCG




CGGAGACGACTGAGGAGTGTCGCGTCAGGTCTATCCGCCTTGGGAAGACACACCTGCGGATATCGGTGACTG




CGCCTGCGCAGGAAACGCCCGTCTGGGGGCTCGTGACCACGAGCTTCAGCCTTACCCCCACCGCACCGCTGG




CCTTTGATCGTAACCCGTACAATCACGAGACATTTGCCTGTAATGCCAAGCACTACATCCCAGTCATCTACA




GCGGACCAAAAATTACGCTGGCCCCGCGCGGCCGCCAGGTAGTCTGGCACAACAACAGCTACACGTCCTCCC




TGCCATGCAAAGTCACAGCCATCGTGTCAAACCACTGCTGTAACTGTGACATATTTTTAGAGGACTCGGAAT




GGCGCCCAAACAAGCCAGCACCCCTGAAACTGGTGAACACGAGTGATCATCCCGTCATATTGGAGCCGGACA




CACACATTGGAAACGCCCTCTTCATCATCGCACCCAAGGCCCGAGGTTTACGCAGACTGACTCGCTTAACCA




CAAAAACCATTGAACTTCCTGGCGGGGTAAAGATAGACAGCAGGAAATTACAAACATTCAGAAAAATGTATG




TTGCCACCGGACGCAGTTAGGTGTCCGGTTCCCACCCACACATTTGTCTTTATTGCTTTCA





ORF16
185
CGCGTAATTCGAGGTCCCCGGAAGAGTAGAGGGTTGCATGTTATACAAACAACATAAACATTAAATGAACAT


(HHV8

TGTTCAAAACGTATGTTTATTTTTTTTCAAACAGGGGAGTAGGGTAGGAAGGGTACGTCTAATACGTAACTG


gp17)

TTCGCTACTGCTTGTTCAGGAGCTCCTCGCAGAACATCTTGCGAATTTTAGATTTTGGACTAGAGCGACTGC




TGGCTTCAACGCGGTTCGATGTAGGGTTCGGCGTAGGAGCGTCTTTCTCCACCGCCGCGCATGGTGTATGCG




TGGTCTCCGGTGCCTGTTGTTGGATGCTCTGCGTGCTGGAGGCGGGGGTGGGTTCAGCGGGTGGTGCGCCAA




CTACCGCGAGTCCTGTAGAGACTGGCGGGTGGCTCACATGTGGCTGAGCAAAAAGGATGGGCGCCGCTTGCT




GGAACTGACCGTGTGGCGCCTGCACGTAAATGGGTGGGTGTACGTAGGTTCCTCCGTGCTCCTTCATTGTCG




GGAATTGACACGGGACCGCTGAATTGGCGTGGGGCCTGTAGTGTGGATCTACTGCGGCTGCTGCTGCAGAGG




AGGACGGCGGTGGCCCTGCGTGCCAACCGTTCAGTTTCATCTCTTTGAGTTCAGACTGTATTTCCGCTATGT




TCTTTGACATGGACAAGATATCCTTGTGATACGCCGGCTCCTCTCCTGGAAAGAGGTGTCCTTCGTCGTCCT




CTGCGCCGCGCTTGCGCTTCCCCGTCCTATATCCAGGCAGCTGTGGCGAGTAATACCATGGATCGTATGGGT




TCTTGTAAGCGTAGCCGTATGGTGGCGCTGGGTTTGAAACATACGAAGGTAGGTGATGGTCGGTGGGGAACA




TCTGGCCCCCACACCCCATTAGGCCTGGCCCTGAAAGTGTATGTGACATTTTTGCCGCTGTGGTCTTCATTC




CATCGATGCTGCTTTGTAGCATGCTCAGGAAGGCGGATTTGGGGATGGATATGATATCCTCTTGACCAGAGC




TGTTCATGGCTGGTCTGGGTGGTGTGACGGCTTGGATGCCGACCGGGAATTGGCTGGCCTTTAAATACGCCG




GGCTCAATATGCTGGCCACACCTCTGTCAGTTTTCAATAGGTCGAGGCGGTCCCGTATGAAGCTGGCATCTA




TAGCTTTTGCCATTAAGGTCTCCAGGGGACTGACGAAATTTGGTGTGGAAAGGTCCTCCAGCCTGCAGCTAC




TTACGTGCTGGAGGATGTGGGCGCGCTCCGACTTAGATACTGATGAGAATCTGGAAACCACCCACTCGGCGT




CGTGTCCGTACACGGCCACTGTGCCGCGTCGGCGCCCCAGGGCGCATAGTGATACGTGTTGAAACACGGGAC




CGCTGGGAGTCTGGGATAACTCGCGGGGATGTATAGACGATAAAGACAGCCCCGGGAGCCACGTGTGGAGTA




TCTCCAACAGTGGTTCCTTAGGGAGATTTTTCACGGGGGCTCTGGCCACGTGGGAGGTGTCCGCCAGCCTGG




ATGCCAGCTCTAGGAAGGCTGGCGACGTGATGGCTCCGGTGCAGAAAATACCGTGGGACACTTGAAATAGAC




CCAGTGTCCAGCCCACTTCTGTCTCTGGTAGGTGTTCGATTGTTATTGGAAGGGGTTCTGTGACTGGGAGAT




AATCCGTCACCTGATCCGGATCGAGATAGAGCTCTTGCTCCAGCTTGGGGCAGGACACAACATCTACAAACC




CTCCGACGTACAGGCCCTGTGCCATGCTCGGAAAATACGTGTGTGAGACCGAGCCGCTGAGCCCGGGGCTTA




GGAGGCTCATGTGGCGCTTTTTGCAAAATAAGAATTTAAATACATTCCACGCCCAAGAGCTGCGTTTTATTC




ATTTGGTTCTCTGCAGGATGTACAATTTCGGTCTAAATGTGTACCTGTTAAGGGAGGCTACTGCCAATGCCG




GGACCTACGACGAGGTGGTCCTGGGACGCAAGGTTCCTGCGGAGGTGTGGAAGCTCGTGTACGATGGGCTCG




AGGAGATGGGCGTGTCAAGTGAGATGCTGCTGTGTGAGGCATACCGGGACAGCCTCTGGATGCACTTGAACG




ATAAGGTGGGGCTCTTGAGGGGCCTGGCGAATTATCTGTTTCACCGGCTAGGGGTCACCCACGACGTTCGCA




TCGCCCCGGAAAACCTGGTGGACGGAAACTTTTTGTTTAATCTGGGAAGTGTGCTCCCCTGCAGGCTGCTCC




TTGCGGCGGGCTACTGCCTCGCCTTTTGGGGCAGCGATGAACACGAACGCTGGGTGCGCTTCTTCGCCCAGA




AGCTTTTCATTTGCTACCTGATAGTCTCCGGGCGTCTTATGCCACAGAGGTCTCTGCTAGTTTGGGCCAGCG




AAACGGGCTATCCCGGTCCGGTGGAGGCAGTCTGTCGCGACATCCGCTCCATGTACGGCATACGAACGTATG




CGGTCTCGGGTTATCTTCCGGCTCCGTCCGAAGCGCAGCTGGCCTACCTTGGTGCGTTTAACAACAACGCGG




TTTAAACGACCGCGAGGACCACCGGCAGGCAGCCAAGAACCATAAAGTACGCTCTATCGTAGTCATCGCCGC




CGCCAAACTGGGACTTGATAATCTCCTGGAGAAGGGTGGGTGGGGATGGGTGTGAAAGCAGGACGTCCAGGC




CCTCTTCTGTTGCCAGGCGGAGGGCTGTTCTCGCCTGGAGCAGCGCCAGTGGATCTCGGAATGTAAGCTGCT




GGTTCAGGATTTCGAATATCTCATTAAACCTACTGCCTGTCAGATTTACAAATGGTCCGGGTTGTTTGTGGG




ACACGGTCGATCGCGCCTCGAGGGCGGCCAGTATTATGCCAGGGAAGATGAAGGACACGGGGGCGTTTGGAT




TAGCCTGCAGTGTGGGGATTATGTAGTGCTCCGATATGAACGAAAATAGCTGGCCCCTTTTCAGCATGGGGG




CGTTTGGATCCGGTAGGGCACCGGGCTGAAATTTGGGTCCCAGCAGGGATACCAGGTTCAAGCGGCGGTTTG




GGTGCCCTCGCGCGACTTGCCCAAACTCCAGCAATCCATACGCGAGGATAAACACCTCCAGCGCAACAATCC




CCGCTCGCAGGTTCCACTGGTATGCGGAAAATGGTGGTATATCGGACCCAAACATGGCGCTCGTAATGGCGA




ATACCAAGTCCATGGCGGGCGCTGTCCCTGGCGCGCCCGTACCCTTGTTGTGGGGAAATAATCCAGCCTTAG




CCATCATTGCGTGAAGCTTGTGGCGCTGGAAGAAGGCTGTCGGATAGCGGCTCTCCTTATTGAGAGGCGCCA




GCGAGGCGCGCTCCTGGGGGTTTGAGTATGTGAAGCTGAAGTCCCCAGGACCGCTTTCCTGTTTTAGCTGAG




TGATTAGCAGGTCTAGCTTTTGAGGCAGGTCTGCTAACAGGTCATCGGGAGTAGCGGGCAGTTGCCTGGATG




TCTTTTGACAAAAGTACGCGTTGACGAGGCAAAGCGCGGCCTGGGTGTCCGTGAGATGCCTGGCGTCGGCGA




AAAAGTCAGCGGTGGTCGAGGCGACCGTCGTCAGGGTGTGAGAGATGAGTTTGAGCGATGTGGAATTCTGAA




AGTTAACAGTCCCCTTTAGTTCTTTAGGGAAGACGCGCCGCTGCATGGCGTTGTCCGTGAGGCTGATGAACC




ACGGCCCAAAGGATGGCAACCACTGATTCTGGTTCATGTACAGGGTGGGCATGAGCTCGCCGCGCAGGTCCC




TGTCAACGGAGAAGTGAGGGTCCCCGGGGACGATCGCCACGGTGAAGTTACGGTGGCTGGCCTGCGGGGGGG




ATGTCACTAAGGGAGGCTCATGGGAACGGCTTTGGGGCATGTCTATGTTGTCAGACCATGTCATGTTGCCTA




TCATCTGTTTCACCGCGTCGATATCTGCGTTAATGACGCGGACGCGTGAGTCATGGACCTGAACAAGCCGGT




CCAGCTCTAGGGAAAGCAGGTGTGCCTTTGTCTTTCGTTCTCGATTTCGCACGAGTTGGCTGCGCAGTCCAA




GGGCGACCCTTCTTGTTTCTTCCATGGTGGGCTTGTG





ORF18
186
ACGACCGCGAGGACCACCGGCAGGCAGCCAAGAACCATAAAGTACGCTCTATCGTAGTCATCGCCGCCGCCA


(HHV8

AACTGGGACTTGATAATCTCCTGGAGAAGGGTGGGTGGGGATGGGTGTGAAAGCAGGACGTCCAGGCCCTCT


gp19)

TCTGTTGCCAGGCGGAGGGCTGTTCTCGCCTGGAGCAGCGCCAGTGGATCTCGGAATGTAAGCTGCTGGTTC




AGGATTTCGAATATCTCATTAAACCTACTGCCTGTCAGATTTACAAATGGTCCGGGTTGTTTGTGGGACACG




GTCGATCGCGCCTCGAGGGCGGCCAGTATTATGCCAGGGAAGATGAAGGACACGGGGGCGTTTGGATTAGCC




TGCAGTGTGGGGATTATGTAGTGCTCCGATATGAACGAAAATAGCTGGCCCCTTTTCAGCATGGGGGCGTTT




GGATCCGGTAGGGCACCGGGCTGAAATTTGGGTCCCAGCAGGGATACCAGGTTCAAGCGGCGGTTTGGGTGC




CCTCGCGCGACTTGCCCAAACTCCAGCAATCCATACGCGAGGATAAACACCTCCAGCGCAACAATCCCCGCT




CGCAGGTTCCACTGGTATGCGGAAAATGGTGGTATATCGGACCCAAACATGGCGCTCGTAATGGCGAATACC




AAGTCCATGGCGGGCGCTGTCCCTGGCGCGCCCGTACCCTTGTTGTGGGGAAATAATCCAGCCTTAGCCATC




ATTGCGTGAAGCTTGTGGCGCTGGAAGAAGGCTGTCGGATAGCGGCTCTCCTTATTGAGAGGCGCCAGCGAG




GCGCGCTCCTGGGGGTTTGAGTATGTGAAGCTGAAGTCCCCAGGACCGCTTTCCTGTTTTAGCTGAGTGATT




AGCAGGTCTAGCTTTTGAGGCAGGTCTGCTAACAGGTCATCGGGAGTAGCGGGCAGTTGCCTGGATGTCTTT




TGACAAAAGTACGCGTTGACGAGGCAAAGCGCGGCCTGGGTGTCCGTGAGATGCCTGGCGTCGGCGAAAAAG




TCAGCGGTGGTCGAGGCGACCGTCGTCAGGGTGTGAGAGATGAGTTTGAGCGATGTGGAATTCTGAAAGTTA




ACAGTCCCCTTTAGTTCTTTAGGGAAGACGCGCCGCTGCATGGCGTTGTCCGTGAGGCTGATGAACCACGGC




CCAAAGGATGGCAACCACTGATTCTGGTTCATGTACAGGGTGGGCATGAGCTCGCCGCGCAGGTCCCTGTCA




ACGGAGAAGTGAGGGTCCCCGGGGACGATCGCCACGGTGAAGTTACGGTGGCTGGCCTGCGGGGGGGATGTC




ACTAAGGGAGGCTCATGGGAACGGCTTTGGGGCATGTCTATGTTGTCAGACCATGTCATGTTGCCTATCATC




TGTTTCACCGCGTCGATATCTGCGTTAATGACGCGGACGCGTGAGTCATGGACCTGAACAAGCCGGTCCAGC




TCTAGGGAAAGCAGGTGTGCCTTTGTCTTTCGTTCTCGATTTCGCACGAGTTGGCTGCGCAGTCCAAGGGCG




ACCCTTCTTGTTTCTTCCATGGTGGGCTTGTG





ORF21
187
CCTTCTTGGCGGCCCTTGCATGCTGGCGATGCATATCGTTGACATGTGGAGCCACTGGCGCGTTGCCGACAA


(HHV8

CGGCGACGACAATAACCCGCTCCGCCACGCAGCTCATCAATGGGAGAACCAACCTCTCCATAGAACTGGAAT


gp22)

TCAACGGCACTAGTTTTTTTCTAAATTGGCAAAATCTGTTGAATGTGATCACGGAGCCGGCCCTGACAGAGT




TGTGGACCTCCGCCGAAGTCGCCGAGGACCTCAGGGTAACTCTGAAAAAGAGGCAAAGTCTTTTTTTCCCCA




ACAAGACAGTTGTGATCTCTGGAGACGGCCATCGCTATACGTGCGAGGTGCCGACGTCGTCGCAAACTTATA




ACATCACCAAGGGCTTTAACTATAGCGCTCTGCCCGGGCACCTTGGCGGATTTGGGATCAACGCGCGTCTGG




TACTGGGTGATATCTTCGCATCAAAATGGTCGCTATTCGCGAGGGACACCCCAGAGTATCGGGTGTTTTACC




CAATGATTGTCATGGCCGTCAAGTTTTCCATATCCATTGGCAACAACGAGTCCGGCGTAGCGCTCTATGGAG




TGGTGTCGGAAGATTTCGTGGTCGTCACGCTCCACAACAGGTCCAAAGAGGCTAACGAGACGGCGTCCCATC




TTCTGTTCGGTCTCCCGGATTCACTGCCATCTCTGAAGGGCCATGCCACCTATGATGAACTCACGTTCGCCC




GAAACGCAAAATATGCGCTAGTGGCGATCCTGCCTAAAGATTCTTACCAGACACTCCTTACAGAGAATTACA




CTCGCATATTTCTGAACATGACGGAGTCGACGCCCCTCGAGTTCACGCGGACGATCCAGACTAGGATCGTAT




CAATCGAGGCCAGGCGCGCCTGCGCAGCTCAAGAGGCGGCGCCGGACATATTCTTGGTGTTGTTTCAGATGT




TGGTGGCACACTTTCTTGTTGCGCGGGGCATTACCGAGCACCGATTTGTGGAGGTGGACTGCGTGTGTCGGC




AGTATGCGGAACTGTATTTTCTCCGCCGCATCTCGCGTCTGTGCATGCCCACGTTCACCACTGTCGGGTATA




ACCACACCACCCTTGGCGCTGTGGCCGCCACACAAATAGCTCGCGTGTCCGCCACGAAGTTGGCCAGTTTGC




CCCGCTCTTCCCAGGAAACAGTGCTGGCCATGGTCCAGCTTGGCGCCCGTGATGGCGCCGTCCCTTCCTCCA




TTCTGGAGGGCATTGCTATGGTCGTCGAACATATGTATACCGCCTACACTTATGTGTACACACTCGGCGATA




CTGAAAGAAAATTAATGTTGGACATACACACGGTCCTCACCGACAGCTGCCCGCCCAAAGACTCCGGAGTAT




CAGAAAAGCTACTGAGAACATATTTGATGTTCACATCAATGTGTACCAACATAGAGCTGGGCGAAATGATCG




CCCGCTTTTCCAAACCGGACAGCCTTAACATCTATAGGGCATTCTCCCCCTGCTTTCTAGGACTAAGGTACG




ATTTGCATCCAGCCAAGTTGCGCGCCGAGGCGCCGCAGTCGTCCGCTCTGACGCGGACTGCCGTTGCCAGAG




GAACATCGGGATTCGCAGAATTGCTCCACGCGCTGCACCTCGATAGCTTAAATTTAATTCCGGCGATTAACT




GTTCAAAGATTACAGCCGACAAGATAATAGCTACGGTACCCTTGCCTCACGTCACGTATATCATCAGTTCCG




AAGCACTCTCGAACGCTGTTGTCTACGAGGTGTCGGAGATCTTCCTCAAGAGTGCCATGTTTATATCTGCTA




TCAAACCCGATTGCTCCGGCTTTAACTTTTCTCAGATTGATAGGCACATTCCCATAGTCTACAACATCAGCA




CACCAAGAAGAGGTTGCCCCCTTTGTGACTCTGTAATCATGAGCTACGATGAGAGCGATGGCCTGCAGTCTC




TCATGTATGTCACTAATGAAAGGGTGCAGACCAACCTCTTTTTAGATAAGTCACCTTTCTTTGATAATAACA




ACCTACACATTCATTATTTGTGGCTGAGGGACAACGGGACCGTAGTGGAGATAAGGGGCATGTATAGAAGAC




GCGCAGCCAGTGCTTTGTTTCTAATTCTCTCTTTTATTGGGTTCTCGGGGGTTATCTACTTTCTTTACAGAC




TGTTTTCCATCCTTTATTAGACGGTC





ORF25
188
CTAACCCTTCTAGCGTTGGCTAGTCATGGCACTCGACAAGAGTATAGTGGTTAACTTCACCTCCAGACTCTT


(HHV8

CGCTGATGAACTGGCCGCCCTTCAGTCAAAAATAGGGAGCGTACTGCCGCTCGGAGATTGCCACCGTTTACA


gp26)

AAATATACAGGCATTGGGCCTGGGGTGCGTATGCTCACGTGAGACATCTCCGGACTACATCCAAATTATGCA




GTATCTATCCAAGTGCACACTCGCTGTCCTGGAGGAGGTTCGCCCGGACAGCCTGCGCCTAACGCGGATGGA




TCCCTCTGACAACCTTCAGATAAAAAACGTATATGCCCCCTTTTTTCAGTGGGACAGCAACACCCAGCTAGC




AGTGCTACCCCCATTTTTTAGCCGAAAGGATTCCACCATTGTGCTCGAATCCAACGGATTTGACCTCGTGTT




CCCCATGGTCGTGCCGCAGCAACTGGGGCACGCTATTCTGCAGCAGCTGTTGGTGTACCACATCTACTCCAA




AATATCGGCCGGGGCCCCGGATGATGTAAATATGGCGGAACTTGATCTATATACCACCAATGTGTCATTTAT




GGGGCGCACATATCGTCTGGACGTAGACAACACGGATCCACGTACTGCCCTGCGAGTGCTTGACGATCTGTC




CATGTACCTTTGTATCCTATCAGCCTTGGTTCCCAGGGGGTGTCTCCGTCTGCTCACGGCGCTCGTGCGGCA




CGACAGGCATCCTCTGACAGAGGTGTTTGAGGGGGTGGTGCCAGATGAGGTGACCAGGATAGATCTCGACCA




GTTGAGCGTCCCAGATGACATCACCAGGATGCGCGTCATGTTCTCCTATCTTCAGAGTCTCAGTTCTATATT




TAATCTTGGCCCCAGACTGCACGTGTATGCCTACTCGGCAGAGACTTTGGCGGCCTCCTGTTGGTATTCCCC




ACGCTAACGATTTGAAGCGGGGGGGGGGTATGGCGTCATCTGATATTCTGTCGGTTGCAAGGACGGATGACG




GCTCCGTCTGTGAAGTCTCCCTGCGTGGAGGTAGGAAAAAAACTACCGTCTACCTGCCGGACACTGAACCCT




GGGTGGTAGAGACCGACGCCATCAAAGACGCCTTCCTCAGCGACGGGATCGTGGATATGGCTCGAAAGCTTC




ATCGTGGTGCCCTGCCCTCAAATTCTCACAACGGCTTGAGGATGGTGCTTTTTTGTTATTGTTACTTGCAAA




ATTGTGTGTACCTAGCCCTGTTTCTGTGCCCCCTTAATCCTTACTTGGTAACTCCCTCAAGCATTGAGTTTG




CCGAGCCCGTTGTGGCACCTGAGGTGCTCTTCCCACACCCGGCTGAGATGTCTCGCGGTTGCGATGACGCGA




TTTTCTGTAAACTGCCCTATACCGTGCCTATAATCAACACCACGTTTGGACGCATTTACCCGAACTCTACAC




GCGAGCCGGACGGCAGGCCTACGGATTACTCCATGGCCCTTAGAAGGGCTTTTGCAGTTATGGTTAACACGT




CATGTGCAGGAGTGACATTGTGCCGCGGAGAAACTCAGACCGCATCCCGTAACCACACTGAGTGGGAAAATC




TGCTGGCTATGTTTTCTGTGATTATCTATGCCTTAGATCACAACTGTCACCCGGAAGCACTGTCTATCGCGA




GCGGCATCTTTGACGAGCGTGACTATGGATTATTCATCTCTCAGCCCCGGAGCGTGCCCTCGCCTACCCCTT




GCGACGTGTCGTGGGAAGATATCTACAACGGGACTTACCTAGCTCGGCCTGGAAACTGTGACCCCTGGCCCA




ATCTATCCACCCCTCCCTTGATTCTAAATTTTA





ORF26
189
CGATTTGAAGCGGGGGGGGGGTATGGCGTCATCTGATATTCTGTCGGTTGCAAGGACGGATGACGGCTCCGT


(HHV8

CTGTGAAGTCTCCCTGCGTGGAGGTAGGAAAAAAACTACCGTCTACCTGCCGGACACTGAACCCTGGGTGGT


gp27)

AGAGACCGACGCCATCAAAGACGCCTTCCTCAGCGACGGGATCGTGGATATGGCTCGAAAGCTTCATCGTGG




TGCCCTGCCCTCAAATTCTCACAACGGCTTGAGGATGGTGCTTTTTTGTTATTGTTACTTGCAAAATTGTGT




GTACCTAGCCCTGTTTCTGTGCCCCCTTAATCCTTACTTGGTAACTCCCTCAAGCATTGAGTTTGCCGAGCC




CGTTGTGGCACCTGAGGTGCTCTTCCCACACCCGGCTGAGATGTCTCGCGGTTGCGATGACGCGATTTTCTG




TAAACTGCCCTATACCGTGCCTATAATCAACACCACGTTTGGACGCATTTACCCGAACTCTACACGCGAGCC




GGACGGCAGGCCTACGGATTACTCCATGGCCCTTAGAAGGGCTTTTGCAGTTATGGTTAACACGTCATGTGC




AGGAGTGACATTGTGCCGCGGAGAAACTCAGACCGCATCCCGTAACCACACTGAGTGGGAAAATCTGCTGGC




TATGTTTTCTGTGATTATCTATGCCTTAGATCACAACTGTCACCCGGAAGCACTGTCTATCGCGAGCGGCAT




CTTTGACGAGCGTGACTATGGATTATTCATCTCTCAGCCCCGGAGCGTGCCCTCGCCTACCCCTTGCGACGT




GTCGTGGGAAGATATCTACAACGGGACTTACCTAGCTCGGCCTGGAAACTGTGACCCCTGGCCCAATCTATC




CACCCCTCCCTTGATTCTAAATTTTA





ORF28
190
AACGGGGTGTGTGCTATAATGGATGGCTATGGGGGGGCTGTAGATAATTGAGCGCTGTGCTTTTATTGTGGG


(HHV8

GATATGGGCTTGTACATGTGTCTATCATCGGTAGCCATAAAATGGGCCATGACAACTGCCACAAGTAAGTCG


gp29)

TCCGACATGTGCTTTTGCTTGGCGCTGTATGACTGCCCTCCATCCCTAAGCGGGACGCACTTGATCGCGCGG




ACCTGTTCTACCAGGTAGGTCACCGGGTCAAATGATATTTTGATGGTGTTGGACACCACCGTCTGGCTGGCG




CTCAGGGTGCCGGAGTTCAGAGCGTAGATGAATGTCTCAAACGCGGAGGATTTCTCGCCTCCCAACATGTAA




ATTGGCCACTGCAGGGCGCTGCTCTTGTCAGTATAGTGTAGAAAATGTATGGGGAGCGGGCATATTTCGTTA




AGGACGGTTGCAATGGCCACCCCAGAATCTTGGCTGCTGTTGCCTTCGACCGCCGCGTTCACGCGCTCAATT




GTGGGGTGGAGCACAGCGATCGCCTTAATCATCGTGCATGCGCAGGACGCTATCTCGTAAGCAGCTGCGCCA




GTGAGGTCGCGCAGGAAGAAATGCTCCATGCCCAATATGAGGCTTCTGGTGGGAGTCTGAGTACTCGTGACA




ACGGCGCCCACGCCAGTACCGGACGCCTCCGTGTTGTTCGTATACGCGGGGTCGATGTAAACAAACAGCTGT




TTTCCAAGGCACTTCTGAACCTGCTGGGCGGTGGTGTCTACCCGACACATGTCAAACTGTGTCAGCGCTGCG




TCACCCACCACGCGGTAAAGCGTAGCATTTGACGACGCTGCTCCCTCGCCCATTAGTTCGGTGTCGAATGCC




CCCTCCATAAAGAGGTTGGTGGTGGTTTTGATGGATTCGTCGATGGTGATGTACGTCGGAATGTGCAGTCTG




TAACAAGGACAGGACACTAGTGCGTCTTGCAGGTGGAAATCTTCGCGGTGGTCCGCACACACGTAACTGACC




ACATTCAGCATCTTTTCCTGGGCGTTCCTGAGGTTAAGCAGGAAACTCGTGGAGCGGTCTGACGAGTTCACG




GATGATATAAATATAAGCTTGGCGTCTTTCTGAAGCATGAAACCCAGAATAGCCGGCAGTGCATCCTTTTT





ORF32
191
CCGGAGGCGCAAACTTCGGAATTTCCTAAACAAGGAATGCATATGGACTGTTAACCCAATGTCAGGGGACCA


(HHV8

TATCAAGGTCTTTAACGCCTGCACCTCTATCTCGCCGGTGTATGACCCTGAGCTGGTAACCAGCTACGCACT


gp33)

GAGCGTGCCTGCTTACAATGTGTCTGTGGCTATCTTGCTGCATAAAGTCATGGGACCGTGTGTGGCTGTGGG




AATTAACGGAGAAATGATCATGTACGTCGTAAGCCAGTGTGTTTCTGTGCGGCCCGTCCCGGGGCGCGATGG




TATGGCGCTCATCTACTTTGGACAGTTTCTGGAGGAAGCATCCGGACTGAGATTTCCCTACATTGCTCCGCC




GCCGTCGCGCGAACACGTACCTGACCTGACCAGACAAGAATTAGTTCATACCTCCCAGGTGGTGCGCCGCGG




CGACCTGACCAATTGCACTATGGGTCTCGAATTCAGGAATGTGAACCCTTTTGTTTGGCTCGGGGGCGGATC




GGTGTGGCTGCTGTTCTTGGGCGTGGACTACATGGCGTTCTGTCCGGGTGTCGACGGAATGCCGTCGTTGGC




AAGAGTGGCCGCCCTGCTTACCAGGTGCGACCACCCAGACTGTGTCCACTGCCATGGACTCCGTGGACACGT




TAATGTATTTCGTGGGTACTGTTCTGCGCAGTCGCCGGGTCTATCTAACATCTGTCCCTGTATCAAATCATG




TGGGACCGGGAATGGAGTGACTAGGGTCACTGGAAACAGAAATTTTCTGGGTCTTCTGTTCGATCCCATTGT




CCAGAGCAGGGTAACAGCTCTGAAGATAACTAGCCACCCAACCCCCACGCACGTCGAGAATGTGCTAACAGG




AGTGCTCGACGACGGCACCTTGGTGCCGTCCGTCCAAGGCACCCTGGGTCCTCTTACGAATGTCTGACTACT




TCAGCCGCTTGCTGATATATGAGTGTAAAAAACTTAAGGCCCTGGGCTTACGTTCTTATTGAAGCATGTTGC




GCACATCAGCGAGCTGGACCGTCCTCCGGGTCGCGTGTAGATTATGGTTCCGTTCTCCTTCTTGATGTTTAA




ATTTTTGGGGGGGAACCACCGACAAAGCGTCTTTATGATTTCCGCGAACACGGAGTTGGCTACGTGCTTTTG




GTGGGCTACGTACCCAATGTTAATGTTCTCTACGGATGCCAGTAGCATGCTGATGATCGCCACCACTATCCA




TGTCTTTCCGTGTCTCCTTGGTATTAGGAATACGCTTGCCTTTTGCTTAAACGTCTGTAAAACACTGTTTGG




AGTTTCA





ORF40
192
AGCGGAGAGGGGGTGGTGCGAGTTGGCAGTTGACGGGTTTGTGATAGCTGGAGTGCTGACCACGGCACAGGA


(HHV8

CCCATTAACTTTCCTATGTGTTTATTTTTAGCAATGGTCTCCAGAATTCAAGGATCTCAAAAGGGCCTGCCA


gp42)

GATGGCCGGGTTTACTCTGAAGGGGGGGACTTCGGGGGATCTTGTATTCTCATCGCATGCGAACTTGCTCTT




TTCAACCTCGATGGGATATTTCCTCCATGCAGGCAGTCCAAGGTCGACAGCGGGGACGGGGGGTGAGCCTAA




CCCACGTCACATCACCGGACCAGACACTGAGGGAAATGGGGAACACAGAAACTCCCCCAACCTCTGCGGCTT




TGTTACCTGGCTGCAAAGCTTAACCACATGCATTGAACGAGCCCTAAACATGCCTCCCGACACTTCCTGGCT




GCAGCTGATAGAGGAAGTGATACCCCTGTATTTTCATAGGCGAAGACAAACATCATTCTGGCTCATCCCCCT




ATCGCACTGTGAAGGGATCCCAGTATGCCCCCCTTTACCATTTGACTGCCTAGCACCAAGGCTGTTTATAGT




AACAAAGTCCGGACCCATGTGTTACCGGGCAGGCTTTTCGCTTCCTGTGGATGTTAATTACCTGTTCTATTT




AGAGCAGACTCTGAAAGCTGTCCGGCAAGTTAGCCCACAGGAACACAACCCCCAAGACGCAAAGGAAATGAC




TCTACAGCTAGAGGCCTGGACCAGGCTTTTATCTTTATTTTGAAAAAAGGGAAACAATGGGGGGTTTGAAAA




GGGTGCACATTTTCAGATATTTTAAAACTTCATTGTTCTCCAGGTGCTTGGTAAAGATGGTATCAC





ORF47
193
GTTCAACATGGACGCATGGTTGCAACAGACGGTCTTTAGGGGCACCCTATCCATCAGTCAGGGGGTGGACGA


(HHV8

CCGGGATCTGTTACTGGCACCTAAGTGGATTTCCTTTCTGAGCCTCTCATCATTTCTGAAACAGAAACTGCT


gp49)

CTCGCTGCTCAGACAGATTCGGGAACTTAGGCTAACCACCACAGTGTATCCCCCACAGGACAAGCTGATGTG




GTGGTCCCACTGCTGCGATCCAGAGGATATTAAAGTGGTGATCTTAGGCCAGGACCCGTACCACAAGGGCCA




AGCTACTGGCCTGGCGTTTAGTGTGGATCCGCAATGTCAGGTTCCACCCAGTTTGAGAAGCATCTTTAGAGA




GCTAGAGGCTTCCGTCCCCAATTTCAGTACTCCTTCCCACGGGTGCCTCGACAGCTGGGCTCGCCAGGGTGT




GTTGCTACTAAACACAGTTTTGACGGTGGAGAAGGGGAGGGCCGGCTCACACGAGGGACTTGGCTGGGATTG




GTTCACGAGTTTCATCATCAGTAGCATATCCTCAAAGTTAGAACATTGCGTTTTTCTCCTGTGGGGGCGCAA




GGCCATTGACAGAACTCCGCTCATAAACGCACAGAAACACCTGGTGCTTACGGCCCAGCATCCATCTCCGCT




GGCCTCTCTTGGTGGCCGACACTCGCGATGGCCTCGGTTCCAGGGCTGTAATCACTTTAACCTAGCCAACGA




CTATTTGACTCGCCACCGGCGTGAGACTGTGGACTGGGGCCTGTTGGAGCAGTAAAGGCAATAACTCGTGTG




CTTTGTAAATTTCCGCCCCTAGCGGTCAACCCCGTACAAGGCCATGGCGATGTTTGTGAGGACCTCGTCTAG




CACACACGATGAAGAGAGAATGCTTCCAATTGAAGGAGCGCCTCGCAGACGACCCCCCGTGAAGTTCATATT




CCCACCTCCACCTCTTTCATCACTTCCAGGATTTGGCAGGCCGCGCGGCTATGCTGGACCCACGGTGATAGA




TATGTCTGCCCCAGACGACGTCTTCGCCGAGGACACGCCATCGCCGCCAGCAACCCCTCTGGATCTACAGAT




ATCCCCGGATCAGTCGAGCGGCGAATCTGAATATGACGAGGATGAGGAAGATGAAGATGAAGAAGAAAATGA




CGATGTTCAGGAGGAAGACGAGCCAGAGGGGTACCCTGCAGACTTTTTTCAACCTTTATCTCACTTGCGCCC




GAGGCCTCTGGCCAGACGGGCCCATACGCCCAAACCGGTAGCAGTGGTAGCGGGCCGCGTGCGCAGTTCAAC




GGACACGGCGGAGTCCGAGGCGTCCATGGGATGGGTTAGTCAGGATGACGGATTTTCCCCTGCTGGGCTCTC




ACCTTCAGACGACGAGGGGGTTGCTATCCTGGAACCGATGGCGGCATACACTGGGACCGGGGCATACGGACT




TTCACCTGCTTCCAGAAATAGTGTACCTGGAACACAAAGTTCACCATACAGCGACCCTGATGAAGGGCCCTC




GTGGCGCCCCCTGCGCGCCGCACCCACCGCGATCGTCGACCTGACATCGGACTCTGATAGCGATGACAGTTC




CAACTCTCCGGACGTGAACAATGAGGCCGCGTTTACCGACGCGCGCCATTTTTCCCACCAGCCACCCTCGTC




CGAGGAGGACGGAGAAGACCAAGGGGAAGTATTGAGTCAGAGAATCGGGCTCATGGACGTGGGCCAGAAGCG




CAAAAGGCAGTCTACCGCCTCCTCTGGTAGCGAGGATGTGGTGCGCTGCCAGAGACAACCAAACTTAAGCCG




CAAAGCAGTGGCGTCCGTGATAATTATATCCTCGGGGAGTGACACAGACGAGGAGCCCTCGTCCGCCGTGAG




CGTGATCGTGTCTCCGTCGAGCACAAAGGGTCACCTCCCAACCCAATCTCCCAGTACTTCCGCCCACTCGAT




TTCATCAGGAAGCACAACTACCGCGGGGTCCAGGTGCAGCGACCCAACCCGCATCCTGGCCTCCACGCCACC




CCTGTGTGGAAACGGTGCATATAACTGGCCGTGGCTGGACTGATA





ORF49
194
AAAGGTCGATCTTTACCTTGTCATCTTGCGCCATTTTTGTGGCTGCCTGGACAGTATTCTCACAACAGACTA


(HHV8

CCCCTTGCGGAGTAAGGTTGACTTTTTAAAGGGGACGTGTCATTGCCACCCAGCTACTGGTTTCTGGGCGGG


gp51)

GCTTAATGAGTCGCCGGTAGCTGCCTGGTATTTAGTGGAGGATAAGCTGTAGCTGGGTCCTATGGGGGTTGG




GTGGGGAGACCCTAGCGTACATGTGACTGAACATGGAGGTGTGTATCCCAATTCCGGGTATTGGAGATGAAA




ATTGTGAGAGCTGGAGGGCACAGATTGTGGCATTCGGTACCACATCGGGTTTCGTCAAGACCGAGCGTATTC




TCAGAGGTCTGTTTCCGGAGCGCGGACACCCGGGGTTCTTAGCGTCCCTGGTGGTCCTGAAGCATACGCTGG




CTTCCCCGGGGGGGCTCAACACCAGACTGAATCTACTTCCAGTATTACAGATGTTAAAATATGTGGGACAGG




AAATGTACATGCGGGCAAAATGCCAGGCAACAGCATCTGACATGACTTTGATCTGGGATGACTGCAAAGATA




GATTTATGCTGATACTGGAACAGGCCTGTGGGTGCCACCAATGTATGACCGTGGTAGAAGAAATCACCCACT




GTAGCGCCATCTCTGCCCCCCCAAGCTCTTTGTCCCACGGGAGACACATTCTTTCTGCGGGGCTCATCAACT




TTGCAAGACGCCAGGTTCTCCTTGGTGGGTCAGTGTCTTTTTCTGAGTTTTCTATTCCAGACCTAATACAGA




CACCGGAGCAATACCCCTTTGTGGATGTGGAGTTCCGGCGGGAGCTTAGCTTGATTTCATCGTGTTTGAACG




TCTGCTGGCTCTACCACATCTTCATAGAGCACATTACCTCGGACGTGAGACGGTTGGAGTCATGCATGGCCA




GTGTCCTGGAAGAGTATGGCGGACTGTCACCCACCCGCCCATGGGCAGAGGCAGTGACCTTTTTGAGTCAGC




TGCCGCGCCCCACCAGGAAACCCTGGAAAGAACTGTCGGTAAGCCGGATCAACGTGGAAGCCCGGCTTTTGG




ATACCCTGGTGATGCAATTAGAGAAACCGGTTCCTGTGGAAAT





ORF50
195
AGTGTTCGCAAGGGCGTCTGTGCCTGCGTTAACTTCCCAGGCAGTTTATTTTTAACAGTTTGGTGCAAAGTG


(Rta)

GAGTTAACCTACAGATTCTACTTAAAATAGCTCATTTTCTCACGAATCTGGTTGATTGTGACTATTTGTGAA


(HHV8

ACAATAATGATTAAAGGGGGTGGTATTTCCTCCGTTGTCGACTATAACCTGGCGTGTAAACGTGTAACCCTG


gp52)

CCAAATGCCCAGAATGAAGGACATACCTACTAAGAGTTCCCCGGGAACGGACAATTCTGAGAAAGATGAAGC




TGTCATTGAGGAAGATCTAAGCCTCAACGGGCAACCATTTTTTACGGACAATACTGACGGTGGGGAAAACGA




AGTCTCTTGGACAAGCTCGCTGTTGTCAACCTACGTAGGTTGCCAGCCCCCGGCCATACCGGTCTGTGAAAC




GGTCATTGACCTTACAGCGCCTTCCCAAAGTGGCGCGCCCGGTGACGAACATCTGCCATGCTCACTGAATGC




AGAAACTAAATTCCACATCCCCGATCCTTCCTGGACGCTCTCTCACACACCACCAAGAGGACCACACATTTC




GCAACAGCTTCCAACTCGCAGATCCAAGAGGCGACTACATAGAAAGTTTGAAGAGGAACGCTTATGCACTAA




GGCCAAACAGGGCGCAGGTCGCCCCGTGCCTGCGTCTGTAGTTAAGGTAGGGAACATCACCCCCCATTATGG




GGAAGAACTGACAAGGGGTGACGCCGTCCCAGCCGCCCCTATAACACCCCCCTCCCCGCGCGTTCAACGCCC




AGCACAGCCCACACATGTCCTGTTTTCTCCTGTTTTTGTCTCTTTAAAGGCCGAAGTATGTGATCAGTCACA




TTCTCCCACGCGAAAGCAAGGCAGATACGGCCGCGTGTCATCGAAAGCATACACAAGACAGCTGCAGCAGGT




ATAGACGGGAAACAGGTGTCTATCTTGGCCGGCTGGTTACTCAAATGGGAACAATGGCGCCACCTTGCTGTC




TTTGTAGGCATTAGAAGAAAAGGATGCACAACTATGTTTCCTAGCGGCGAGATTGGAGGCACATAAGGAACA




GATTATTTTCCTTCGCGACATGCTGATGCGAATGTGCCAGCAGCCAGCGTCGCCAACGGACGCGCCACTCCC




ACCATGTTGAAGCTTGGTTGTGCCGTCGTCCGGGAGAACCATGCCAGACTTTGTGTGGTAAGAAGGAATTGT




TATCCGGCAGCAATATTAAAGGGACCCAAGTTAATCCCTTAATCCTCTGGGATTAATAACCATGAGTTCCAC




ACAGATTCGCACAGAAATCCCTGTGGCGCTCCTAATCCTATGCCTTTGTCTGGTGGCGTGCCATGCCAATTG




TCCCACGTATCGTTCGCATTTGGGATTCTGGCAAGAGGGTTGGAGTGGACAGGTTTATCAGGACTGGCTAGG




CAGGATGAACTGTTCCTACGAGAATATGACGGCCCTAGAGGCCGTCTCCCTAAACGGGACCAGACTAGCAGC




TGGATCTCCGTCGAGTGAGTATCCAAATGTCTCCGTATCTGTTGAAGATACGTCTGCCTCTGGGTCTGGAGA




AGATGCAATAGATGAATCGGGGTCGGGGGAGGAAGAGCGTCCCGTGACCTCCCACGTGACTTTTATGACACA




AAGCGTCCAGGCCACCACAGAACTGACCGATGCCTTAATATCAGCCTTTTCAGGTGTATTACACGTTTCAAC




TGTAATCCCTCGCAATTGGGTAAACCGTCGGTGTGTAGGGATAAAGCGTAACCTTACGTTCTGTCTCATCTA




CAGGATCATATTCATCTGGGGAACCATCCAGGACCACGCGAATTCGCGTATCACCGGTCGCAGAAAACGGCA




GAAATAGTGGTGCTAGTAACCGTGTGCCATTTTCTGCCACCACTACAACGACTAGAGGAAGAGACGCGCACT




ACAATGCAGAAATACGGACCCATCTTTACATACTATGGGCTGTGGGTTTATTGCTGGGACTTGTCCTTATAC




TTTACCTGTGCGTTCCACGATGCCGGCGTAAGAAACCCTACATAGTGTAACACAAAACCATAAAAGTA





ORF56
196
TCCCACTATATAACCTGGCTGCCAGGTTCCCAAAATAGCCCGCGGCATACGGCTCACTTCCCCCCACATTCC


(HHV8

CCCCGTGCACAATATAAGAACCAAAGGACATGGTACAAGCAATGATAGACATGGACATTATGAAGGGCATCC


gp58)

TAGAGGGTAAGTCCTCGTCTACAACAGACTTTTCCCATTTCTAACGTATCGTGCTATCTTCGTCGCCCGGCG




GACCATCCCCCCACCCCTCATTTATCGCGTTTGATATTACAGACTCTGTGTCCTCCTCTGAGTTTGACGAAT




CGAGGGACGACGAGACGGACGCACCGACACTGGAAGACGAGCAATTGTCCGAACCCGCCGAGCCTCCGGCAG




ACGAGCGCATCCGTGGTACCCAGTCGGCCCAGGGAATCCCACCCCCCCTGGGCCGCATCCCAAAAAAATCTC




AAGGTCGTTCTCAACTGCGCAGTGAGATCCAGTTTTGCTCCCCACTGTCTCGACCCAGGTCCCCCTCACCAG




TAAACAGGTACGGTAAAAAAATCAAGTTTGGAACCGCCGGTCAAAACACACGTCCTCCCCCTGAAAAGCGTC




CTCGGCGCAGACCACGCGACCGCCTACAATACGGCAGAACAACACGGGGCGGACAGTGTCGCGCTGCACCGA




AGCGAGCGACCCGCCGTCCGCAGGTCAATTGCCAGCGGCAGGATGACGACGTCAGACAGGGTGTGTCTGACG




CCGTAAAGAAACTCAGACTCCCTGCGAGCATGATAATTGACGGTGAGAGCCCCCGCTTCGACGACTCGATCA




TCCCCCGCCACCATGGCGCATGTTTCAATGTCTTCATTCCCGCCCCACCATCCCACGTCCCGGAGGTGTTTA




CGGACAGGGATATCACCGCTCTCATAAGAGCAGGGGGCAAAGACGACGAACTCATAAACAAAAAAATCAGCG




CAAAAAAGATTGACCACCTCCACAGACAGATGCTGTCTTTTGTGACCAGCCGCCATAATCAAGCGTACTGGG




TGAGTTGCCGTCGAGAAACCGCAGCCGCCGGAGGCCTGCAAACGCTTGGGGCTTTCGTGGAGGAACAAATGA




CGTGGGCCCAGACGGTTGTGCGCCACGGGGGGTGGTTTGATGAGAAGGACATAGATATAATTTTGGACACCG




CAATATTTGTCTGCAATGCGTTTGTTACCAGATTTAGATTACTTCATCTTTCCTGCGTTTTTGACAAGCAGA




GCGAGCTAGCACTGATCAAACAGGTGGCATATTTGGTAGCGATGGGAAACCGCTTAGTAGAGGCATGTAACC




TTCTTGGCGAGGTCAAGCTTAACTTCAGGGGAGGGCTGCTCTTGGCCTTTGTCCTAACTATCCCAGGCATGC




AGAGTCGCAGAAGTATTTCTGCGCGCGGACAGGAGCTGTTTAGAACACTTCTGGAATACTACAGGCCAGGGG




ATGTGATGGGGCTACTAAACGTGATAGTAATGGAACATCACAGCTTGTGCAGAAACAGTGAATGTGCAGCGG




CAACCCGGGCCGCAATGGGGTCGGCCAAATTTAACAAGGGTTTATTCTTTTATCCACTTTCTTAAGGATTGC




CAAACCCCATGGCAGAGTGTCTCCCGTATTCCATGTAACTCACGTAGCCTTTCTCT





ORF57
197
GGATTGCCAAACCCCATGGCAGAGTGTCTCCCGTATTCCATGTAACTCACGTAGCCTTTCTCT


(HHV8


gp59)





ORF58
198
TTGAATAATACATGTGTTTTTCTTGGTTTGTTGACCATGACACCCCTCCCTCGCGTCCAAAGGCCGCTTGTA


(HHV8

TTAGAGGGTGGACAGTGCCTGGGTGCTGTCCCGGGTTATGGGTGTGTGCCAGTAGTTCAACTGCATTGGTTC


gp63)

CCTTTTCCGTAGTGAGTTCTAACCACAAGTTTCCGCAGCCCGACAACCGGCTGGGGGGGGCGGTGTTGAGCT




GCATATATTGAGTTTTGTTGTTAGATGGCACAGAGTCTACGTGCCAGTGGGGTTGGGGTCCAGCTAGTTGTG




GCGAGAAAGTCGCCCACGGAAAAGGTGTTTTGTGTCGTGGCTTTTGCCTAAAAAGATGCCTCGCTACACGGA




GTCGGAATGGCTCACGGACTTTATTATAGATGCTTTAGACAGTGGACGCTTCTGGGGGGTAGGGTGGTTGGA




TGAACAAAAGAGAATATTCACCGTGCCGGGTCGAAACCGGCGGGAGAGAATGCCAGAAGGCTTCGATGACTT




CTATGAGGCATTTTTGGAGGAGCGACGTAGGCACGGGCTGCCAGAAATCCCGGAGACTGAGACTGGCCTGGG




CTGCTTTGGACGGCTATTAAGGACCGCCAATCGAGCCAGACAGGAGAGGCCCTTTACCATCTATAAGGGAAA




AATGAAACTCAACCGCTGGATTATGACACCTAGGCCATACAAGGGATGTGAAGGATGTCTTGTGTACTTGAC




GCAGGAACCAGCCATGAAAAACATGCTAAAAGCATTGTTTGGGATCTATCCCCATGATGACAAACACAGAGA




AAAGGCACTTAGAAGGAGCCTTAGAAAAAAAGCCCAGAGGTAGGATGGTTGATGTACTGGGCGGTGGGTTGT




GTGGGCGGCGGGATGTACGTGCAGCGGGCATCACGGGAAATTGGAGATGTCACTCAGACTTACCTTTGTGTA




ATTAACTTTTGTTTAGGGAGGCCGCCAGGAAACAGGCGGCGGCAGTCGCCACGCCCACAACATCCTCCGCAG




CTGAAGTTTCATCACGGTCACAGAGCGAAGATACGGAATCGAGTGACAGCGAAAACGAACTTTGGGTGGGGG




CTCAGGGTTTTGTAGGGAGGGATATGCACAGTTTGTTTTTTGAAGAGCCAGAACCGTCGGGGTTTGGGTCAT




CTGGTCAGTCATCGAGCTTATTAGCTCCGGATTCCCCGCGTCCCTCCACGAGCCAGGTGCAGGGCCCATTAC




ACGTGCACACCCCGACGGATCTATGTTTGCCAACGGGGGGTTTACCTTCTCCTGTTATTTTTCCACATGAGA




CACAAGGCTTATTAGCGCCGCCTGCTGGACAGTCGCAAACCCCATTTTCCCCAGAAGGCCCCGTCCCCAGTC




ATGTCAGTGGGCTGGATGATTGCCTACCGATGGTGGATCACATTGAGGGGTGTTTGTTAGATCTCTTGTCAG




ATGTTGGCCAGGAGCTTCCTGACTTAGGCGACCTGGGTGAACTTCTGTGTGAAACTGCGAGCCCTCAGGGCC




CGATGCAGTCGGAGGGAGGTGAGGAGGGGTCCACGGAGAGTGTCTCAGTACTTCCCGCCACGCATCCCCTTG




AGAGTTCGGCACCTGGGGCCTCTGTCATGGGTTCAGGCCAGGAGCTTCCTGACTTAGGCGACCTGAGTGAAC




TTCTGTGTGAAACTGCGAGCCCTCAGGGCCCGATGCAGTCGGAGGGAGGTGAGGAGGGGTCCACGGAGAGTG




TCTCAGTACTTCCCGCCACGCATCCCCTTGAGAGTTCGGCACCTGGGGCCTCTGTCATGGGTTCATCTTTCC




AAGCTTCCGACAATGTGGATGATTTTATTGATTGTATTCCACCGTTGTGTCGTGATGACCGGGACGTCGAGG




ACCAAGAGAAAGCTGACCAGACATTTTACTGGTATGGAAGCGACATGAGGCCCAAGGTCTTAACCGCCACCC




AATCCGTGGCAGCATACCTGAGTAAGAAACAGGCTATTTACAAAGTGGGTGACAAGCTTGTGCCCCTAGTGG




TGGAAGTGTATTATTTCGGAGAAAAGGTGAAGACCCACTTTGATTTAACGGGGGGCATCGTTATTTGCTCCC




AAGTCCCAGAGGCCTCCCCTGAACACATATGTCAGACGGTACCCCCGTATAAATGCTTACTTCCCAGAACGG




CCCACTGTAGTGTGGACGCAAACCGAACTTTGGAACAGACGCTGGACAGGTTTTCCATGGGAGTTGTGGCCA




TCGGTACAAACATGGGCATTTTTCTGAAGGGATTATTGGAATACCCAGCATACTTTGTTGGAAATGCATCGC




GAAGAAGAATAGGCAAATGTAGGCCCCTGTCCCACCGCCACGAGATCCAACAAGCTTTTGACGTGGAGCGAC




ATAATCGAGAACCTGAAGGGTCCCGGTACGCGTCCCTGTTTCTGGGCCGCCGGCCGTCGCCTGAATATGACT




CGGATCACTATCCAGTCATTTTGCACATTTACCTTGCCCCATTTTACCACAGAGACTAAAATTTTGACAAGT




CTTCTTGTCACTCTGTCCGGGTACCTCCCTTTGTCTTACCGCCCTCCGTTTTGCACTATAAATATCATTGCC




GTTAGAAACCAGGCTCTATCCGCAACTTCTATGTTTCCTGTTATAGTAGGCCCATGTGGGCTTGGGAGTGGC




CAAACTCACTGAGTGGGACATCATTAAAGGTTAGCGCCACCGTGTGGCTGCAA





ORF59
199
CACCATGTGCCGCCTGGACAGTGAGCGCGCTCTGTCGCTCTTCAGTTATCTGAGCGGGACGTTGGCGGCGAC


(HHV8

CCCCTTTCTGTGGTGTTTTATCTTCAAGGCCCTGTACTCGTTCACACTCTTTACCACAGAGATCACGGCCGT


gp64)

GTTTTTCTGGTCGCTGCCAGTCACGCACTTGGCCCTGATATGCATGTGTCTGTGCCCTGCGGCGCAAAAACA




GCTGGACCGGAGGCTGGAATGGATCTGCGCGTCAGCAGTGTTTGCTGCTGTAGTTTGCGCGGCCTTTTCTGG




GTTTACATTTTCTCGTGTGCCCTTCATACCGGGTCTGTGCGTACTTAACTGTTTACTGCTGTTACCTTATCC




GCTAGCCACCGCAACGGCGGTGTATCAGGCGCCGCCAATAGTACACAGGTACTATGAGCTGGGCTTCTGCGG




AGCATTTATGGTGTACTACCTTCTGTTGTTTAAGAAGGTCTTTGTGTCCGGCGTTTTCTGGCTGCCCTTCAT




TGTCTTCTTGGTCGGGGGACTTTTGGCATTTAGGCACCTGGAACAGCATGTGTACATCAGGGCCGGAATGCA




AAGGAGGAGGGCCATATTCATCATGCCCGGGAAGTACATCACCTATTCAGTGTTCCAGGCCTGGGCCTACTG




TAGGCGCGAGGTTGTCGTGTTTGTGACCTTACTGCTGGCCACCCTGATATCGACGGCCTCGATCGGCCTGCT




GACTCCGGTCCTGATTGGCCTGGATAAGTATATGACGCTATTTTATGTTGGGTTACTGTCATGCGTGGGCGT




ATCCGTCGCCTCCCGACGAGCGCTATTTGTTCTCCTGCCTTTGGCGGCAGTGTTGCTCACCTTGGTGCACAT




ACTTGGATCAGGTCCGGATATGCTCCTAGTTAGGTCCTGCCTCTGCTGCCTATTCCTCGTGAGCATGCTGGC




CGCAATGGGGGTCGAGATTCAGCTAATTAGGCGAAAACTCCACAGGGCACTTAACGCTCCACAGATGGTATT




GGCCCTATGCACGGTTGGAAATTTATGTATCTCATGTCTCCTGTCGGT





ORF63
200
AGGCCATGGCAGCCCAGCCTCTGTACATGGAGGGAATGGCCTCCACCCACCAAGCTAACTGTATATTCGGAG


(HHV8

AACATGCTGGATCCCAGTGCCTCAGCAACTGCGTCATGTACCTGGCGTCCAGCTATTATAACAGCGAAACCC


gp68)

CCCTCGTCGACAGAGCCAGCCTGGACGATGTACTTGAACAGGGCATGAGGCTGGACCTCCTCCTACGAAAAT




CTGGCATGCTGGGATTTAGACAATATGCCCAACTTCATCACATCCCCGGATTCCTCCGCACAGACGACTGGG




CCACCAAGATCTTCCAGTCTCCAGAGTTTTATGGGCTCATCGGACAGGACGCGGCCATCCGCGAGCCATTCA




TCGAGTCCTTGAGGTCGGTTTTGAGTCGAAACTACGCGGGCACGGTACAGTACCTGATCATTATCTGCCAGT




CCAAAGCCGGAGCAATCGTCGTCAAGGACAAAACGTATTACATGTTTGACCCCCACTGCATACCAAACATCC




CCAACAGTCCTGCACACGTCATAAAGACTAACGACGTTGGCGTTTTATTACCGTACATAGCCACACATGACA




CTGAATACACCGGGTGCTTCCTTTACTTTATCCCACATGACTACATCAGCCCAGAGCACTACATCGCAAACC




ACTACCGCACCATTGTGTTCGAAGAACTCCACGGGCCCAGAATGGATATCTCCCGCGGGGTGGAATCATGCT




CCATCACCGAAATCACGTCCCCTTCTGTATCCCCCGCGCCTAGTGAGGCACCATTGCGCAGGGACTCCACCC




AATCACAAGACGAAACGCGCCCGCGCAGACCTCGCGTCGTCATTCCTCCTTACGATCCGACAGACCGCCCAC




GACCGCCTCACCAAGACCGCCCGCCAGAGCAGGCAGCGGGATACGGTGGAAACAAAGGACGCGGCGGTAACA




AAGGACGCGGCGGAAAGACGGGACGTGGCGGAAATGAAGGACGCGGTGGCCACCAGCCACCAGACGAGCACC




AGCCCCCACACATCACCGCGGAACACATGGACCAGTCCGACGGACAAGGCGCCGATGGAGACATGGATAGTA




CACCCGCAAATGGTGAGACATCCGTTACGGAAACCCCGGGCCCCGAACCCAATCCCCCAGCACGGCCTGACA




GAGAGCCACCGCCCACTCCCCCGGCGACCCCAGGCGCCACAGCGCTGCTCTCTGACCTAACTGCCACAAGAG




GGCAGAAACGCAAATTTTCCTCGCTTAAAGAATCTTATCCCATCGACAGCCCACCCTCTGACGACGATGATG




TGTCCCAGCCCTCCCAACAAACGGCTCCGGATACTGAAGATATTTGGATTGACGACCCACTCACACCCTTGT




ACCCACTAACGGATACACCATCTTTCGACATAACGGCGGACGTCACACCCGACAACACCCACCCCGAGAAAG




CAGCGGACGGGGACTTTACCAACAAGACCACAAGCACGGATGCGGACAGGTATGCCAGCGCCAGTCAGGAAT




CGCTGGGCACCCTGGTCTCGCCATACGATTTTACAAACTTGGATACACTGCTGGCAGAGCTGGGCCGGTTGG




GAACGGCACAGCCTATCCCTGTAATCGTGGACAGACTAACATCGCGACCTTTTCGAGAAGCCAGCGCTCTAC




AGGCTATGGATAGGATACTAACACACGTGGTCCTAGAATACGGTCTGGTTTCGGGTTACAGCACAGCTGCCC




CATCCAAATGCACCCACGTCCTCCAGTTTTTCATTTTGTGGGGCGAAAAACTCGGCATACCAACGGAGGACG




CAAAGACGCTCCTGGAAAGCGCACTGGAGATCCCCGCAATGTGCGAGATCGTCCAACAGGGCCGGTTGAAGG




AGCCCACGTTCTCCCGCCACATTATAAGCAAGCTAAACCCCTGCTTGGAATCCCTACACGCCACTAGTCGTC




AGGACTTCAAGTCCCTGATACAGGCATTCAACGCCGAAGGGATTAGGATCGCCTCGCGTGAGAGGGAGACGT




CCATGGCCGAACTGATAGAAACGATAACCGCCCGCCTTAAACCAAATTTTAACATTGTCTGTGCCCGCCAGG




ACGCACAAACCATTCAAGACGGCGTCGGTCTCCTCAGGGCCGAGGTTAACAAGAGAAACGCACAGATAGCCC




AGGAGGCTGCGTATTTTGAGAATATAATCACGGCCCTCTCCACATTCCAACCACCTCCCCAATCGCAACAGA




CGTTCGAAGTGCTGCCGGACCTCAAACTGCGCACGCTCGTGGAGCACCTGACCCTGGTTGAGGCGCAGGTGA




CAACGCAAACGGTGGAAAGTCTACAGGCATACCTACAGAGCGCTGCCACTGCTGAGCATCACCTTACCAACG




TGCCCAACGTCCACAGTATACTGTCTAACATATCCAACACTCTAAAAGTTATAGATTATGTAATTCCAAAAT




TTAT





ORF72
201
GCTTGTGATTTTGTTTAGGGCGGAAA


(HHV8


gp77)





ORF73
202
AAGCCACACCTCTCCCCCTTTTTCCTCCCTAGAAGCCACCGTCGCCGCTCCGCACTTGCATTTGGCGCCATG


(LANA)

GGTGCTGGTGTGTGTGGGGGGCAGTGTTCTCACGACCCATCTACCTCAACTGAACACACGGACAACGGCTAG


(HHV8

CGTACTCTCGCGGCCCAGCGTCGTCGATGGGAGAACCTGACAGAGCACCCTGAAACTCCAGGCTCTACAGGT


gp78)

AGGCCACATACGCTCGCCACTCTATATGGCAACTGCCAATAACCCGCCCTCGGGACTTCTGGATCCCACGCT




ATGTGAGGATCGGATCTTTTACAATATTCTTGAAATTGAGCCGCGCTTTTTAACTTCTGACTCTGTATTTGG




GACCTTTCAACAATCTCTTACTTCGCATATGCGTAAGTTACTGGGCACATGGATGTTTTCAGTTTGCCAGGA




ATACAACCTAGAACCTAACGTGGTCGCGTTGGCCCTTAATCTTTTGGACAGACTCCTACTTATAAAGCAGGT




GTCCAAAGAACACTTTCAAAAGACAGGGAGCGCCTGCCTGTTAGTGGCCAGTAAGCTCAGAAGCCTCACGCC




TATTTCTACCAGTTCACTTTGCTATGCCGCGGCAGACTCCTTTTCCCGCCAAGAACTTATAGACCAGGAGAA




AGAACTCCTTGAGAAGTTGGCGTGGCGAACAGAGGCAGTCTTAGCGACGGACGTCACTTCCTTCTTGTTACT




TAAATTGCTGGGGGGCTCCCAACACCTGGACTTTTGGCACCACGAGGTCAACACCCTGATTACAAAAGCCTT




AGTTGACCCAAAGACTGGCTCATTGCCCGCCTCTATTATCAGCGCTGCAGGCTGTGCGCTGTTGGTTCCTGC




CAACGTCATTCCGCAGGATACCCACTCGGGTGGGGTAGTTCCTCAGCTGGCAAGCATATTGGGATGCGATGT




TTCCGTTCTACAGGCGGCAGTGGAACAGATCCTAACATCTGTTTCGGACTTTGATCTGCGCATTCTGGACAG




CTATTAAGCTTGTGATTTTGTTTAGGGCGGAAA





ORF74
203
CCCGCGGATGTCTACGTGCCCTTCCCCCTTAATTTAATCTAGCCTCCCGTTCCCATGATGCAGAGAGGCGAA


(HHV8

TTTGGTTTGTACACAGATGTGACTATGTATTTGTTTTATTATGCGATTAAATGAGGGGTCTGATCCCAAAAG


gp80)

CAATGTTTAGTGGTGGTCGTTGATCTTCTTGACGCTCCATAGGTAGATTGACTGGAACGCCATGGCCCACGG




GGACATGGACAGGGGTGTTAGGTCTGGTGGAACATGCTGCCACTGCCACGGATGGAACATCAGAGATGGGTC




TATGATCAGGGCAGCGTGTCGCCCGTCACTGGATGTAAGTCCGGCCACCGTGGAGTTGCCTGTGGGGTTTCT




GGGATAGTGTCTGGCTGGCAGGGTCTCATCCGCGGCATTTCCATGGTAGGTGAGGGTTATCTCGCCTCGCTG




TCTCAGTATGTACTCGAGGGCGTCCTGCTCGTACCGGACCCCCAGGTACTCTCCCTGGGCCCAGCTGGGCAG




CACCGTCCCCCGCAACACTCGGAGGAAAACGCTCTTAGTGTTCTGAGGGATCTGTATGTTTAGCCAGTGGCT




GTCATACAGCTTGGACACGTTGGTCTCCAGGTTTACCGCCCAGCGCTGGGGTGGTGTGGGTCCGTACGTGTA




TGGTGAGGATTCCGACCGGCCCACTACACCCAGGGCCACCAGCAGCTGGAAGCCCACCTCGCCACAGCAGAT




GGAGAATGTGTCGGGTCTGTTTAGAAACTCTGTCAGGGTGGAGGCACAGGTAGGGTCGTTACACAGCGCCAG




GACCCATCCCCTGGCGCTGGCGTAGCTGGCCTGGCAGCCTGTTCTGAGACATGTAATCAGACCAGAGAACCC




CGACAAGGACTGTCCTCGTTTAAGCTCTTCCACAGTCACCGTGGCCACCTCAAAGCCCGTGTTCTGCAACGC




GGCCATGAGCGCGTACGGGGCACTGCTCCCAGGCAGCACCAACGCGGCCACACGGCGCGGGGAGGTGGGGCA




CGAAAACAGGCGCAGCTGACTCCCAAGGCACATGGCCCTTAGGCTGCCCAGGTGATGCTCCAGACGACCCAG




GTCCTTCCTGTGCATGTCCTCCAGTGGGTGCAGGGGAGGCGTCACCAGGTTCCACATTTCGTCAGAAAAGGA




GGTCCATGAGACTTGCAAGGAAGTCAGGGTCTCTTGAAACACAACTGTCTCGTTCTGCAAAACCGTGACGTT




GTTGCCTTGTCCCTCGGGGCCAACGGTGCCCAGTGGGTGTGCCACGCAGCGGTAGTCCCTGGCCGCCCGCAG




CACCTCTGACAAGTGTACCTGGGGCACCTCAACCAGTGCCCCAGGGGTCTCTGAAACCATAAGTTCGAGCGG




GTTAGGGTGGGCGGGTAGTGAGAGCTGCAGTCCCCTGCAGCCGGCCAGGGCCATCTCGATTGCAGATGGGAG




AAGCCCTCCGTCCCCTATGTCGTGCCCAGATACAATGAGCCTCTTGGACATCAGGTACTTAACAAGCATGAA




CAGGCTGGCGACCGTGGACGGGTTCAGAGGGGGTATTGGGTGCCTGGATGCCAGGAAGTTGTGCTCGAAGGT




GGACCCGGCTATGAGACAGCTCTGATTCACGGCCAGGTATACCAGGGCGTTGCCTTCGACCTTTACGTCCGG




GGTGACCCTGTATCTGGATCCCTTGACCTCGGCCCAGCTGGTAAACACCACCGAGTTGAAGGGAAGGACCTC




CACCGTTTCTTGCTGTTGTGTGATGCGCACATGGCGCTCCGAAAGCGTCGGAGAGCTGGCAGCCGAGGAGAT




GGACAGTGCCACTCCCAGCTCCCGGCAGAATTCCTTGCAGGCGAAGAGGCACTCCTGTAGGAGGCCGGCTTG




GTGGTCCTCTGGACTCCACGCCACGGCGCCAGTTAGCACTACGTCCTGGAGCTTGGACACGGGACTGAACAT




GAGGTTGGTGAGAGCCTCGGTGATGGCATAGGTGGCCCCGGTGGATACATTAGTAGCCATCTTGTAGGCCTG




CTCCCCCATGGCCATTGCCTGACCCCTCCACGCTGGCACTGGAAGCAGCTCCTGGGGCAGGGCCTTCACCCA




GGTCTCGAAGTCCTTGTGTAGGAGGTTGGCCATGGACGGAGTGATGGCCTCCACCGTGTCGGGCACTCTGGG




CGCCACCCTCTCGGCCAGCATGGACGAGTGCAGCACCAGGTGGTAGTCTGAAACCGGTATGTCCAGGGGTCC




CACGCCAGCCTGTTGGGCGATGAGGCCGTTGGAGCATCGGTCCATGTGTCGCGTAAAGAACTCCTTGCTGCC




AACCGTCGAGTGGCGAAGTAACTGGTGGATTGTGGAGCCGGTGGCAAAAAGGCCCCAGTCAACATCCTCGGG




GTGCCCCGAGACGCGGACACCATCGGACAGCGCCAGCCAGGGGGACGGGGGGGTGGACGACGGCTGGTCTAC




AGAGAAGACCCTCGTGGTCTCCCCGGTCAGGTCGTCTACTATTCTGATGCCTGGGTGCTCCGAGGTCCTCCC




GAGGACCGTTACCTGGCACGCGCACAGGCGCGCGGCGCGCTGCAGTACCTCCAACGGGGTCTCGCCCAGATC




CCCAGGCACCGCGCCCGACTCTGCCACCACCGCAAACACCAGGGAGCAATACACGTTGAGAAAGTGCTCTGC




CACCGCCGCCTTCACGGCATCCGGACCGGCCGCGGGATCCGCAGGCAGGTGGGTGCGCACCTCGTCGGGTAG




CTTGGAGACAAACAGCTCCAGGCCGGTCCGCGGCGCCAGCGCCTGCAGGTGCCTCACCACCGGGGCCGGGTC




ATGCGATCTGTTTAGTCCGGAGAAGATAGGGCCCTTGGCAAGCCGCTGGACCAGCTTCAGGGTCTCCAAGAT




GCGCACCGCATTGTCGGAGCTGTCGCGATAGAGGTTAGGGTAGGTGTCCGGTCCATCCGTGGGCTCAAACCT




GCCCAGACACACCACTGTCTGCTGGGGGATCATCCTTCTCAGGGAGATGCATTCTTTGGAAGTAGTGGTAGA




GATGGAGCAGACTGCCAGGGCGTTGCCAGGAGTGGTGGCGATGGTGCGCACCGTTTTTAAGAAACCCCCCAG




GGTGGGGACTCCCGCTCCCTGCAGCATCTCGGCCTGCTGTACGCCCTTGGCGAATATGCGACGGAATCGGCT




GTGCGCACGGGGTCCCAGGGCCGGTTCGGTGGCATACAGGCCGGTGAGGGCCCCCTGTGTCTGTCCGCCTGG




AAACAGGGTGCTGTGAAACAGCAGGTTGCCAAGGCCGCGAATACCCCTCTGCACGCTGCTGTGGACGTGGGT




GTACGCTCCGTGGATCCCGAACGCCTGTCTGGCACAGTTCCAGGGCCACCGTTCCATGGTGCATCTTCCCGG




TATCACAAAGTACCTGGCCACGTTATAATTGTCCCCGGTTGAAGCCTGCACCGCCAGCGGTAGCAGGTCTGC




CCCCAGGGATATCATAACAGCCTGCATAATGACATCATCTTCAATGTGTGGCCTAGCCACGGGCTGGGGACC




CTCGGGCACTTCCAACCCCTCGTACGGTACCAGGTCGGTATTTTGTGTAAATGCCCTGATAAACTGAGGTGG




GTGTGGTTCTAGCAGGGTCTGTGTGATTTTGGACACCAGGTGCCTGCCCACTTCCACTCTAGCCCACTCCTG




CAATCCTAGCTCTTGCAGCAGAACTGCAAGCTCTGTTGACAATGTTGTGGGCCGGTGGTGCATGTTTGGCCC




GTAGCCAAAGGATACAACACGCTCGCTCCCCCGTGGCACAGACCGCCTGATGACATGGGGATATCCAAGGAG




CGGTGACAGCACAGCGAGCACCGTCTGTATTTCCACATCCCGTCTCTCTCGCTCCTCCCTCGAAGTGGGAGG




TCTTCGGAAAGTTATCCATAGCAGATAGTAGCCTCCGGTGCCACCGGGTACGAGAGTGAGTGTGCCCGTACG




GCTTGTATAAAAGTTCACAAAAGCTTCCTCATCCGCGGTGAGATCACTCTCCAACCACAGCCCAGTGACGTC




GTAGGCCATGCCTAGAGGGCGCACCGCCCCCGGGGACACCCTCTGTAGTCAGGCTGCCGAGAAACCCGCGAG




ATCTCTGGGGAGTAGGAAGAAACTTAGAATCCCCAAATATGTCGCAGTCACAGGTTGTCGGGCAGAGTCTGT




TTCCGCTTTCATGGGATCCACAGTTACTTGTAGCCATGTCACTAACCTCAAATACTCAAAAAAAGCTATCGA




TGGAAAAATGCTGTGGTCCTAGGTTAGTCCGTGGGAAACAAAACTTCCTCATACACTTCATCTGCAGGCTGA




AATGGTGGCGGATCCAGACTCCTTACACCACAGTTGCTCACATTAGAGATACCTGATTGGTTAATACAAGCG




GACGCACGCGTTGGTGGAGGCGTGTTGTCGCCCAAGATACTAGCATAGGTGACTGTGCGTTCGCTATGTAGT




TGCTGCATTTCAAGTTGGGTCGTTACTTCTGTGTTGCAAACCCTTACTGGAGATAATGCCATGTCTGTTGTG




GAACTTAAAATACGCGAGTGTATAACATTTCTAGATGGTAGAGGTGGTAAACGGCGAGCTAAATGATTAACA




TCGGGACATATCCTGCCTGCATGAGCATGTGGTGTGTCGTGTGGTGTATATATTGGTAATCTTGTTGTTACA




TTGTTGAACGACACAAGTCTGCTCTCTCGGTAGAGATAACCCACCAGTACGGCTTGGCCAGTACCTAATAAG




AAAA





ORF75
204
ACATTGCTTTTGGGATCAGACCCCTCATTTAATCGCAT


(HHV8


gp81)





ORFK4
205
AGAATGCTTTGCCAGCTGCGCATTTACGCGACGGATCTCTAACGATACCCATGTTGGGTCCACAAGTCTAAG


(HHV8

GCCAGCGAGACAAGAGCGTTTCGTGAAACGTGCCTGCCAAGGAGTGGGATCTCCCAATTACAGGAGAACAGC


gp13)

GAACGGCGCGGGGTGTCGGAAGGCACAACTCTACTGCACAAAATTGTCTTGTAAA





ORFK8
206
ACGGGAAACAGGTGTCTATCTTGGCCGGCTGGTTACTCAAATGGGAACAATGGCGCCACCTTGCTGTCTTTG


(Zta)

TAGGCATTAGAAGAAAAGGATGCACAACTATGTTTCCTAGCGGCGAGATTGGAGGCACATAAGGAACAGATT


(HHV8)

ATTTTCCTTCGCGACATGCTGATGCGAATGTGCCAGCAGCCAGCGTCGCCAACGGACGCGCCACTCCCACCA


gp53)

TGTTGAAGCTTGGTTGTGCCGTCGTCCGGGAGAACCATGCCAGACTTTGTGTGGTAAGAAGGAATTGTTATC




CGGCAGCAATATTAAAGGGACCCAAGTTAATCCCTTAATCCTCTGGGATTAATAACCATGAGTTCCACACAG




ATTCGCACAGAAATCCCTGTGGCGCTCCTAATCCTATGCCTTTGTCTGGTGGCGTGCCATGCCAATTGTCCC




ACGTATCGTTCGCATTTGGGATTCTGGCAAGAGGGTTGGAGTGGACAGGTTTATCAGGACTGGCTAGGCAGG




ATGAACTGTTCCTACGAGAATATGACGGCCCTAGAGGCCGTCTCCCTAAACGGGACCAGACTAGCAGCTGGA




TCTCCGTCGAGTGAGTATCCAAATGTCTCCGTATCTGTTGAAGATACGTCTGCCTCTGGGTCTGGAGAAGAT




GCAATAGATGAATCGGGGTCGGGGGAGGAAGAGCGTCCCGTGACCTCCCACGTGACTTTTATGACACAAAGC




GTCCAGGCCACCACAGAACTGACCGATGCCTTAATATCAGCCTTTTCAGGTGTATTACACGTTTCAACTGTA




ATCCCTCGCAATTGGGTAAACCGTCGGTGTGTAGGGATAAAGCGTAACCTTACGTTCTGTCTCATCTACAGG




ATCATATTCATCTGGGGAACCATCCAGGACCACGCGAATTCGCGTATCACCGGTCGCAGAAAACGGCAGAAA




TAGTGGTGCTAGTAACCGTGTGCCATTTTCTGCCACCACTACAACGACTAGAGGAAGAGACGCGCACTACAA




TGCAGAAATACGGACCCATCTTTACATACTATGGGCTGTGGGTTTATTGCTGGGACTTGTCCTTATACTTTA




CCTGTGCGTTCCACGATGCCGGCGTAAGAAACCCTACATAGTGTAACACAAAACCATAAAAGTA





ORFK13
207
ATAACAAGCTGTTGCTAATTTTTGGTCCGTAGAATGTATGTATCTGATTT


(HHV8


gp76)





ORFK14
208
CTAGATGGACACCCCGTGAACCGTCGTGCTTACCCACCCCCTTCTGATTCTGACAGACAACACTACTATGTC


(HHV8

CCAAAGACTGTTTTTTACAGCCCGATGGCCCTTCAGGCCTCCTTGAGTGTCTAGCTGGTCCCGTGGTCATTG


gp79)

TGTGGTTTGGCAGTCACTTCCCCATTTTGGTGTCGCGTTTTGGGTTTTGCCCTGCCCCCAGCCAACGTGGAT




CATATTCTTTCCCGTCAGGGGAGTGACAAGCTATAGGACAGAAAGGTCACCTGGCCCAAACGGAGGATCCTA




GGTGGGTGTGCATTTATTAGACGTTGGTGTGTTGAAGGACGGATCAGGCGGGGAGGAGGGGGTGGGGGAGAC




TTACTGCAGCACTAGGTTAGGTTGAAAGCCGGGGTAAAAGGCGTGGCTAAACAACACCTATACTACTTGTTA




TTGTAGGCCATGGCGGCCGAGGATTTCCTAACCATCTTCTTAGATGATGATGAATCCTGGAATGAAACTCTA




AATATGAGCGGATATGACTACTCTGGAAACTTCAGCCTAGAAGTGAGCGTGTGTGAGATGACCACCGTGGTG




CCTTACACGTGGAACGTTGGAATACTCTCTCTGATTTTCCTCATAAATGTTCTTGGAAATGGATTGGTCACC




TACATTTTTTGCAAGCACCGATCGCGGGCAGGAGCGATAGATATACTGCTCCTGGGTATCTGCCTAAACTCG




CTGTGTCTTAGCATATCTCTATTGGCAGAAGTGTTGATGTTTTTGTTTCCCAATATCATCTCCACAGGCTTG




TGCAGACTTGAAATTTTTTTTTACTATTTATATGTCTACTTGGATATCTTCAGTGTTGTGTGCGTCAGTCTA




GTGAGGTACCTCCTGGTGGCATATTCTACGCGTTCCTGGCCCAAGAAGCAGTCCCTCGGATGGGTACTGACA




TCCGCTGCACTGTTAATTGCATTGGTGCTGTCGGGGGATGCCTGTCGACACAGGAGCAGGGTGGTCGACCCG




GTCAGCAAGCAGGCCATGTGTTATGAGAACGCGGGAAACATGACTGCAGACTGGCGACTGCATGTCAGAACC




GTGTCAGTTACTGCAGGTTTCCTGTTACCCCTGGCCCTCCTTATTCTGTTTTATGCTCTCACCTGGTGTGTG




GTGAGGAGGACAAAGCTGCAAGCCAGGCGGAAGGTAAGGGGGGTGATTGTTGCTGTGGTGCTGCTGTTTTTT




GTGTTTTGCTTCCCTTACCACGTACTAAATCTACTGGACACTCTGCTAAGGCGACGCTGGATCCGGGACAGC




TGCTATACGCGGGGGTTGATAAACGTGGGTCTGGCAGTAACCTCGTTACTGCAGGCACTGTACAGCGCCGTG




GTTCCCCTGATATACTCCTGCCTGGGATCCCTCTTTAGGCAGAGGATGTACGGTCTCTTCCAAAGCCTCAGG




CAGTCTTTCATGTCCGGCGCCACCACGTAGCCCGCGGATGTCTACGTGCCCTTCCCCCTTAATTTAATCTAG




CCTCCCGTTCCCATGATGCAGAGAGGCGAATTTGGTTTGTACACAGATGTGACTATGTATTTGTTTTATTAT




GCGATTAAATGAGGGGTCTGATCCCAAAAGCAATGTTTAGTGGTGGTCGTTGATCTTCTTGACGCTCCATAG




GTAGATTGACTGGAACGCCATGGCCCACGGGGACATGGACAGGGGTGTTAGGTCTGGTGGAACATGCTGCCA




CTGCCACGGATGGAACATCAGAGATGGGTCTATGATCAGGGCAGCGTGTCGCCCGTCACTGGATGTAAGTCC




GGCCACCGTGGAGTTGCCTGTGGGGTTTCTGGGATAGTGTCTGGCTGGCAGGGTCTCATCCGCGGCATTTCC




ATGGTAGGTGAGGGTTATCTCGCCTCGCTGTCTCAGTATGTACTCGAGGGCGTCCTGCTCGTACCGGACCCC




CAGGTACTCTCCCTGGGCCCAGCTGGGCAGCACCGTCCCCCGCAACACTCGGAGGAAAACGCTCTTAGTGTT




CTGAGGGATCTGTATGTTTAGCCAGTGGCTGTCATACAGCTTGGACACGTTGGTCTCCAGGTTTACCGCCCA




GCGCTGGGGTGGTGTGGGTCCGTACGTGTATGGTGAGGATTCCGACCGGCCCACTACACCCAGGGCCACCAG




CAGCTGGAAGCCCACCTCGCCACAGCAGATGGAGAATGTGTCGGGTCTGTTTAGAAACTCTGTCAGGGTGGA




GGCACAGGTAGGGTCGTTACACAGCGCCAGGACCCATCCCCTGGCGCTGGCGTAGCTGGCCTGGCAGCCTGT




TCTGAGACATGTAATCAGACCAGAGAACCCCGACAAGGACTGTCCTCGTTTAAGCTCTTCCACAGTCACCGT




GGCCACCTCAAAGCCCGTGTTCTGCAACGCGGCCATGAGCGCGTACGGGGCACTGCTCCCAGGCAGCACCAA




CGCGGCCACACGGCGCGGGGAGGTGGGGCACGAAAACAGGCGCAGCTGACTCCCAAGGCACATGGCCCTTAG




GCTGCCCAGGTGATGCTCCAGACGACCCAGGTCCTTCCTGTGCATGTCCTCCAGTGGGTGCAGGGGAGGCGT




CACCAGGTTCCACATTTCGTCAGAAAAGGAGGTCCATGAGACTTGCAAGGAAGTCAGGGTCTCTTGAAACAC




AACTGTCTCGTTCTGCAAAACCGTGACGTTGTTGCCTTGTCCCTCGGGGCCAACGGTGCCCAGTGGGTGTGC




CACGCAGCGGTAGTCCCTGGCCGCCCGCAGCACCTCTGACAAGTGTACCTGGGGCACCTCAACCAGTGCCCC




AGGGGTCTCTGAAACCATAAGTTCGAGCGGGTTAGGGTGGGCGGGTAGTGAGAGCTGCAGTCCCCTGCAGCC




GGCCAGGGCCATCTCGATTGCAGATGGGAGAAGCCCTCCGTCCCCTATGTCGTGCCCAGATACAATGAGCCT




CTTGGACATCAGGTACTTAACAAGCATGAACAGGCTGGCGACCGTGGACGGGTTCAGAGGGGGTATTGGGTG




CCTGGATGCCAGGAAGTTGTGCTCGAAGGTGGACCCGGCTATGAGACAGCTCTGATTCACGGCCAGGTATAC




CAGGGCGTTGCCTTCGACCTTTACGTCCGGGGTGACCCTGTATCTGGATCCCTTGACCTCGGCCCAGCTGGT




AAACACCACCGAGTTGAAGGGAAGGACCTCCACCGTTTCTTGCTGTTGTGTGATGCGCACATGGCGCTCCGA




AAGCGTCGGAGAGCTGGCAGCCGAGGAGATGGACAGTGCCACTCCCAGCTCCCGGCAGAATTCCTTGCAGGC




GAAGAGGCACTCCTGTAGGAGGCCGGCTTGGTGGTCCTCTGGACTCCACGCCACGGCGCCAGTTAGCACTAC




GTCCTGGAGCTTGGACACGGGACTGAACATGAGGTTGGTGAGAGCCTCGGTGATGGCATAGGTGGCCCCGGT




GGATACATTAGTAGCCATCTTGTAGGCCTGCTCCCCCATGGCCATTGCCTGACCCCTCCACGCTGGCACTGG




AAGCAGCTCCTGGGGCAGGGCCTTCACCCAGGTCTCGAAGTCCTTGTGTAGGAGGTTGGCCATGGACGGAGT




GATGGCCTCCACCGTGTCGGGCACTCTGGGCGCCACCCTCTCGGCCAGCATGGACGAGTGCAGCACCAGGTG




GTAGTCTGAAACCGGTATGTCCAGGGGTCCCACGCCAGCCTGTTGGGCGATGAGGCCGTTGGAGCATCGGTC




CATGTGTCGCGTAAAGAACTCCTTGCTGCCAACCGTCGAGTGGCGAAGTAACTGGTGGATTGTGGAGCCGGT




GGCAAAAAGGCCCCAGTCAACATCCTCGGGGTGCCCCGAGACGCGGACACCATCGGACAGCGCCAGCCAGGG




GGACGGGGGGGTGGACGACGGCTGGTCTACAGAGAAGACCCTCGTGGTCTCCCCGGTCAGGTCGTCTACTAT




TCTGATGCCTGGGTGCTCCGAGGTCCTCCCGAGGACCGTTACCTGGCACGCGCACAGGCGCGCGGCGCGCTG




CAGTACCTCCAACGGGGTCTCGCCCAGATCCCCAGGCACCGCGCCCGACTCTGCCACCACCGCAAACACCAG




GGAGCAATACACGTTGAGAAAGTGCTCTGCCACCGCCGCCTTCACGGCATCCGGACCGGCCGCGGGATCCGC




AGGCAGGTGGGTGCGCACCTCGTCGGGTAGCTTGGAGACAAACAGCTCCAGGCCGGTCCGCGGCGCCAGCGC




CTGCAGGTGCCTCACCACCGGGGCCGGGTCATGCGATCTGTTTAGTCCGGAGAAGATAGGGCCCTTGGCAAG




CCGCTGGACCAGCTTCAGGGTCTCCAAGATGCGCACCGCATTGTCGGAGCTGTCGCGATAGAGGTTAGGGTA




GGTGTCCGGTCCATCCGTGGGCTCAAACCTGCCCAGACACACCACTGTCTGCTGGGGGATCATCCTTCTCAG




GGAGATGCATTCTTTGGAAGTAGTGGTAGAGATGGAGCAGACTGCCAGGGCGTTGCCAGGAGTGGTGGCGAT




GGTGCGCACCGTTTTTAAGAAACCCCCCAGGGTGGGGACTCCCGCTCCCTGCAGCATCTCGGCCTGCTGTAC




GCCCTTGGCGAATATGCGACGGAATCGGCTGTGCGCACGGGGTCCCAGGGCCGGTTCGGTGGCATACAGGCC




GGTGAGGGCCCCCTGTGTCTGTCCGCCTGGAAACAGGGTGCTGTGAAACAGCAGGTTGCCAAGGCCGCGAAT




ACCCCTCTGCACGCTGCTGTGGACGTGGGTGTACGCTCCGTGGATCCCGAACGCCTGTCTGGCACAGTTCCA




GGGCCACCGTTCCATGGTGCATCTTCCCGGTATCACAAAGTACCTGGCCACGTTATAATTGTCCCCGGTTGA




AGCCTGCACCGCCAGCGGTAGCAGGTCTGCCCCCAGGGATATCATAACAGCCTGCATAATGACATCATCTTC




AATGTGTGGCCTAGCCACGGGCTGGGGACCCTCGGGCACTTCCAACCCCTCGTACGGTACCAGGTCGGTATT




TTGTGTAAATGCCCTGATAAACTGAGGTGGGTGTGGTTCTAGCAGGGTCTGTGTGATTTTGGACACCAGGTG




CCTGCCCACTTCCACTCTAGCCCACTCCTGCAATCCTAGCTCTTGCAGCAGAACTGCAAGCTCTGTTGACAA




TGTTGTGGGCCGGTGGTGCATGTTTGGCCCGTAGCCAAAGGATACAACACGCTCGCTCCCCCGTGGCACAGA




CCGCCTGATGACATGGGGATATCCAAGGAGCGGTGACAGCACAGCGAGCACCGTCTGTATTTCCACATCCCG




TCTCTCTCGCTCCTCCCTCGAAGTGGGAGGTCTTCGGAAAGTTATCCATAGCAGATAGTAGCCTCCGGTGCC




ACCGGGTACGAGAGTGAGTGTGCCCGTACGGCTTGTATAAAAGTTCACAAAAGCTTCCTCATCCGCGGTGAG




ATCACTCTCCAACCACAGCCCAGTGACGTCGTAGGCCATGCCTAGAGGGCGCACCGCCCCCGGGGACACCCT




CTGTAGTCAGGCTGCCGAGAAACCCGCGAGATCTCTGGGGAGTAGGAAGAAACTTAGAATCCCCAAATATGT




CGCAGTCACAGGTTGTCGGGCAGAGTCTGTTTCCGCTTTCATGGGATCCACAGTTACTTGTAGCCATGTCAC




TAACCTCAAATACTCAAAAAAAGCTATCGATGGAAAAATGCTGTGGTCCTAGGTTAGTCCGTGGGAAACAAA




ACTTCCTCATACACTTCATCTGCAGGCTGAAATGGTGGCGGATCCAGACTCCTTACACCACAGTTGCTCACA




TTAGAGATACCTGATTGGTTAATACAAGCGGACGCACGCGTTGGTGGAGGCGTGTTGTCGCCCAAGATACTA




GCATAGGTGACTGTGCGTTCGCTATGTAGTTGCTGCATTTCAAGTTGGGTCGTTACTTCTGTGTTGCAAACC




CTTACTGGAGATAATGCCATGTCTGTTGTGGAACTTAAAATACGCGAGTGTATAACATTTCTAGATGGTAGA




GGTGGTAAACGGCGAGCTAAATGATTAACATCGGGACATATCCTGCCTGCATGAGCATGTGGTGTGTCGTGT




GGTGTATATATTGGTAATCTTGTTGTTACATTGTTGAACGACACAAGTCTGCTCTCTCGGTAGAGATAACCC




ACCAGTACGGCTTGGCCAGTACCTAATAAGAAAA










Varicella zoster virus










ORF16
209
GTGCAACTTTTGCTTATATTTTACATACAAACTTGTGTGTACCATAGATGAACACATTTTTATTTGTTTTGAA





TTATTAAACTTAAGACATGGCCGTGAATGGTGAAAGAGCTGTCCATGATGAAAACCTGGGTGTGTTAGACAGA




GAATTAATCCGCGCTCAATCAATCCAAGGATGTGTCGGAAACCCTCAAGAATGTAATTCGTGTGCAATAACCT




CAGCATCGCGGTTGTTTCTCGTGGGACTACAAGCAAGCGTTATCACGTCCGGGTTAATTTTACAATATCACGT




CTGCGAAGCTGCCGTCAATGCAACTATTATGGGGTTGATCGTCGTTTCGGGGTTATGGCCAACATCCGTGAAA




TTTCTACGCACATTAGCAAAATTGGGACGATGTTTGCAGACGGTGGTCGTGTTGGGTTTTGCTGTGTTATGGG




CGGTTGGTTGCCCAATATCCCGGGATCTTCCATTTGTAGAATTACTGGGAATTTCCATATCC





ORF47
210
GCCCCCAGCCAGCCAAAAAAATTGCCCGTGTGGGAGGTCTACAGCACCCTTTTGTAAAAACGGATATTAACAC




GATTAACGTTGAACACCATTTTATAGACACGCTACAGAAGACATCACCGAACATGGACTGTCGCGGGATGACA




GCGGGTATTTTTATTCGTTTATCCCACATGTATAAAATTCTAACAACTCTGGAGTCTCCAAATGATGTAACCT




ACACAACACCCGGTTCTACCAACGCACTGTTCTTTAAGACGTCCACACAGCCTCAGGAGCCGCGTCCGGAAGA




GTTAGCATCCAAATTAACCCAAGACGACATTAAACGTATTCTATTAACAATAGAATCGGAGACTCGTGGTCAG




GGCGACAATGCCATTTGGACACTACTCAGACGAAATTTAATCACCGCATCAACTCTTAAATGGAGTGTATCTG




GACCCGTCATTCCACCTCAGTGGTTTTACCACCATAACACTACAGACACATACGGTGATGCG





ORF52
211
CAAAAAAACACGCCGCAACAACCCATCCTTAAAATAAAAGGTTTATTTACTTTACAACCCGTGGTGA





ORF55
212
AGCATTGTATAAAAACACGCATGCGGGCTTGCTGTTCTCATTTCTAGGTTTTGTCTTAAATACACCCGCCATG




AGCATCTCTGGACCCCCAACGACGTTTATTTTATATAGGTTACATGGGGTTAGGCGGGTTCTTCACTGGACTT




TACCGGATCATGAACAAACACTCTACGCATTTACGGGTGGGTCAAGATCAATGGCGGTGAAGACGGACGCTCG




ATGTGATACAATGAGCGGTGGTATGATCGTCCTTCAACACACCCATACAGTGACCCTGCTAACCATAGACTGT




TCTACTGACTTTTCATCATACGCATTTACGCACCGGGATTTCCACTTACAGGACAAACCCCACGCAACATTTG




CGATGCCGTTTATGTCCTGGGTCGGTTCTGACCCAACATCTCAGCTGTACAGTAATGTGGGGGGGGTACTATC




CGTAATAACGGAAGATGACCTATCCATGTGTATCTCAATTGTTATATACGGTTTACGGGTAA





ORF59
213
CACTCCAATCGACCCTCTTGCGTACCATAATGTTTTCGGAGTTGCCTCCTTCCGTACCGACGGCATTGCTTCA




ATGGGGTTGGGGATTGCATCGTGGACCGTGTTCGATCCCAAATTTTAAACAGGTAGCCAGCCAACACAGTGTT




CAGAACGATTTTACAGAAAATAGCGTTGATGCAAATGAAAAATTTCCGATTGGGCACGCGGGCTGTATTGAGA




AAACCAAAGACGACTATGTACCATTTGATACGTTGTTCATGGTATCATCTATTGACGAACTTGGGCGGAGACA




ATTAACCGACACCATCCGCCGCAGCTTGGTTATGAACGCCTGTGAAATAACGGTCGCGTGTACGAAAACCGCA




GCCTTTTCTGGTCGAGGCGTGTCACGACAAAACACGTGACCCTATCTAAAAATAAATTCAATCCATCCAGTC




ATAAGAGCCTGCAAATGTTTGTGTTGTGTCAAAAAACCCATGCACCCCGTGTCAGAAACCTA





ORF61
214
TTTGTTGGGAGGGGGAAGGAAATGCCTTAAACATCCACAGTCTGCTTTATTACCAACTGTATGTAAATTATGA




TCATTAAACGTGCATTTTAAAAATACCTGAGTGTTGC





ORF62
215
CGGAGTCCCCTCCTTTTCTCGTGAGCGCCACTGGCGCGCGGACTGTTTGTTGTTAATAAAAGCGGAACGGTTT




TTATGAAAAAAGTGT














SID




miRNA
NO
Representative sequence











miRNAs:



Herpes simplex virus










hsv1-miR-H1
216
UGGAAGGACGGGAAGUGGAAG






hsv1-miR-LAT
217
UGGCGGCCCGGCCCGGGGCC





Epstein Barr virus


ebv-miR-BART1-3p
218
UAGCACCGCUAUCCACUAUGUCU





ebv-miR-BART1-5p
219
UCUUAGUGGAAGUGACGUGCUGU





ebv-miR-BART2
220
UAUUUUCUGCAUUCGCCCUUGC





ebv-miR-BART3-3p
221
CGCACCACUAGUCACCAGGUGU





ebv-miR-BART3-5p
222
AACCUAGUGUUAGUGUUGUGCU





ebv-miR-BART4
223
GACCUGAUGCUGCUGGUGUGCU





ebv-miR-BART5
224
CAAGGUGAAUAUAGCUGCCCAUCG





ebv-miR-BART6-3p
225
CGGGGAUCGGACUAGCCUUAGA





ebv-miR-BART6-5p
226
GGUUGGUCCAAUCCAUAGGCUU





ebv-miR-BART7
227
CAUCAUAGUCCAGUGUCCAGGG





ebv-miR-BART8-3p
228
GUCACAAUCUAUGGGGUCGUAG





ebv-miR-BARTS-5p
229
UACGGUUUCCUAGAUUGUACAG





ebv-miR-BART9
230
UAACACUUCAUGGGUCCCGUAG





ebv-miR-BART10
231
ACAUAACCAUGGAGUUGGCUGU





ebv-miR-BART11-3p
232
ACGCACACCAGGCUGACUGCC





ebv-miR-BART11-5p
233
GACAGUUUGGUGCGCUAGUUGU





ebv-miR-BART12
234
UCCUGUGGUGUUUGGUGUGGUUU





ebv-miR-BART13
235
UGUAACUUGCCAGGGACGGCUGA





ebv-miR-BART14-3p
236
UAAAUGCUGCAGUAGUAGGGAU





ebv-miR-BART14-5p
237
UACCCUACGCUGCCGAUUUACA





ebv-miR-BART15
238
AGUGGUUUUGUUUCCUUGAUAG





ebv-miR-BART16
239
AUAGAGUGGGUGUGUGCUCUUG





ebv-miR-BART17-3p
240
UUGUAUGCCUGGUGUCCCCUUA





ebv-miR-BART17-5p
241
AAGAGGACGCAGGCAUACAAGG





ebv-miR-BART18
242
CAAGUUCGCACUUCCUAUACAG





ebv-miR-BART19
243
UGUUUUGUUUGCUUGGGAAUGC





ebv-miR-BART20-3p
244
CAUGAAGGCACAGCCUGUUACC





ebv-miR-BART20-5p
245
GUAGCAGGCAUGUCUUCAUUCC





ebv-miR-BHRF1-1
246
UAACCUGAUCAGCCCCGGAGUU





ebv-miR-BHRF1-2*
247
AAAUUCUGUUGCAGCAGAUAGC





ebv-miR-BHRF1-3
248
UAACGGGAAGUGUGUAAGCACAC










Human cytomegalovirus









hcmv-miR-UL22-1
249
UCACGGGAAGGCUAGUUAGAC
/





hcmv-miR-UL22A-1*
250
UAACUAGCCUUCCCGUGAGA





hcmv-miR-UL31-1
251
CGGCAUGUUGCGCGCCGUGAU





hcmv-miR-UL36-1
252
UCGUUGAAGACACCUGGAAAGA





hcmv-miR-UL36-1-N
253
AGACACCUGGAAAGAGGACGU





hcmv-miR-UL53-1
254
UGCGCGAGACCUGCUCGUUGC





hcmv-miR-UL54-1
255
UGCGCGUCUCGGUGCUCUCGG





hcmv-miR-UL70-3p
256
GGGGAUGGGCUGGCGCGCGG





hcmv-miR-UL70-5
257
UGCGUCUCGGCCUCGUCCAGA





hcmv-miR-UL102-1
258
UGGCCAUGUCGUUUCGCGUCG





hcmv-miR-UL102-2
259
UGGCGUCGUCGCUCGGCGGGU





hcmv-miR-UL111a-1
260
UGACGUUGUUUGUGGGUGUUG





hcmv-miR-UL112-1
261
AAGUGACGGUGAGAUCCAGGCU





hcmv-miR-UL148D-1
262
UCGUCCUCCCCUUCUUCACCG





hcmv-miR-US4
263
CGACAUGGACGUGCAGGGGGAU





hcmv-miR-US5-1
264
UGACAAGCCUGACGAGAGCGU





hcmv-miR-US5-2
265
UUAUGAUAGGUGUGACGAUGUC





hcmv-miR-US5-2-N
266
UGAUAGGUGUGACGAUGUCUU





hcmv-miR-US25-1
267
AACCGCUCAGUGGCUCGGACC





hcmv-miR-US25-2-5p
268
AGCGGUCUGUUCAGGUGGAUGA





hcmv-miR-US25-2-3p
269
AUCCACUUGGAGAGCUCCCGCGG





hcmv-miR-US29-1
270
UUGGAUGUGCUCGGACCGUGA





hcmv-miR-US33-1
271
GAUUGUGCCCGGACCGUGGGCG










Kaposi's sarcoma-associated hemesvirus










kshv-miR-K12-1
272
AUUACAGGAAACUGGGUGUAAGC






kshv-miR-K12-2
273
AACUGUAGUCCGGGUCGAUCUG





kshv-miR-K12-3
274
UCACAUUCUGAGGACGGCAGCG





kshv-miR-K12-3*
275
UCGCGGUCACAGAAUGUGACA





kshv-miR-K12-4-5
276
AGCUAAACCGCAGUACUCUAGG





kshv-miR-K12-4-3p
277
UAGAAUACUGAGGCCUAGCUGA





kshv-miR-K12-5
278
UAGGAUGCCUGGAACUUGCCGG





kshv-miR-K12-6-5p
279
CCAGCAGCACCUAAUCCAUCGG





kshv-miR-K12-6-3
280
UGAUGGUUUUCGGGCUGUUGAG





kshv-miR-K12-7
281
UGAUCCCAUGUUGCUGGCGCU





kshv-miR-K12-8
282
UAGGCGCGACUGAGAGAGCACG





kshv-miR-K12-9*
283
ACCCAGCUGCGUAAACCCCGCU





kshv-miR-K12-9
284
CUGGGUAUACGCAGCUGCGUAA





kshv-miR-K12-10a
285
UAGUGUUGUCCCCCCGAGUGGC





kshv-miR-K12-10b
286
UGGUGUUGUCCCCCCGAGUGGC





kshv-miR-K12-11
287
UUAAUGCUUAGCCUGUGUCCGA





kshv-miR-K12-12
288
ACCAGGCCACCAUUCCUCUCCG










Human (homo sapiens)










hsa-let-7a
289
UGAGGUAGUAGGUUGUAUAGUU






hsa-let-7b
290
CUAUACAACCUACUGCCUUCCC





hsa-let-7c
291
UGAGGUAGUAGGUUGUAUGGUU





hsa-let-7d
292
AGAGGUAGUAGGUUGCAUAGUU





hsa-let-7e
293
UGAGGUAGGAGGUUGUAUAGUU





hsa-let-7f
294
UGAGGUAGUAGAUUGUAUAGUU





hsa-let-7g
295
UGAGGUAGUAGUUUGUACAGUU





hsa-let-7i
296
UGAGGUAGUAGUUUGUGCUGUU





hsa-miR-1
297
UGGAAUGUAAAGAAGUAUGUAU





hsa-miR-9
298
UCUUUGGUUAUCUAGCUGUAUGA





hsa-miR-15a
299
CAGGCCAUAUUGUGCUGCCUCA





hsa-miR-15b
300
CGAAUCAUUAUUUGCUGCUCUA





hsa-miR-16
301
UAGCAGCACGUAAAUAUUGGCG





hsa-miR-17
302
CAAAGUGCUUACAGUGCAGGUAG





hsa-miR-17-5p
303
CAAAGUGCUUACAGUGCAGGUAGU





hsa-miR-18a
304
UAAGGUGCAUCUAGUGCAGAUAG





hsa-miR-18b
305
UAAGGUGCAUCUAGUGCAGAUAG





hsa-miR-20a
306
ACUGCAUUAUGAGCACUUAAAG





hsa-miR-20b
307
CAAAGUGCUCAUAGUGCAGGUAG





hsa-miR-23a
308
AUCACAUUGCCAGGGAUUUCC





hsa-miR-23b
309
AUCACAUUGCCAGGGAUUACC





hsa-miR-24
310
UGGCUCAGUUCAGCAGGAACAG





hsa-miR-30a-5p
311
UGUAAACAUCCUCGACUGGAAG





hsa-miR-30a-3
312
CUUUCAGUCGGAUGUUUGCAGC





hsa-miR-30b
313
CUGGGAGGUGGAUGUUUACUUC





hsa-miR-30c
314
UGUAAACAUCCUACACUCUCAGC





hsa-miR-30e-5p
315
UGUAAACAUCCUUGACUGGA





hsa-miR-30e-3p
316
CUUUCAGUCGGAUGUUUACAGC





hsa-miR-93
317
CAAAGUGCUGUUCGUGCAGGUAG





hsa-miR-98
318
UGAGGUAGUAAGUUGUAUUGUU





hsa-miR-99a
319
AACCCGUAGAUCCGAUCUUGUG





hsa-miR-99b
320
CACCCGUAGAACCGACCUUGCG





hsa-miR-100
321
AACCCGUAGAUCCGAACUUGUG





hsa-miR-103
322
AGCAGCAUUGUACAGGGCUAUGA





hsa-miR-105
323
UCAAAUGCUCAGACUCCUGUGGU





hsa-miR-106a
324
AAAAGUGCUUACAGUGCAGGUAG





hsa-miR-106b
325
UAAAGUGCUGACAGUGCAGAU





hsa-miR-107
326
AGCAGCAUUGUACAGGGCUAUCA





hsa-miR-124a
327
UUAAGGCACGCGGUGAAUGCCA





hsa-miR-125a
328
ACAGGUGAGGUUCUUGGGAGCC





hsa-miR-125b
329
UCCCUGAGACCCUAACUUGUGA





hsa-miR-126
330
UCGUACCGUGAGUAAUAAUGCG





hsa-miR-129
331
CUUUUUGCGGUCUGGGCUUGC





hsa-miR-132
332
UAACAGUCUACAGCCAUGGUCG





hsa-miR-134
333
UGUGACUGGUUGACCAGAGGGG





hsa-miR-137
334
UUAUUGCUUAAGAAUACGCGUAG





hsa-miR-138
335
AGCUGGUGUUGUGAAUCAGGCCG





hsa-miR-141
336
UAACACUGUCUGGUAAAGAUGG





hsa-miR-142-3p
337
UGUAGUGUUUCCUACUUUAUGGA





hsa-miR-142-5p
338
CAUAAAGUAGAAAGCACUACU





hsa-miR-145
339
GUCCAGUUUUCCCAGGAAUCCCU





hsa-miR-150
340
UCUCCCAACCCUUGUACCAGUG





hsa-miR-154
341
UAGGUUAUCCGUGUUGCCUUCG





hsa-miR-181a
342
AACAUUCAACGCUGUCGGUGAGU





hsa-miR-181b
343
AACAUUCAUUGCUGUCGGUGGGU





hsa-miR-181c
344
AACAUUCAACCUGUCGGUGAGU





hsa-miR-181d
345
AACAUUCAUUGUUGUCGGUGGGU





hsa-miR-182*
346
UGGUUCUAGACUUGCCAACUA





hsa-miR-184
347
UGGACGGAGAACUGAUAAGGGU





hsa-miR-194
348
UGUAACAGCAACUCCAUGUGGA





hsa-miR-195
349
UAGCAGCACAGAAAUAUUGGC





hsa-miR-196a
350
UAGGUAGUUUCAUGUUGUUGGG





hsa-miR-196b
351
UAGGUAGUUUCCUGUUGUUGGG





hsa-miR-197
352
UUCACCACCUUCUCCACCCAGC





hsa-miR-199a
353
CCCAGUGUUCAGACUACCUGUUC





hsa-miR-199b
354
CCCAGUGUUUAGACUAUCUGUUC





hsa-miR-200a
355
UAACACUGUCUGGUAACGAUGU





hsa-miR-200b
356
UAAUACUGCCUGGUAAUGAUGA





hsa-miR-200c
357
UAAUACUGCCGGGUAAUGAUGGA





hsa-miR-202
358
GUGCCAGCUGCAGUGGGGGAG





hsa-miR-205
359
UCCUUCAUUCCACCGGAGUCUG





hsa-miR-206
360
UGGAAUGUAAGGAAGUGUGUGG





hsa-miR-210
361
CUGUGCGUGUGACAGCGGCUGA





hsa-miR-212
362
UAACAGUCUCCAGUCACGGCC





hsa-miR-213
363
ACCAUCGACCGUUGAUUGUACC





hsa-miR-214
364
ACAGCAGGCACAGACAGGCAGU





hsa-miR-219
365
AGGGUAAGCUGAACCUCUGAU





hsa-miR-296
366
AGGGCCCCCCCUCAAUCCUGU





hsa-miR-299-3p
367
UAUGUGGGAUGGUAAACCGCUU





hsa-miR-302a
368
UAAGUGCUUCCAUGUUUUGGUGA





hsa-miR-302b
369
UAAGUGCUUCCAUGUUUUAGUAG





hsa-miR-302c
370
UAAGUGCUUCCAUGUUUCAGUGG





hsa-miR-302d
371
UAAGUGCUUCCAUGUUUGAGUGU





hsa-miR-324-3p
372
ACUGCCCCAGGUGCUGCUGG





hsa-miR-326
373
CCUCUGGGCCCUUCCUCCAG





hsa-miR-328
374
CUGGCCCUCUCUGCCCUUCCGU





hsa-miR-329
375
AACACACCUGGUUAACCUCUUU





hsa-miR-330-5p
376
UCUCUGGGCCUGUGUCUUAGGC





hsa-miR-330 (-3p)
377
GCAAAGCACACGGCCUGCAGAGA





hsa-miR-337 (-3p)
378
UCCAGCUCCUAUAUGAUGCCUUU





hsa-miR-338 (-3p)
379
UCCAGCAUCAGUGAUUUUGUUGA





hsa-miR-339 (-5p)
380
UCCCUGUCCUCCAGGAGCUCA





hsa-miR-340
381
UUAUAAAGCAAUGAGACUGAUU





hsa-miR-346
382
UGUCUGCCCGCAUGCCUGCCUCU





hsa-miR-367
383
AAUUGCACUUUAGCAAUGGUGA





hsa-miR-371 (-3p)
384
GUGCCGCCAUCUUUUGAGUGU





hsa-miR-372
385
AAAGUGCUGCGACAUUUGAGCGU





hsa-miR-373
386
GAAGUGCUUCGAUUUUGGGGUGU





hsa-miR-374
387
UUAUAAUACAACCUGAUAAGUG


(same as 374a)





hsa-miR-381
388
UAUACAAGGGCAAGCUCUCUGU





hsa-miR-424
389
CAGCAGCAAUUCAUGUUUUGAA





hsa-miR-425
390
AAUGACACGAUCACUCCCGUUGA





hsa-miR-429
391
UAAUACUGUCUGGUAAAACCGU





hsa-miR-448
392
UUGCAUAUGUAGGAUGUCCCAU





hsa-miR-450
393
UUUUGCAAUAUGUUCCUGAAUA


(same as 450b-5p)





hsa-miR-450b-3p
394
UUGGGAUCAUUUUGCAUCCAUA





hsa-miR-451
395
AAACCGUUACCAUUACUGAGUU





hsa-miR-453
396
AGGUUGUCCGUGGUGAGUUCGCA





hsa-miR-455 (-5p)
397
UAUGUGCCUUUGGACUACAUCG





hsa-miR-490 (-3p)
398
CAACCUGGAGGACUCCAUGCUG





hsa-miR-491 (-5p)
399
AGUGGGGAACCCUUCCAUGAGGA





hsa-miR-492
400
AGGACCUGCGGGACAAGAUUCUU





hsa-miR-495
401
AAACAAACAUGGUGCACUUCUU





hsa-miR-497
402
CAGCAGCACACUGUGGUUUGU





hsa-miR-502 (-5p)
403
AUCCUUGCUAUCUGGGUGCUA





hsa-miR-503
404
UAGCAGCGGGAACAGUUCUGCAG





hsa-miR-510
405
UACUCAGGAGAGUGGCAAUCAC





hsa-miR-518b
406
CAAAGCGCUCCCCUUUAGAGGU





hsa-miR-518c
407
CAAAGCGCUUCUCUUUAGAGUGU





hsa-miR-518d
408
CAAAGCGCUUCCCUUUGGAGC





hsa-miR-519d
409
CAAAGUGCCUCCCUUUAGAGUG





hsa-miR-520a*
410
CUCCAGAGGGAAGUACUUUCU


(same as 520a-5p)





hsa-miR-520b
411
AAAGUGCUUCCUUUUAGAGGG





hsa-miR-520c
412
AAAGUGCUUCCUUUUAGAGGGU


(same as 520c-3p)





hsa-miR-520d
413
AAAGUGCUUCUCUUUGGUGGGUU


(same as 520d-3p)





hsa-miR-520g
414
ACAAAGUGCUUCCCUUUAGAGUGU





hsa-miR-520h
415
ACAAAGUGCUUCCCUUUAGAGU





hsa-miR-522
416
AAAAUGGUUCCCUUUAGAGUGU





hsa-miR-525 (-5p)
417
CUCCAGAGGGAUGCACUUUCU





hsa-miR-526b
418
CUCUUGAGGGAAGCACUUUCUGU





hsa-548d-3p
419
CAAAAACCACAGUUUCUUUUGC





hsa-miR-548k
420
AAAAGUACUUGCGGAUUUUGCU





hsa-miR-551a
421
GCGACCCACUCUUGGUUUCCA





hsa-miR-551b
422
GCGACCCAUACUUGGUUUCAG





hsa-miR-552
423
AACAGGUGACUGGUUAGACAA





hsa-miR-592
424
UUGUGUCAAUAUGCGAUGAUGU





hsa-miR-598
425
UACGUCAUCGUUGUCAUCGUCA





hsa-miR-652
426
AAUGGCGCCACUAGGGUUGUG





hsa-miR-769-3p
427
CUGGGAUCUCCGGGGUCUUGGUU





hsa-miR-1226
428
UCACCAGCCCUGUGUUCCCUAG









Example 2
Suppression of Immediate-Early Viral Gene Expression by Herpesvirus-Coded MicroRNAs

As described above, a quantitative algorithm was developed and applied to predict target genes of microRNAs encoded by herpesviruses. While there is almost no conservation among microRNAs of different herpesvirus subfamilies, a common pattern of regulation emerged. The algorithm predicts that herpes simplex virus, human cytomegalovirus, Epstein-Barr virus, Kaposi's sarcoma-associated herpesvirus and varicella zoster virus all employ microRNAs to suppress expression of their own genes, including their immediate-early genes.


In the case of human cytomegalovirus, a virus-coded microRNA, (miR-UL112-1) that is predicted by the algorithm described herein was predicted to target the viral immediate-early protein 1 (IE1) mRNA within its 3′UTR (FIG. 1). The HCMV IE1 mRNA is an immediate-early product that is expressed from the major immediate-early locus at the very start of infection. The IE1 protein is multifunctional and is involved in transcriptional activation of the viral genome, in part by influencing cellular histone deacetylase activity. It is not essential for lytic virus growth, but mutations within this open reading frame significantly delay virus replication and reduce virus yield.


This example describes experiments designed to test that prediction. Mutant viruses were generated that were unable to express the microRNA, or encoded an immediate-early 1 mRNA lacking its target site. Analysis of RNA and protein within infected cells demonstrated that miR-UL112-1 inhibits expression of the major immediate-early protein.


Materials and Methods:


Cells, viruses and Plasmids. MRC5 and HEK293T cells were propagated in medium with 10% fetal bovine serum or 10% newborn calf serum, respectively.


The wild-type virus used in these studies is BFXwt-GFP. It is a derivative of a bacterial artificial chromosome (BAC) clone of the HCMV VR1814 clinical isolate in which a green fluorescent protein (GFP) expression cassette has been inserted upstream of the US7 ORF. Three derivatives of BFXwt-GFP were produced by using galK selection and counter selection to modify BAC DNAs. BFXdlIE1cis lacks the 7-nucleotide seed sequence for miR-112-1 within the IE1 3′UTR, BFXsub112-1 contains 12 single base-pair substitutions that block expression of miR-112-1, BFXsub112-1r is a repaired derivative of BFXsub12-1. Virus was generated by electroporation of MRC5 cells with BAC DNA (20 μg) plus an HCMV pp71-expressing plasmid (pCGNpp71). Virions were purified by centrifugation through a 20% sorbitol cushion. Virus titers were calculated by infecting fibroblasts and counting IE2-positive foci at 24 hours post-inoculation (hpi).


mRNA and miRNA quantification. Real-time RT-PCR was performed on total RNA isolated from the cells using the mirVana miRNA isolation kit (Ambion Inc, Austin, Tex.), which isolates total RNA while preserving the miRNA population. DNA was removed by using the DNA-free reagent kit (Ambion Inc). Equal aliquots of total RNA were reverse transcribed using the Taqman Reverse Transcription kit with random hexamers according to the manufacture's protocol (Applied Biosystems, Foster City, Calif.). To measure mRNA levels, real-time PCR was performed with SYBR green PCR master mix (Applied Biosystems) and primers specific to exon 4 of IE1.


To measure levels of miR-UL112-1, a modified TaqMan-based stem loop RT-PCR reaction was performed. TaqMan MicroRNA Reverse Transcription Kit (Applied Biosystems) was used according to the manufacturer's protocol with stem-loop oligonucleotide: 5′GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACAGCCTG-3′ (SEQ ID NO: 429). A 1:15 dilution of the product from the reverse transcriptase reaction was used in a TaqMan quantitative PCR reaction along with 1.5 mM of forward primer, 0.7 mM of reverse primer, 0.2 mM of TaqMan probe, and 1× Universal TaqMan PCR Master mix (Applied Biosystems). The results were normalized by quantifying the levels of human U6B small nuclear RNA using the RNU6B Taqman control assay (Applied Biosystems).


Protein quantification. MRC5 cells were infected at a multiplicity of 3 pfu/cell. Cells were starved for methionine and cystine prior to labeling by incubating for 1 h in medium with 10% dialyzed fetal bovine serum. EasyTag Express Protein Labeling Mix (100 μCi; Perkin Elmer, Waltham, Mass.) was added to the cells for 1 h after which the labeling medium was replaced with medium containing 10% fetal calf serum for 10 min to allow stalled translation to complete. Cells were washed in PBS and then lysed in buffer containing 20 mM Tris Acetate pH 7.5, 0.27 M sucrose, 1 mM EDTA, 1 mM EGTA, 1 mM sodium orthovanadate, 10 mM sodium β-glycerophosphate, 50 mM sodium fluoride, 5 mM sodium pyrophosphate and 1% Triton X-100. One tablet of Complete Mini Protease inhibitor (Roche Applied Science) was added per 10 ml lysis buffer. Protein concentration was calculated by Bradford assay.


Aliquots (10 μg) were subjected to western blot assay using monoclonal antibodies specific for HCMV IE1 (1B12), HCMV UL99 (10B4) and monoclonal anti-tubulin antibody (Sigma-Aldrich St. Louis, Mo.). An anti-mouse HRP conjugated antibody was used along with the ECL plus detection kit (Amersham) to detect specific bands. Chemiluminescence was analyzed using a phosphorimager and ImageQuant TL software (GE Healthcare Life Sciences, Piscataway, N.J.).


For immunoprecipitation assays, aliquots of lysate (5 or 10 μg protein) were pre-cleared with Protein A/G Plus Agarose beads (Santa Cruz Biotechnology, Santa Cruz, Calif.) for 4 h at 4° C. Anti-IE1 monoclonal antibody (1B12) and Protein A/G Plus Agarose were added to the supernatant which was incubated overnight at 4° C. with shaking. Immunopreciptated complexes were washed three times with RIPA buffer (50 mM Tris-HCl pH7.4, 1% NP-40, 0.25% Na-deoxycholate, 150 mM NaCl, 1 mM EDTA) supplemented with Complete Mini Protease inhibitor (Roche). Beads were boiled in 2×SDS loading buffer and run on an 8% SDS-PAGE gel to separate the immunoprecipated complexes. Gels were dried and exposed to a phosphor screen, which was analyzed using a phosphorimager and ImageQuant TL software.


Results:


HCMV IE1 protein synthesis is suppressed by miR-UL-112-1. Inhibition of any of the genes in Table 7 of Example 1 could potentially favor latency, but we considered IE1 to be a prime target, given its central role at the start of the HCMV transcriptional cascade. IE1 is one of two main products of the HCMV major IE locus, the other being IE2. IE1 and IE2 are required to execute the transcriptional program of the virus, and they almost certainly influence the choice between latency and lytic replication. A mutant virus unable to produce a functional IE1 protein replicates efficiently only after infection at a high input multiplicity; at lower multiplicities it fails to accumulate normal levels of early mRNAs. It activates transcription at least in part by controlling histone modifications.


The algorithm predicted a single binding site for miR-UL112-1 within the 99 nucleotide 3′UTR of the IE1 mRNA. To test the prediction that miR-UL12-1 inhibits translation of IE1 protein, we prepared two reporter constructs. The first contained the wild-type IE1 3′UTR downstream of the luciferase coding region and the second contained a derivative of the 3′UTR lacking the 7-nucleotide seed sequence predicted to be the target of the miRNA (FIG. 1, shaded sequence). HEK293T cells were cotransfected with set amounts of the reporter plasmids and increasing amounts of an effector plasmid expressing the miR-UL112-1 precursor hairpin sequence. The miRNA induced a statistically significant reduction in luciferase expression from the reporter with a wild-type IE1 3′UTR (maximum repression=60%) but not from the modified 3′UTR lacking the seed sequence (FIG. 2), arguing that miR-UL112-1 targets the seed sequence within the IE1 3′UTR to reduce translation or degrade the RNA.


Next, three viruses were generated to test whether miR-UL112-1 targets IE1 expression within an HCMV-infected cell. The first, BFXdlIE1cis, lacks the 7-nucleotide seed sequence within the IE1 3′UTR that is targeted by the miRNA. The second, BFXsub112-1, is unable to express the miRNA. The miR-UL112-1 precursor is encoded on the DNA strand opposite UL114, and disruption of this ORF inhibits virus replication. Consequently, we substituted 12 nucleotides within the miR-UL112-1 precursor sequence while maintaining the coding sequence of the UL114 ORF. The miR-UL112-1 mutation was repaired in the final virus, BFXsub112-1r, to control for potential off-target mutations. The viruses grew normally in fibroblasts. We also monitored accumulation of miR-UL112-1 by quantitative RT-PCR. The miRNA accumulated to a detectable level between 8-12 h after infection with wild-type virus and then increased as the infection progressed. No miR-UL112-1 was detected at 48 h after infection with BFXsub12-1, a time at which the miRNA was readily detected in cells infected with the other viruses.


To determine if IE1 protein levels were affected by the expression of miR-UL112-1, we prepared extracts from infected cells after a 1 h 35S-labeling period at 6, 24 and 48 hpi with wild-type or mutant viruses. We did not monitor cells later than 48 hpi, even though the miRNA accumulated to higher levels at 72 hpi, because infected cells show severe cytopathic effect at the later time. We first examined the steady state levels of several proteins by western blot assay (FIG. 3A, top panel). Tubulin levels, which are not altered by infection, provided a precise measure of the amount of cellular protein analyzed in each sample; and the accumulation of the late HCMV protein, pp28, confirmed that all infections progressed normally. We monitored IE1 steady state levels, but little difference was evident after infection with wild-type and mutant viruses. This was presumably because IE1 protein has a>20 h half life, and it accumulates to a high level before the miRNA is available.


Next, IE1 was immunoprecipitated from extracts and subjected to electrophoresis to identify protein synthesized during each 1 h labeling period (FIG. 3A, bottom panel). The rate of IE1 synthesis was substantially greater at 6 hpi than at later times for all viruses, probably because the promoter responsible for the production of IE1 mRNA is repressed late after infection. Radioactivity in the IE1-specific band was quantified relative to the level of tubulin, and FIG. 3B (top panel) presents the results of two independent experiments, each analyzed by performing three independent immunoprecipitations. At 6 and 24 hpi, we did not observe an effect attributable to miR-UL112-1 activity, consistent with the observation that the miRNA is not detected at 6 hpi and relatively little is present at 24 hpi. In contrast, at 48 hpi when the miRNA has accumulated to higher levels, the miR-UL112-1-deficient and the IE1 target site-deficient mutants exhibited statistically significant increases (˜2-fold) in IE1 protein synthesis relative to the wild-type and revertant viruses.


At each time protein extracts were prepared, total RNA was isolated from a duplicate sample, and the amount of IE1 RNA was determined relative to the level of an independent IE RNA (UL37) by quantitative RT-PCR. IE1 RNA levels varied little among the viruses (FIG. 3B, middle panel), indicating that the miRNA does not significantly alter the stability of IE1 mRNA and supporting the conclusion that the changes in IE1 protein levels result from the inhibition of translation. The ratio of IE1 protein to RNA was calculated (FIG. 3B, bottom panel), confirming a significant increase in protein synthesis when either the miRNA or its target site is disrupted.


Summary:


The experiments described above confirmed the predicted inhibition of HCMV IE1 translation by miR-UL112-1 within transfected cells by using reporter constructs (FIG. 2) and within virus-infected fibroblasts by analyzing mutant viruses (FIG. 3). Given the broad range of predicted targets (see Example 1), it is believed that herpesvirus-coded miRNAs exert regulatory effects directly on viral gene expression during replication and spread within infected hosts. This regulation could have many consequences, e.g., downregulating viral genes as the infectious cycle progresses to avoid toxicity and helping to modulate viral gene expression to optimize replication in a variety of different cell types. The results also suggest that virus-coded miRNAs could play a central role in the establishment and maintenance of latency. Because they target E products that act at the top of the lytic cascade, miRNAs expressed in cells destined for a latent infection can potentially antagonize the cascade and thereby favor entry into latency. Further, miRNAs expressed during latency could help to prevent reactivation by inhibiting translation of IE transactivators.


Example 3
HCMV IE2 mRNA is Targeted by a Cell-Coded miRNA

The HCMV genome encodes a second protein, the UL122-coded IE2 protein, whose mRNA is generated by an alternative splicing event within the major immediate-early locus (FIG. 4). The IE2 mRNA lacks the fourth exon that is present in the IE1 mRNA and incorporates an alternative fifth exon. The IE2 protein is multifunctional and is believed to be involved in transcriptional activation of both viral and cellular genes. It has been reported to be an essential protein, as mutations within this open reading frame render the virus defective for growth. It is believed that the expression of the IE2 protein is very important for reactivation of viral transcription from latency.


The algorithm described above predicted that the 3′UTR of the IE2 mRNA contains a site that would be a target of three related but different human-encoded miRNAs: hsa-miR-200b, hsa-miR-200c and hsa-miR-429. The algorithm predicted that any one of these three miRNAs would bind to the 3′UTR of the IE2 mRNA and inhibit its translation. As hsa-miR-200b, hsa-miR-200c and hsa-miR-429 all share a common seed sequence, the binding of has-200b is shown as a representative sample of the interaction between the miRNA and the 3′UTR if IE2 (FIG. 4). According to the algorithm's prediction, the presence of these miRNAs should inhibit viral replication, and, as a result, these miRNAs might be present at reduced levels or not at all in cells where HCMV replicates most efficiently, e.g., fibroblasts.


This example describes experiments which are designed to test the prediction that human encoded miRNAs are able to target viral encoded mRNAs and that this targeting results in the reduced expression level of the subsequent gene product. Assays were performed which allow for the quantification of gene expression in the presence of targeting miRNAs. Additionally, mutants were generated which tests the hypothesis that the miRNAs are targeting through sequences directly predicted by the algorithm.


Materials and Methods:


Cells and Plasmids. 4T07 cells were propagated in DMEM medium with 10% fetal bovine serum. miRNA expressing retroviruses were constructed by cloning cluster 1 into pMSCV/puro (Clontech; Mountain View, Calif.). Cluster 1 contains hsa-miR-200b. Cluster 2 which contains hsa-miR-200c was PCR amplified and cloned into pMSCV/hygro (Clontech). Retroviruses were generated by transiently transfecting 10 ug of the above retrovirus plasmids into the Phoenix Retrovirus Expression System cells (Orbigen; San Diego, Calif.) for 48 hours. Supernatants from transfected cells were filtered through a 0.45μ filter and used to infect 4T07 cells. As a control, 4T07 cells were also transduced with the empty parental retroviruses that lack either cluster 1 or cluster 2. Transduced cells were selected with Hygromycin (300 ug/ml) and Puromycin (4 ug/ml) for three rounds of selection.


The pMIR-Report plasmid was digested with SpeI and HindIII to allow for the insertion of both wild type and mutant IE2 3′UTR sequence. The mutant IE2 3′UTR was generated by GalK recombination utilizing galK insertion primers. Removal of the galK gene from the 3′UTR of IE2 by homologous recombination to introduce a mutant miRNA binding site was directed using a double stranded DNA oligonucleotide. The he 3′UTRs were amplified for cloning into the pMIR-Report vectors. All constructs were confirmed by sequencing.


miRNA quantification: The levels of miRNA expression were measured using the TaqMan microRNA assay stem (applied Biosystems) from total RNA isolated from 10e6 cells using the mirVana miRNA isolation kit (Ambion). Normalization for the hsa-miR-200b and hsa-miR200c was performed by normalization to the endogenous small nucleolar RNA RNU44.


Transfection assays. 4T07 or 4T07/C1C2 cells were transfected with 250 ng of either pMIR-Report (empty vector), pMIR-Report with a wild type IE2 3′UTR (IE2 3′UTR), pMIR-Report with a mutant IE2 3′UTR (Mutant IE2 3′UTR), or pMIR-Report with an anti-sense miR-200b binding site (mir-200b pos control). Cells were also transfected with a Renilla luciferase containing plasmid (pCMV-Ren) as a transfection efficiency control and a protein isolation control. Transfections were performed using the Fugene 6 transfection reagent (Roche) and transfected cells were incubated at 37° C. for 48 hours. Both Firefly and Renilla luciferase quantities were measured utilizing the Dual Luciferase Reporter Assay System (Promega).


Results:


The 3′UTR of IE2 is targeted by hsa-miR200b and hsa-mir200c. To investigate if the miRNAs are present in cells that are permissive for efficient HCMV replication, a miRNA microarray assay was performed. Total RNA was isolated from MRC5 cells (highly permissive embryonic lung fibroblasts) that were either mock-infected or infected with a multiplicity of infection of 3 viruses per cell with HCMV for 24 hours. The RNA was fluorescently labeled utilizing a commercially available end labeling ligation reaction kit (Ambion; Santa Clara, Calif.). Human miRNA Oligo microarrays which contain all the 723 human and the 76 viral miRNAs within the Sanger miRNA database release 10.1 (Ambion) were utilized to screen for miRNA expression within the permissive MRC5 cells. Hybridization and subsequent scanning were performed using standard techniques. The three miRNAs that target the 3′UTR of IE2 are not expressed in the permissive MRC5 cells at a detectable level, as predicted.


To determine if the human cell-coded miRNAs can repress expression of a transcript containing the HCMV IE2 3′UTR, a firefly luciferase reporter system was utilized. The 3′UTR of IE2 was cloned downstream from a reporter plasmid (pMIR-Report) where the HCMV major immediate-early promoter controls the firefly luciferase open reading frame expression. Additionally, a mutated 3′UTR of IE2 where four nucleotides within the predicted seed sequence are changed to four cistines was cloned into the same reporter vector. As a positive control, a 3′UTR containing a sequence complementary to hsa-miR-200b was utilized in the transfections. Transient transfection assays were performed using a mouse carcinoma cell line (4T07) that has been reported to express hsa-miR-200b, hsa-miR-200c and hsa-miR-429 to low levels. Transduction of 4T07 cells with retroviruses which express hsa-miR-200b and hsa-miR-200c (4T07/C1C2) significantly increases the expression of the miRNAs>1000 fold (FIG. 5) as determined by real time PCR. These cells were transiently transfected with the above-mentioned plasmids to assay miRNA-mediated repression of the reporter genes. After 48 hours, lysates were collected and assayed for luciferase activity (as well as Renilla luciferase activity as a transfection control). Transient transfections of these cells with either an empty reporter or with the mutated 3′UTR of IE2 in the presence of high hsa-miR200b and hsa-miR200c showed no repression in the reporter gene when compared to the control cells (FIG. 6). However, the wild type 3′UTR of IE2 demonstrated a 50% repression compared to the control cells. The positive control plasmid demonstrated nearly a 5-fold reduction in the levels of the reporter gene confirming the ability of the miRNAs to repress a known target (FIG. 6). The level of repression with the wild type IE2 3′UTR is similar to that which has been previously reported for luciferase-based miRNA assay systems, thereby demonstrating that the human miRNAs target the 3′ UTR of the IE2 mRNA. Additionally, the loss of repression with the four nucleotide substitution demonstrates that the repression is mediated through the sequence predicted by the above-mentioned algorithm.


Summary:


The experiments described above confirmed the prediction that human encoded miRNAs can target the 3′UTR of viral transcripts. Specifically, the algorithm predicted that several cellular miRNAs target the 3′UTR of HCMV IE2. Cells that express the miRNAs to high levels (FIG. 5) can repress by 2 fold the levels of reporter gene when the wild type sequence is present but not when the mutated 3′UTR is used (FIG. 6). These results confirm that the above-mentioned algorithm can predict cellular miRNA targeting of viral transcripts.


The algorithm predicts that there are several miRNAs encoded by human cells that can target specific viral targets thereby modulating viral gene expression. The consequences of these interactions can lead to several different potential outcomes, including but not limited to inhibition of viral replication, reduced cytopathic effect of infected cells, reduced toxicity of infected cells, the establishment of viral latency, restriction of cell types upon infection and the potential identification of potent anti-viral agents.


The present invention is not limited to the embodiments described and exemplified above, but is capable of variation and modification within the scope of the appended claims.

Claims
  • 1. A method of identifying miRNA hybridization targets in a population of mRNA molecules, wherein the population of mRNA molecules corresponds to mRNAs encoded by one or more selected genomes, the method comprising the steps of: a) providing one or more databases comprising selected miRNA sequences and sequences representing 3′ untranslated regions (3′UTRs) of the population of mRNA molecules;b) determining one or more seed oligomers for each of the selected miRNA molecules;c) computing the probability (p) of finding an oligomer complementary to a seed oligomer at any position of a random background sequence generated using a kth order Markov model based on the sequence composition of the 3′ UTRs;d) counting the number (c) of occurrences of an oligomer in each 3′UTR that is complementary to a seed oligomer, thereby creating a collection of miRNA-3′UTR pairs;e) providing a score for each miRNA-3′UTR pair, wherein the score is determined by a single hypothesis p-value PVSH of a binomial distribution, computed by
  • 2. The method of claim 1, wherein the seed oligomers are heptamers or hexamers.
  • 3. The method of claim 2, wherein the hexamers are determined from positions 2-7 or 3-8 from the 5′ end of the miRNA sequences and the heptamers are determined from positions 2-8 from the 5′ end of the miRNA sequences.
  • 4. The method of claim 1, wherein the 3′UTRs are determined experimentally or computationally.
  • 5. The method of claim 1, wherein the miRNA sequences are human or viral and the one or more selected genomes is a virus genome.
  • 6. The method of claim 5, wherein the viral miRNA sequences and the one or more selected genomes are from herpes viruses.
  • 7. A system for identifying miRNA hybridization targets comprising: an input interface for inputting mRNA sequences, a database of mRNA sequences or a link for connecting to a remote data input interface, data or a database of mRNA sequences; an input interface for inputting miRNA sequences, a database of miRNA sequences or a link for connecting to a remote data input interface, data or a database of miRNA sequences; a processor with instructions for comparing mRNA sequences to miRNA sequences to identify miRNA hybridization targets according to the method of claim 1.
  • 8. The system of claim 7, comprising a link for connecting to a database of mRNA sequences.
  • 9. The system of claim 7, comprising an input interface for inputting miRNA sequences.
  • 10. A computer program comprised in a computer readable medium for implementation on a computer system for identifying miRNA hybridization targets, the program comprising instructions for performing the steps of the method of claim 1.
  • 11. A complex comprising an mRNA hybridization target to which is hybridized a miRNA or siRNA derivative thereof, wherein the hybridization of the miRNA or siRNA derivative thereof to the mRNA hybridization target is predicted by a method comprising the steps of: a) providing one or more databases comprising selected miRNA sequences and sequences representing 3′ untranslated regions (3′UTRs) of the population of mRNA molecules;b) determining one or more seed oligomers for each of the selected miRNA molecules;c) computing the probability (p) of finding an oligomer complementary to a seed oligomer at any position of a random background sequence generated using a kth order Markov model based on the sequence composition of the 3′ UTRs;d) counting the number (c) of occurrences of an oligomer in each 3′UTR that is complementary to a seed oligomer, thereby creating a collection of miRNA-3′UTR pairs;e) providing a score for each miRNA-3′UTR pair, wherein the score is determined by a single hypothesis p-value PVSH of a binomial distribution, computed by
  • 12. The complex of claim 11, wherein the mRNA hybridization targets are viral 3′ untranslated regions (3′UTRs) from herpes simplex virus 1 or 2 (HSV), Epstein-Barr virus (EBV), human cytomegalovirus (HCMV), Kaposi's sarcoma-related herpesvirus (KSHV) or varicella zoster virus (VZV).
  • 13. The complex of claim 12, wherein the viral 3′UTRs are a) HSV 3′UTRs RL1 (ICP 34.5), RL2 (ICP0), UL1, UL2, UL5, UL9, UL11, UL13, UL14, UL16, UL20, UL24, UL34, UL35, UL37, UL39, UL42, UL47, UL49A, UL51, UL52, US1 (US1.5, ICP22), US8, US8A, US9, US11, or US12 (ICP47);b) EBV 3′UTRs BALF2, BALF3, BALF5, BARF0, BaRF1, BARF1, BBLF4, BDLF 3.5, BDLF4, BFRF2, BGLF1, BGLF2, BGLF3, BGLF 3.5, BHLF1, BHRF1, BLLF3, BMRF1, BNRF1, BOLF1, BRLF1, BSLF2/BMLF1, BVLF1, BXLF1, BXRF1, BZLF1, BZLF2, LF3, LMP-1, LMP-2A, or LMP-2B;c) HCMV 3′UTRs IE1 (UL123), IE2 (UL122), RL1, RL10, UL3, UL16, UL17, UL20, UL26, UL29, UL31, UL32, UL33, UL34, UL37, UL38, UL40, UL43, UL44, UL45, UL50, UL51, UL52, UL54, UL57, UL60, UL61, UL67, UL69, UL78, UL79, UL80, UL86, UL87, UL91, UL92, UL95, UL97, UL98, UL10, UL103, UL105, UL107, UL112-113, UL117, UL120, UL137, UL141a, UL151, UL151a, UL153, US7, US10, US12, US14, US24, US26, US27, US28, New ORF1, or New ORF3;d) KSHV 3′UTRs ORF6, ORF7, ORF8, ORF9, ORF16, ORF18, ORF21, ORF25, ORF26, ORF28, ORF32, ORF40, ORF47, ORF49, ORF 50 (Rta), ORF56, ORF57, ORF58, ORF59, ORF63, ORF72, ORF73 (LANA), ORF74, ORF75, ORFK4, ORFK8 (Zta), ORFK13, and ORFK14; ore) VZV 3′UTRs ORF16, ORF47, ORF52, ORF55, ORF59, ORF61, or ORF62.
  • 14. The complex of claim 13, wherein the miRNAs are: a) HSV miRNAs hsv1-miR-H1, or hsv1-miR-LAT;b) EBV miRNAs ebv-miR-BART1-3p, ebv-miR-BART1-5p, ebv-miR-BART2, ebv-miR-BART3-3p, ebv-miR-BART3-5p, ebv-miR-BART4, ebv-miR-BART5, ebv-miR-BART6-3p, ebv-miR-BART6-5p, ebv-miR-BART7, ebv-miR-BART8-3p, ebv-miR-BART8-5p, ebv-miR-BART9, ebv-miR-BART10, ebv-miR-BART11-3p, ebv-miR-BART11-5p, ebv-miR-BART12, ebv-miR-BART13, ebv-miR-BART14-3p, ebv-miR-BART14-5p, ebv-miR-BART15, ebv-miR-BART16, ebv-miR-BART17-3p, ebv-miR-BART17-5p, ebv-miR-BART18, ebv-miR-BART19, ebv-miR-BART20-3p, ebv-miR-BART20-5p, ebv-miR-BHRF1-1, ebv-miR-BHRF1-2*, or ebv-miR-BHRF1-3;c) HCMV miRNAs hcmv-miR-UL22-1, hcmv-miR-UL22A-1*, hcmv-miR-UL31-1, hcmv-miR-UL36-1, hcmv-miR-UL36-1-N, hcmv-miR-UL53-1, hcmv-miR-UL54-1, hcmv-miR-UL70-3p, hcmv-miR-UL70-5p, hcmv-miR-UL102-1, hcmv-miR-UL102-2, hcmv-miR-UL111a-1, hcmv-miR-UL112-1, hcmv-miR-UL148D-1, hcmv-miR-US4, hcmv-miR-US5-1, hcmv-miR-US5-2, hcmv-miR-US5-2-N, hcmv-miR-US25-1, hcmv-miR-US25-2-5p, hcmv-miR-US25-2-3p, hcmv-miR-US29-1, or hcmv-miR-US33-1;d) KSHV miRNAs kshv-miR-K12-1, kshv-miR-K12-2, kshv-miR-K12-3, kshv-miR-K12-3*, kshv-miR-K12-4-5p, kshv-miR-K112-4-3p, kshv-miR-K112-5, kshv-miR-K12-6-5p, kshv-miR-K12-6-3p, kshv-miR-K12-7, kshv-miR-K12-8, kshv-miR-K12-9*, kshv-miR-K12-9, kshv-miR-K12-10a, kshv-miR-K12-10b, kshv-miR-K12-11, or kshv-miR-K12-12; ore) human miRNAs(i) targeting HSV: hsa-miR-138, hsa-miR-205, hsa-miR-326, hsa-miR-381, hsa-miR-425, hsa-miR-492, or hsa-miR-522;(ii) targeting EBV: hsa-miR-24, hsa-miR-214, hsa-miR-296, hsa-miR-328, hsa-miR-346, or hsa-miR-502;(iii) targeting HCMV: hsa-miR-15a, hsa-miR-15b, hsa-miR-16, hsa-miR-103, hsa-miR-107, hsa-miR-126, hsa-miR-142-5p, hsa-miR-184, hsa-miR-194, hsa-miR-195, hsa-miR-200b, hsa-miR-200c, hsa-miR-202, hsa-miR-326, hsa-miR-330-5p, hsa-miR-367, hsa-miR-424, hsa-miR-429, hsa-miR-450-b-3p, hsa-miR-497, hsa-miR-503, hsa-miR-548d-3p, hsa-miR-548k, hsa-miR-551a, hsa-miR-551b, hsa-miR-552, hsa-miR-592, hsa-miR-598, hsa-miR-652, hsa-miR-769-3-p, or hsa-miR-1226;(iv) targeting KSHV: hsa-let-7a, hsa-let-7b, hsa-let-7c, hsa-let-7d, hsa-let-7e, hsa-let-7f, hsa-let-7g, hsa-let-7i, hsa-miR-1, hsa-miR-9, hsa-miR-15a, hsa-miR-15b, hsa-miR-16, hsa-miR-17-5p, hsa-miR-18a, hsa-miR-18b, hsa-miR-20a, hsa-miR-20b, hsa-miR-23a, hsa-miR-23b, hsa-miR-30a-5p, hsa-miR-30a-3p, hsa-miR-30b, hsa-miR-30c, hsa-miR-30e-5p, hsa-miR-30e-3p, hsa-miR-93, hsa-miR-98, hsa-miR-105, hsa-miR-106a, hsa-miR-106b, hsa-miR-125a, hsa-miR-125b, hsa-miR-129, hsa-miR-134, hsa-miR-137, hsa-miR-141, hsa-miR-142-3p, hsa-miR-145, hsa-miR-150, hsa-miR-154, hsa-miR-181a, hsa-miR-181b, hsa-miR-181c, hsa-miR-181d, hsa-miR-182*, hsa-miR-194, hsa-miR-195, hsa-miR-196a, hsa-miR-196b, hsa-miR-199a, hsa-miR-199b, hsa-miR-200a, hsa-miR-205, hsa-miR-206, hsa-miR-210, hsa-miR-213, hsa-miR-299-3p, hsa-miR-302a, hsa-miR-302b, hsa-miR-302c, hsa-miR-302d, hsa-miR-324-3p, hsa-miR-326, hsa-miR-329, hsa-miR-337, hsa-miR-338, hsa-miR-340, hsa-miR-346, hsa-miR-372, hsa-miR-373, hsa-miR-424, hsa-miR-448, hsa-miR-450, hsa-miR-453, hsa-miR-455, hsa-miR-490, hsa-miR-491, hsa-miR-492, hsa-miR-497, hsa-miR-518b, hsa-miR-518c, hsa-miR-518d, hsa-miR-519d, hsa-miR-520a, hsa-miR-520b, hsa-miR-520c, hsa-miR-520d, hsa-miR-520g, hsa-miR-520h, hsa-miR-525, or hsa-miR-526b; or(v) targeting VZV: hsa-miR-99a, hsa-miR-99b, hsa-miR-100, hsa-miR-124a, hsa-miR-132, hsa-miR-141, hsa-miR-150, hsa-miR-197, hsa-miR-200a, hsa-miR-212, hsa-miR-219, hsa-miR-330, hsa-miR-374, hsa-miR-371, hsa-miR-339, hsa-miR-451, hsa-miR-495, and hsa-miR-510.
  • 15. The complex of claim 14, comprising miRNA-3′UTR pairs wherein: a) the 3′UTRs are from HSV and the pairs are: hsv1-miR-LAT targeting ICP0 (RL2); hsv1-miR-LAT targeting UL9; hsv1-miR-LAT targeting UL42; hsv1-miR-LAT targeting ICP34.5 (RL1); hsa-miR-138 targeting ICP0 (RL2); hsa-miR-425 targeting UL47; hsa-miR-381 targeting ICP22 (US1); hsa-miR-522 targeting UL5; hsa-miR-326 targeting ICP47 (US12); hsa-miR-205 targeting UL2; or hsa-miR-492 targeting UL52;b) the 3′UTRs are from EBV and the pairs are: ebv-miR-BHRF1-3 or ebv-miR-BART15 targeting BZLF1 or BRLF1; ebv-miR-BART2 or ebv-miR-BART6-3p targeting BALF5; ebv-miR-BART-1-3p targeting BHRF1; ebv-miR-BART10 targeting BBLF4; ebv-miR-BHRF1-3 targeting BSLF2/BMLF1 (Mta); ebv-miR-BART17-5p targeting BMRF1; ebv-miR-BART6-3p targeting LF3; hsa-miR-24 targeting BHRF1; hsa-miR-214 targeting BXLF1; hsa-miR-296 targeting BALF5; hsa-miR-296 or hsa-miR-328 targeting LMP-2A or LMP-2B; or hsa-miR-346 or hsa-miR-502 targeting LMP-1;c) the 3′UTRs are from HCMV and the pairs are: hcmv-miR-UL112-1 targeting IE1 (UL123); hcmv-miR-UL36-1 targeting UL37; hcmv-miR-UL53-1 targeting UL52; hcmv-miR-UL54-1 targeting UL112-113 or UL45; hcmv-miR-US25-2-5p targeting UL57; hcmv-miR-UL148D-1 targeting UL26, UL98, UL103 or UL151a; hcmv-miR-US5-1 or US5-2 targeting US7; hcmv-miR-US25-2-3p targeting UL32; hcmv-miR-US33-1 targeting US28; hsa-miR-200b, 200c or 429 targeting IE2 (UL122); hsa-miR-769-3-p or 450-b-3p targeting IE1 (UL123); hsa-miR-503 targeting UL44 or UL37; hsa-miR-503 or 592 targeting UL54; hsa-miR-142-5p targeting UL97, UL33 or US 27; hsa-miR-103, 107, 202, 15a, 15b, 16, 195, 424 or 497 targeting UL38; hsa-miR-367 targeting UL57; hsa-miR-1226 targeting UL50; hsa-miR-184 targeting UL31; hsa-miR-16, 15b, 195, 424, 15a or 497 targeting UL78; hsa-miR-652 targeting New ORF3; hsa-miR-552 targeting UL91; hsa-miR-548k targeting UL29; hsa-miR-330-5p or 326 targeting New ORF1; hsa-miR-548d-3p targeting UL107; hsa-miR-598 targeting UL60; hsa-miR-126 targeting UL20; hsa-miR-194 targeting UL17; hsa-miR-551a or 551b targeting UL100; or hsa-miR-503 targeting RL1;d) the 3′UTRs are from KSHV and the pairs are: kshv-miR-K12-6-3p targeting Zta (ORF K8) or Rta (ORF 50); kshv-miR-K12-8 targeting ORF9; kshv-miR-K12-10b targeting LANA (ORF73); hsa-miR-302b*, 105, 150, 210, 142-3p, 302a-d, 372, 373, 520a-e, 526b*, 93, 17-5p, 519d, 20a-b, 106a-b, 199a-b, or 520g-h targeting ORF6; hsa-miR-329, 141, 200a, 324-3p, 213, 182*, 105, 455, 518b-d, 453 or 98, or hsa-let-7a-g or i, targeting LANA (ORF73); hsa-miR-199a-b, 137, 205, 154, 346, 340, 490, 9, 1, 206, 492, 299-3p, or 491 targeting ORF56; hsa-miR-129, 450, 448, 134, 196a-b, 337, 141, 200a, 194, 30a-5p, 30a-3p, 30b-d, 30e-5p, 30e-3p, 195, 15a-b, 16, 424, or 497 targeting ORF58; or hsa-miR-326, 181a-d, 181a, 23a-b, 125a-b, 340, 18a-b, 520a*, 525, 145, or 338 targeting ORF21; ore) the 3′UTRs are from VZV and the pairs are: hsa-miR-132, 212, 451, or 495 targeting ORF62; hsa-miR-510, 150, 124a, or 330 targeting ORF61; hsa-miR-197 targeting ORF52; hsa-miR-374 targeting ORF16; hsa-miR-371, 219, or 339 targeting ORF47; hsa-miR-141 or 200a targeting ORF59; or hsa-miR-99a, 99b, or 100 targeting ORF55.
  • 16. The complex of claim 14, comprising miRNA-3′UTR pairs wherein: a) the 3′UTRs are from HSV and the pairs are: hsv1-miR-H1, targeting UL35, US9, UL24, UL34 or US8A; or hsv1-mir-LAT, targeting RL1, RL2, UL20, UL42, UL1, UL49A, UL52, UL9, UL11, UL51, UL39, UL47, US8A, UL16, UL13, UL37, UL14 or US11;b) the 3′UTRs are from EBV and the pairs are: ebv-miR-BART1-3p, targeting BRLF1, BHRF1 or BGLF2; ebv-miR-BART2 targeting BKRF2; ebv-miR-BART5 targeting BNRF1 or BARF1; ebv-miR-BART6-3p targeting LF3; ebv-miR-BART6-5p targeting BALF3; ebv-miR-BART10 targeting BHLF1; 18 targeting BFRF2, BLRF2 or LF1; ebv-miR-BART13 targeting BSLF1; ebv-miR-BART15 targeting BZLF1 or BaRF1; ebv-miR-BART16 targeting BHLF1; ebv-miR-BART17-3p targeting BNRF1; ebv-miR-BART20-3p targeting BLLF3; ebv-miR-BHRF1-1 targeting BaRF1; ebv-miR-BHRF1-2 targeting BALF3; ebv-miR-BHRF1-2* targeting BGRF1/BDRF1 or BZLF2; or ebv-miR-BHRF1-3 targeting BZLF1, BSLF2/BMLF1 or BDLF3.5;c) the 3′UTRs are from HCMV and the pairs are: hcmv-miR-UL22-1 targeting RL4; hcmv-miR-UL36-1 targeting UL138; hcmv-miR-UL36-1-N targeting UL16 or UL98; hcmv-miR-UL53-1 targeting UL61 or UL67; hcmv-miR-UL54-1 targeting UL112-113 or UL86; hcmv-miR-UL70-5p targeting UL141a, UL80, US14 or UL3; hcmv-miR-UL102-1 targeting UL104; hcmv-miR-UL102-2 targeting UL87; hcmv-miR-UL112-1 targeting UL34, UL123 or UL31; hcmv-miR-UL148D-1 targeting US9, UL103, UL92 or UL93; hcmv-miR-US4 targeting UL10 or UL16; hcmv-miR-US5-1 targeting UL60 or RL10; hcmv-miR-US5-2 targeting UL103; hcmv-miR-US5-2-N targeting US7, US23 or UL60; hcmv-miR-US25-1 targeting UL61; hcmv-miR-US25-2-5p targeting UL153, UL57 or UL7; hcmv-miR-US25-2-3p targeting UL18; hcmv-miR-US29-1 targeting UL153; or hcmv-miR-US33-1 targeting UL69, UL102 or US28; ord) the 3′UTRs are from KSHV and the pairs are: kshv-miR-K12-2 targeting ORF63; kshv-miR-K12-3 targeting ORF31 or ORF32; kshv-miR-K12-3* targeting ORF16; kshv-miR-K12-4-5p targeting ORF74, ORFK14 or ORF72; kshv-miR-K12-4-3p targeting ORF49, ORF57 or ORF64; kshv-miR-K12-5 targeting ORF56; kshv-miR-K12-6-5p targeting ORF28, ORF16, ORF8 or ORF27; kshv-miR-K12-6-3p targeting ORFK8 or ORF50; kshv-miR-K12-7 targeting ORFK4; kshv-miR-K12-8 targeting ORF18; kshv-miR-K12-9 targeting ORF K4 or ORF67; kshv-miR-K12-10a or kshv-miR-K12-10b targeting ORF25; or kshv-miR-K12-12 targeting ORF67.
  • 17. The complex of claim 16, wherein the 3′UTRs are from HCMV and the pairs are: hcmv-miR-US5-2 targeting UL103; hcmv-miR-UL54-1 targeting UL112-113; hcmv-miR-US5-1 targeting RL10; hcmv-miR-UL112-1 targeting UL31; hcmv-miR-UL70-5p targeting UL80; hcmv-miR-UL112-1 targeting UL34; hcmv-miR-UL70-5p targeting UL3; hcmv-miR-US33-1 targeting UL69; hcmv-miR-US25-2-5p targeting UL57; or hcmv-miR-UL112-1 targeting UL123(IE1).
  • 18. A siRNA or a chemically modified analog of a miRNA, which hybridizes with one or more mRNA targets selected from: a) HSV 3′UTRs RL1 (ICP 34.5), RL2 (ICP0), UL1, UL2, UL5, UL9, UL11, UL13, UL14, UL16, UL20, UL24, UL34, UL35, UL37, UL39, UL42, UL47, UL49A, UL51, UL52, US1 (US1.5, ICP22), US8, US8A, US9, US11, or US12 (ICP47);b) EBV 3′UTRs BALF2, BALF3, BALF5, BARF0, BaRF1, BARF1, BBLF4, BDLF 3.5, BDLF4, BFRF2, BGLF1, BGLF2, BGLF3, BGLF 3.5, BHLF1, BHRF1, BLLF3, BMRF1, BNRF1, BOLF1, BRLF1, BSLF2/BMLF1, BVLF1, BXLF1, BXRF1, BZLF1, BZLF2, LF3, LMP-1, LMP-2A, or LMP-2B;c) HCMV 3′UTRs IE1 (UL123), IE2 (UL122), RL1, RL10, UL3, UL16, UL17, UL20, UL26, UL29, UL31, UL32, UL33, UL34, UL37, UL38, UL40, UL43, UL44, UL45, UL50, UL51, UL52, UL54, UL57, UL60, UL61, UL67, UL69, UL78, UL79, UL80, UL86, UL87, UL91, UL92, UL95, UL97, UL98, UL10, UL103, UL105, UL107, UL112-113, UL117, UL120, UL137, UL141a, UL151, UL151a, UL153, US7, US10, US12, US14, US24, US26, US27, US28, New ORF1, or New ORF3;d) KSHV 3′UTRs ORF6, ORF7, ORF8, ORF9, ORF16, ORF18, ORF21, ORF25, ORF26, ORF28, ORF32, ORF40, ORF47, ORF49, ORF 50 (Rta), ORF56, ORF57, ORF58, ORF59, ORF63, ORF72, ORF73 (LANA), ORF74, ORF75, ORFK4, ORFK8 (Zta), ORFK13, and ORFK14; ore) VZV 3′UTRs ORF16, ORF47, ORF52, ORF55, ORF59, ORF61, or ORF62.
  • 19. The siRNA or chemically modified miRNA of claim 18, comprising a seed sequence of a miRNA selected from: a) HSV miRNAs hsv1-miR-H1, or hsv1-miR-LAT;b) EBV miRNAs ebv-miR-BART1-3p, ebv-miR-BART1-5p, ebv-miR-BART2, ebv-miR-BART3-3p, ebv-miR-BART3-5p, ebv-miR-BART4, ebv-miR-BART5, ebv-miR-BART6-3p, ebv-miR-BART6-5p, ebv-miR-BART7, ebv-miR-BART8-3p, ebv-miR-BART8-5p, ebv-miR-BART9, ebv-miR-BART10, ebv-miR-BART11-3p, ebv-miR-BART11-5p, ebv-miR-BART12, ebv-miR-BART13, ebv-miR-BART14-3p, ebv-miR-BART14-5p, ebv-miR-BART15, ebv-miR-BART16, ebv-miR-BART17-3p, ebv-miR-BART17-5p, ebv-miR-BART18, ebv-miR-BART19, ebv-miR-BART20-3p, ebv-miR-BART20-5p, ebv-miR-BHRF1-1, ebv-miR-BHRF1-2*, or ebv-miR-BHRF1-3;c) HCMV miRNAs hcmv-miR-UL22-1, hcmv-miR-UL22A-1*, hcmv-miR-UL31-1, hcmv-miR-UL36-1, hcmv-miR-UL36-1-N, hcmv-miR-UL53-1, hcmv-miR-UL54-1, hcmv-miR-UL70-3p, hcmv-miR-UL70-5p, hcmv-miR-UL102-1, hcmv-miR-UL102-2, hcmv-miR-UL111a-1, hcmv-miR-UL112-1, hcmv-miR-UL148D-1, hcmv-miR-US4, hcmv-miR-US5-1, hcmv-miR-US5-2, hcmv-miR-US5-2-N, hcmv-miR-US25-1, hcmv-miR-US25-2-5p, hcmv-miR-US25-2-3p, hcmv-miR-US29-1, or hcmv-miR-US33-1;d) KSHV miRNAs kshv-miR-K12-1, kshv-miR-K12-2, kshv-miR-K12-3, kshv-miR-K12-3*, kshv-miR-K112-4-5p, kshv-miR-K112-4-3p, kshv-miR-K12-5, kshv-miR-K12-6-5p, kshv-miR-K12-6-3p, kshv-miR-K12-7, kshv-miR-K12-8, kshv-miR-K12-9*, kshv-miR-K12-9, kshv-miR-K12-10a, kshv-miR-K12-10b, kshv-miR-K12-11, or kshv-miR-K12-12; ore) human miRNAs(i) targeting HSV: hsa-miR-138, hsa-miR-205, hsa-miR-326, hsa-miR-381, hsa-miR-425, hsa-miR-492, or hsa-miR-522;(ii) targeting EBV: hsa-miR-24, hsa-miR-214, hsa-miR-296, hsa-miR-328, hsa-miR-346, or hsa-miR-502;(iii) targeting HCMV: hsa-miR-15a, hsa-miR-15b, hsa-miR-16, hsa-miR-103, hsa-miR-107, hsa-miR-126, hsa-miR-142-5p, hsa-miR-184, hsa-miR-194, hsa-miR-195, hsa-miR-200b, hsa-miR-200c, hsa-miR-202, hsa-miR-326, hsa-miR-330-5p, hsa-miR-367, hsa-miR-424, hsa-miR-429, hsa-miR-450-b-3p, hsa-miR-497, hsa-miR-503, hsa-miR-548d-3p, hsa-miR-548k, hsa-miR-551a, hsa-miR-551b, hsa-miR-552, hsa-miR-592, hsa-miR-598, hsa-miR-652, hsa-miR-769-3-p, or hsa-miR-1226;(iv) targeting KSHV: hsa-let-7a, hsa-let-7b, hsa-let-7c, hsa-let-7d, hsa-let-7e, hsa-let-7f, hsa-let-7g, hsa-let-7i, hsa-miR-1, hsa-miR-9, hsa-miR-15a, hsa-miR-15b, hsa-miR-16, hsa-miR-17-5p, hsa-miR-18a, hsa-miR-18b, hsa-miR-20a, hsa-miR-20b, hsa-miR-23a, hsa-miR-23b, hsa-miR-30a-5p, hsa-miR-30a-3p, hsa-miR-30b, hsa-miR-30c, hsa-miR-30e-5p, hsa-miR-30e-3p, hsa-miR-93, hsa-miR-98, hsa-miR-105, hsa-miR-106a, hsa-miR-106b, hsa-miR-125a, hsa-miR-125b, hsa-miR-129, hsa-miR-134, hsa-miR-137, hsa-miR-141, hsa-miR-142-3p, hsa-miR-145, hsa-miR-150, hsa-miR-154, hsa-miR-181a, hsa-miR-181b, hsa-miR-181c, hsa-miR-181d, hsa-miR-182*, hsa-miR-194, hsa-miR-195, hsa-miR-196a, hsa-miR-196b, hsa-miR-199a, hsa-miR-199b, hsa-miR-200a, hsa-miR-205, hsa-miR-206, hsa-miR-210, hsa-miR-213, hsa-miR-299-3p, hsa-miR-302a, hsa-miR-302b, hsa-miR-302c, hsa-miR-302d, hsa-miR-324-3p, hsa-miR-326, hsa-miR-329, hsa-miR-337, hsa-miR-338, hsa-miR-340, hsa-miR-346, hsa-miR-372, hsa-miR-373, hsa-miR-424, hsa-miR-448, hsa-miR-450, hsa-miR-453, hsa-miR-455, hsa-miR-490, hsa-miR-491, hsa-miR-492, hsa-miR-497, hsa-miR-518b, hsa-miR-518c, hsa-miR-518d, hsa-miR-519d, hsa-miR-520a, hsa-miR-520b, hsa-miR-520c, hsa-miR-520d, hsa-miR-520g, hsa-miR-520h, hsa-miR-525, or hsa-miR-526b; or(v) targeting VZV: hsa-miR-99a, hsa-miR-99b, hsa-miR-100, hsa-miR-124a, hsa-miR-132, hsa-miR-141, hsa-miR-150, hsa-miR-197, hsa-miR-200a, hsa-miR-212, hsa-miR-219, hsa-miR-330, hsa-miR-374, hsa-miR-371, hsa-miR-339, hsa-miR-451, hsa-miR-495, and hsa-miR-510.
  • 20. The siRNA or chemically modified miRNA of claim 19, wherein the seed sequence comprises, as at least a portion thereof, one of the following sequences or its complement: a) from HSV, TCCTTC or GGCCGC;b) from EBV, CGGTGCT, CACTAAG, AGAAAAT, GTGGTGC, ACTAGGT, ATCAGGT, TCACCTT, GATCCCC, GACCAAC, CTATGAT, ATTGTGA, AAACCGT, AAGTGTT, GGTTATG, GTGTGCG, AAACTGT, CCACAGG, AAGTTAC, AGCATTT, GTAGGGT, AAACCAC, CACTCTA, GCATACA, GTCCTCT, CGAACTT, ACAAAAC, CCTTCAT, CCTGCTA, TCAGGTT, AAAAGAT, CAGAATT, or TCCCGTT;c) from HCMV, TCCCGTG, GCTAGTT, TCTGGTG, ACATGCC, TTCAACG, AGGTGTC, CTCGCGC, GACGCGC, CCATCCC, GAGACGC, CATGGCC, CGACGCC, CAACGTC, CGTCACT, GAGGACG, CCATGTC, GCTTGTC, TATCATA, ACCTATC, GAGCGGT, AGACCGC, AAGTGGA, ACATCCA, or GCACAAT;d) from KSHV, CCTGTA, CTACAG, GAATGT, GACCGC, GTTTAG, GTATTC, GCATCC, GCTGCT, AACCAT, TGGGAT, CGCGCC, AGCTGG, ATACCC, CAACAC, CAACAC, AGCATT, or GGCCTG.
  • 21. A vector comprising a polynucleotide which, when expressed in a mammalian cell, produces a transcript that is processed within the cell to form a miRNA or a siRNA derivative thereof, which is capable of binding to a viral 3′UTR selected from: a) HSV 3′UTRs RL1 (ICP 34.5), RL2 (ICP0), UL1, UL2, UL5, UL9, UL11, UL13, UL14, UL16, UL20, UL24, UL34, UL35, UL37, UL39, UL42, UL47, UL49A, UL51, UL52, US1 (US1.5, ICP22), US8, US8A, US9, US11, or US12 (ICP47); b) EBV 3′UTRs BALF2, BALF3, BALF5, BARF0, BaRF1, BARF1, BBLF4, BDLF 3.5, BDLF4, BFRF2, BGLF1, BGLF2, BGLF3, BGLF 3.5, BHLF1, BHRF1, BLLF3, BMRF1, BNRF1, BOLF1, BRLF1, BSLF2/BMLF1, BVLF1, BXLF1, BXRF1, BZLF1, BZLF2, LF3, LMP-1, LMP-2A, or LMP-2B;c) HCMV 3′UTRs IE1 (UL123), IE2 (UL122), RL1, RL10, UL3, UL16, UL17, UL20, UL26, UL29, UL31, UL32, UL33, UL34, UL37, UL38, UL40, UL43, UL44, UL45, UL50, UL51, UL52, UL54, UL57, UL60, UL61, UL67, UL69, UL78, UL79, UL80, UL86, UL87, UL91, UL92, UL95, UL97, UL98, UL100, UL103, UL105, UL107, UL112-113, UL117, UL120, UL137, UL141a, UL151, UL151a, UL153, US7, US10, US12, US14, US24, US26, US27, US28, New ORF1, or New ORF3;d) KSHV 3′UTRs ORF6, ORF7, ORF8, ORF9, ORF16, ORF18, ORF21, ORF25, ORF26, ORF28, ORF32, ORF40, ORF47, ORF49, ORF 50 (Rta), ORF56, ORF57, ORF58, ORF59, ORF63, ORF72, ORF73 (LANA), ORF74, ORF75, ORFK4, ORFK8 (Zta), ORFK13, and ORFK14; ore) VZV 3′UTRs ORF16, ORF47, ORF52, ORF55, ORF59, ORF61, or ORF62.
  • 22. The vector of claim 21, comprising a polynucleotide which, when expressed in a mammalian cell, produces a transcript that is processed within the cell to form a miRNA or an siRNA derivative of a miRNA comprising one or more of: a) HSV miRNAs hsv1-miR-H1, or hsv1-miR-LAT;b) EBV miRNAs ebv-miR-BART1-3p, ebv-miR-BART1-5p, ebv-miR-BART2, ebv-miR-BART3-3p, ebv-miR-BART3-5p, ebv-miR-BART4, ebv-miR-BART5, ebv-miR-BART6-3p, ebv-miR-BART6-5p, ebv-miR-BART7, ebv-miR-BART8-3p, ebv-miR-BART8-5p, ebv-miR-BART9, ebv-miR-BART10, ebv-miR-BART11-3p, ebv-miR-BART11-5p, ebv-miR-BART12, ebv-miR-BART13, ebv-miR-BART14-3p, ebv-miR-BART14-5p, ebv-miR-BART15, ebv-miR-BART16, ebv-miR-BART17-3p, ebv-miR-BART17-5p, ebv-miR-BART18, ebv-miR-BART19, ebv-miR-BART20-3p, ebv-miR-BART20-5p, ebv-miR-BHRF1-1, ebv-miR-BHRF1-2*, or ebv-miR-BHRF1-3;c) HCMV miRNAs hcmv-miR-UL22-1, hcmv-miR-UL22A-1*, hcmv-miR-UL31-1, hcmv-miR-UL36-1, hcmv-miR-UL36-1-N, hcmv-miR-UL53-1, hcmv-miR-UL54-1, hcmv-miR-UL70-3p, hcmv-miR-UL70-5p, hcmv-miR-UL102-1, hcmv-miR-UL102-2, hcmv-miR-UL111a-1, hcmv-miR-UL112-1, hcmv-miR-UL148D-1, hcmv-miR-US4, hcmv-miR-US5-1, hcmv-miR-US5-2, hcmv-miR-US5-2-N, hcmv-miR-US25-1, hcmv-miR-US25-2-5p, hcmv-miR-US25-2-3p, hcmv-miR-US29-1, or hcmv-miR-US33-1;d) KSHV miRNAs kshv-miR-K12-1, kshv-miR-K12-2, kshv-miR-K12-3, kshv-miR-K12-3*, kshv-miR-K12-4-5p, kshv-miR-K12-4-3p, kshv-miR-K12-5, kshv-miR-K12-6-5p, kshv-miR-K12-6-3p, kshv-miR-K12-7, kshv-miR-K12-8, kshv-miR-K12-9*, kshv-miR-K12-9, kshv-miR-K12-10a, kshv-miR-K12-10b, kshv-miR-K12-11, or kshv-miR-K12-12; ore) human miRNAs(i) targeting HSV: hsa-miR-138, hsa-miR-205, hsa-miR-326, hsa-miR-381, hsa-miR-425, hsa-miR-492, or hsa-miR-522;(ii) targeting EBV: hsa-miR-24, hsa-miR-214, hsa-miR-296, hsa-miR-328, hsa-miR-346, or hsa-miR-502;(iii) targeting HCMV: hsa-miR-15a, hsa-miR-15b, hsa-miR-16, hsa-miR-103, hsa-miR-107, hsa-miR-126, hsa-miR-142-5p, hsa-miR-184, hsa-miR-194, hsa-miR-195, hsa-miR-200b, hsa-miR-200c, hsa-miR-202, hsa-miR-326, hsa-miR-330-5p, hsa-miR-367, hsa-miR-424, hsa-miR-429, hsa-miR-450-b-3p, hsa-miR-497, hsa-miR-503, hsa-miR-548d-3p, hsa-miR-548k, hsa-miR-551a, hsa-miR-551b, hsa-miR-552, hsa-miR-592, hsa-miR-598, hsa-miR-652, hsa-miR-769-3-p, or hsa-miR-1226;(iv) targeting KSHV: hsa-let-7a, hsa-let-7b, hsa-let-7c, hsa-let-7d, hsa-let-7e, hsa-let-7f, hsa-let-7g, hsa-let-7i, hsa-miR-1, hsa-miR-9, hsa-miR-15a, hsa-miR-15b, hsa-miR-16, hsa-miR-17-5p, hsa-miR-18a, hsa-miR-18b, hsa-miR-20a, hsa-miR-20b, hsa-miR-23a, hsa-miR-23b, hsa-miR-30a-5p, hsa-miR-30a-3p, hsa-miR-30b, hsa-miR-30c, hsa-miR-30e-5p, hsa-miR-30e-3p, hsa-miR-93, hsa-miR-98, hsa-miR-105, hsa-miR-106a, hsa-miR-106b, hsa-miR-125a, hsa-miR-125b, hsa-miR-129, hsa-miR-134, hsa-miR-137, hsa-miR-141, hsa-miR-142-3p, hsa-miR-145, hsa-miR-150, hsa-miR-154, hsa-miR-181a, hsa-miR-181b, hsa-miR-181c, hsa-miR-181d, hsa-miR-182*, hsa-miR-194, hsa-miR-195, hsa-miR-196a, hsa-miR-196b, hsa-miR-199a, hsa-miR-199b, hsa-miR-200a, hsa-miR-205, hsa-miR-206, hsa-miR-210, hsa-miR-213, hsa-miR-299-3p, hsa-miR-302a, hsa-miR-302b, hsa-miR-302c, hsa-miR-302d, hsa-miR-324-3p, hsa-miR-326, hsa-miR-329, hsa-miR-337, hsa-miR-338, hsa-miR-340, hsa-miR-346, hsa-miR-372, hsa-miR-373, hsa-miR-424, hsa-miR-448, hsa-miR-450, hsa-miR-453, hsa-miR-455, hsa-miR-490, hsa-miR-491, hsa-miR-492, hsa-miR-497, hsa-miR-518b, hsa-miR-518c, hsa-miR-518d, hsa-miR-519d, hsa-miR-520a, hsa-miR-520b, hsa-miR-520c, hsa-miR-520d, hsa-miR-520g, hsa-miR-520h, hsa-miR-525, or hsa-miR-526b; or(v) targeting VZV: hsa-miR-99a, hsa-miR-99b, hsa-miR-100, hsa-miR-124a, hsa-miR-132, hsa-miR-141, hsa-miR-150, hsa-miR-197, hsa-miR-200a, hsa-miR-212, hsa-miR-219, hsa-miR-330, hsa-miR-374, hsa-miR-371, hsa-miR-339, hsa-miR-451, hsa-miR-495, and hsa-miR-510.
  • 23. A pharmaceutical composition for treatment of herpes virus infection caused by HSV, EBV, HCMV, KSHV or VSV, comprising a pharmaceutical carrier and miRNA comprising one or more of: a) HSV miRNAs hsv1-miR-H1, or hsv1-miR-LAT;b) EBV miRNAs ebv-miR-BART1-3p, ebv-miR-BART1-5p, ebv-miR-BART2, ebv-miR-BART3-3p, ebv-miR-BART3-5p, ebv-miR-BART4, ebv-miR-BART5, ebv-miR-BART6-3p, ebv-miR-BART6-5p, ebv-miR-BART7, ebv-miR-BART8-3p, ebv-miR-BART8-5p, ebv-miR-BART9, ebv-miR-BART10, ebv-miR-BART11-3p, ebv-miR-BART11-5p, ebv-miR-BART12, ebv-miR-BART13, ebv-miR-BART14-3p, ebv-miR-BART14-5p, ebv-miR-BART15, ebv-miR-BART16, ebv-miR-BART17-3p, ebv-miR-BART17-5p, ebv-miR-BART18, ebv-miR-BART19, ebv-miR-BART20-3p, ebv-miR-BART20-5p, ebv-miR-BHRF1-1, ebv-miR-BHRF1-2*, or ebv-miR-BHRF1-3;c) HCMV miRNAs hcmv-miR-UL22-1, hcmv-miR-UL22A-1*, hcmv-miR-UL31-1, hcmv-miR-UL36-1, hcmv-miR-UL36-1-N, hcmv-miR-UL53-1, hcmv-miR-UL54-1, hcmv-miR-UL70-3p, hcmv-miR-UL70-5p, hcmv-miR-UL102-1, hcmv-miR-UL102-2, hcmv-miR-UL111a-1, hcmv-miR-UL112-1, hcmv-miR-UL148D-1, hcmv-miR-US4, hcmv-miR-US5-1, hcmv-miR-US5-2, hcmv-miR-US5-2-N, hcmv-miR-US25-1, hcmv-miR-US25-2-5p, hcmv-miR-US25-2-3p, hcmv-miR-US29-1, or hcmv-miR-US33-1;d) KSHV miRNAs kshv-miR-K12-1, kshv-miR-K12-2, kshv-miR-K12-3, kshv-miR-K12-3*, kshv-miR-K12-4-5p, kshv-miR-K12-4-3p, kshv-miR-K12-5, kshv-miR-K12-6-5p, kshv-miR-K12-6-3p, kshv-miR-K12-7, kshv-miR-K12-8, kshv-miR-K12-9*, kshv-miR-K12-9, kshv-miR-K12-10a, kshv-miR-K12-10b, kshv-miR-K12-11, or kshv-miR-K12-12; ore) human miRNAs(i) targeting HSV: hsa-miR-138, hsa-miR-205, hsa-miR-326, hsa-miR-381, hsa-miR-425, hsa-miR-492, or hsa-miR-522;(ii) targeting EBV: hsa-miR-24, hsa-miR-214, hsa-miR-296, hsa-miR-328, hsa-miR-346, or hsa-miR-502;(iii) targeting HCMV: hsa-miR-15a, hsa-miR-15b, hsa-miR-16, hsa-miR-103, hsa-miR-107, hsa-miR-126, hsa-miR-142-5p, hsa-miR-184, hsa-miR-194, hsa-miR-195, hsa-miR-200b, hsa-miR-200c, hsa-miR-202, hsa-miR-326, hsa-miR-330-5p, hsa-miR-367, hsa-miR-424, hsa-miR-429, hsa-miR-450-b-3p, hsa-miR-497, hsa-miR-503, hsa-miR-548d-3p, hsa-miR-548k, hsa-miR-551a, hsa-miR-551b, hsa-miR-552, hsa-miR-592, hsa-miR-598, hsa-miR-652, hsa-miR-769-3-p, or hsa-miR-1226;(iv) targeting KSHV: hsa-let-7a, hsa-let-7b, hsa-let-7c, hsa-let-7d, hsa-let-7e, hsa-let-7f, hsa-let-7g, hsa-let-7i, hsa-miR-1, hsa-miR-9, hsa-miR-15a, hsa-miR-15b, hsa-miR-16, hsa-miR-17-5p, hsa-miR-18a, hsa-miR-18b, hsa-miR-20a, hsa-miR-20b, hsa-miR-23a, hsa-miR-23b, hsa-miR-30a-5p, hsa-miR-30a-3p, hsa-miR-30b, hsa-miR-30c, hsa-miR-30e-5p, hsa-miR-30e-3p, hsa-miR-93, hsa-miR-98, hsa-miR-105, hsa-miR-106a, hsa-miR-106b, hsa-miR-125a, hsa-miR-125b, hsa-miR-129, hsa-miR-134, hsa-miR-137, hsa-miR-141, hsa-miR-142-3p, hsa-miR-145, hsa-miR-150, hsa-miR-154, hsa-miR-181a, hsa-miR-181b, hsa-miR-181c, hsa-miR-181d, hsa-miR-182*, hsa-miR-194, hsa-miR-195, hsa-miR-196a, hsa-miR-196b, hsa-miR-199a, hsa-miR-199b, hsa-miR-200a, hsa-miR-205, hsa-miR-206, hsa-miR-210, hsa-miR-213, hsa-miR-299-3p, hsa-miR-302a, hsa-miR-302b, hsa-miR-302c, hsa-miR-302d, hsa-miR-324-3p, hsa-miR-326, hsa-miR-329, hsa-miR-337, hsa-miR-338, hsa-miR-340, hsa-miR-346, hsa-miR-372, hsa-miR-373, hsa-miR-424, hsa-miR-448, hsa-miR-450, hsa-miR-453, hsa-miR-455, hsa-miR-490, hsa-miR-491, hsa-miR-492, hsa-miR-497, hsa-miR-518b, hsa-miR-518c, hsa-miR-518d, hsa-miR-519d, hsa-miR-520a, hsa-miR-520b, hsa-miR-520c, hsa-miR-520d, hsa-miR-520g, hsa-miR-520h, hsa-miR-525, or hsa-miR-526b; or(v) targeting VZV: hsa-miR-99a, hsa-miR-99b, hsa-miR-100, hsa-miR-124a, hsa-miR-132, hsa-miR-141, hsa-miR-150, hsa-miR-197, hsa-miR-200a, hsa-miR-212, hsa-miR-219, hsa-miR-330, hsa-miR-374, hsa-miR-371, hsa-miR-339, hsa-miR-451, hsa-miR-495, and hsa-miR-510.
  • 24. The pharmaceutical composition of claim 23, comprising one or more modifications selected from: (1) the miRNA comprising at least one chemical modification; (2) the miRNA being replaced with a siRNA that hybridizes with the herpes virus sequence with which the miRNA hybridizes in situ; (3) the miRNA being provided as a vector with a polynucleotide that, when transcribed and processed in a mammalian cell, produces the one or more miRNAs; or (4) the polynucleotide being customized to produce a siRNA that hybridizes with the herpes virus sequence with which the miRNA hybridizes in situ.
Parent Case Info

This claims benefit of U.S. Provisional Application No. 60/995,531, which included specification, claims, drawings, abstract and three (3) appendices, filed Sep. 27, 2007, the entire contents of which are incorporated by reference herein.

Government Interests

Pursuant to 35 U.S.C. §202(c), it is acknowledged that the United States government may have certain rights in the invention described herein, which was made in part with funds from the National Institutes of Health under Grant No: CA85786.

Provisional Applications (1)
Number Date Country
60995531 Sep 2007 US