1. Field of the Invention
The present application relates to a microscope and is suitable for a microscope intended for pathological diagnosis, for example.
2. Description of the Related Art
In recent methods, doctors make pathological diagnosis on the basis of images of inspection objects (preparations), including samples such as cells and tissues, acquired through microscopes. In a microscope, an inspection object stage that holds an inspection object is movable by an actuator between a position at which the inspection object is exchanged with another and a position at which an image of the inspection object is taken. Hence, images of a plurality of inspection objects can be taken successively.
To help doctors make correct diagnosis, images of inspection objects are desired to be of high definition and high quality. Accordingly, an objective optical system included in a microscope is desired to have a large numerical aperture (NA). In a case where an image is to be taken through an objective optical system having a large NA, however, if the distance between the inspection object and the objective optical system is large, the diameter of the objective optical system needs to be increased. Hence, in a case where a microscope includes an objective optical system having a large NA, the inspection object and the objective optical system are desired to be positioned close to each other.
To acquire an image of an inspection object that is of high definition and high quality, the objective optical system of the microscope needs to constantly exhibit high performance. If the temperature of the objective optical system changes, the optical performance of the objective optical system may change. Hence, the temperature of the objective optical system is desired to be controlled with high accuracy. Nevertheless, the actuator that moves the inspection object stage generates heat, raising the temperature of the inspection object stage to a level higher than the ambient temperature. As a result, in a configuration in which the inspection object and the objective optical system are positioned close to each other, the heat that is transferred to the objective optical system from the inspection object stage whose temperature has risen may significantly affect the optical performance of the objective optical system.
Possible solutions for the above problem include a method in which the temperature of the objective optical system is controlled by adjusting the temperature of the objective optical system. Specifically, Japanese Patent Laid-Open No. 2003-7586 discloses a configuration in which an exposure apparatus including a projection lens is enclosed by a chamber, and a gas having an adjusted temperature is supplied into the chamber, whereby the temperature of the exposure apparatus as a whole is adjusted. Japanese Patent Laid-Open No. 2011-233573 discloses another configuration in which a nozzle is provided in a chamber enclosing a projection lens, and a gas is ejected from the nozzle aiming at the projection lens.
As described above, a microscope requires a mechanism that adjusts the temperature of its objective optical system. Meanwhile, as a reduction in the installation space, the size of such a temperature adjusting mechanism is desired to be minimized so that the size of an apparatus as a whole including the microscope is reduced. In the configuration disclosed by Japanese Patent Laid-Open No. 2003-7586, the entirety of the projection lens is enclosed by a cover, into which a large amount of temperature adjusted gas needs to be supplied. If the configuration disclosed by Japanese Patent Laid-Open No. 2003-7586 is applied to a microscope, the size of an apparatus as a whole including the microscope may be difficult to reduce.
In a microscope to which the configuration disclosed by Japanese Patent Laid-Open No. 2011-233573 is applied, even if it is attempted to reduce the flow rate of the temperature adjusted gas that is supplied from the nozzle, it is difficult to position the nozzle close to the objective optical system in a configuration in which the inspection object and the objective optical system are positioned close to each other.
The present disclosure provides a microscope in which the temperature of an objective optical system is adjustable with high accuracy while the increase in the size of an apparatus including the microscope is suppressed.
According to one aspect of the present disclosure, a microscope is provided. The microscope includes a stage that holds an object, an objective optical system that forms an image of the object, a light receiving unit that receives the image of the object, and a driving unit that moves the stage between a first position where the image of the object is taken and a second position that is different from the first position. The stage includes a nozzle from which a gas is ejected. The nozzle is provided such that the gas is ejected from the nozzle toward the objective optical system when the stage is at the second position.
Further features of the present invention will become apparent from the following description of exemplary embodiments with reference to the attached drawings.
An embodiment of the present disclosure will now be described in detail with reference to the attached drawings.
Specifically, after the inspection object stage 102 is moved to the exchanging position, the inspection object 103 is removed from the inspection object stage 102 and is moved to an inspection object stocker 202. Then, an inspection object 201 that is to be inspected next is picked up from a plurality of inspection objects that are stored in the inspection object stocker 202, and the inspection object 201 is placed on the inspection object stage 102. By moving the inspection object stage 102 between the image taking position and the exchanging position, inspection objects are exchangeable smoothly. Thus, images of a plurality of inspection objects can be taken successively.
To pick up an inspection object from the inspection object stage 102 or the inspection object stocker 202, a mechanism that mechanically nips the inspection object or a mechanism such as a vacuum chuck that utilizes the effect of pressure may be employed, for example. To reduce the time taken to pick up the inspection object, a plurality of such pickup mechanisms may be provided so that inspection objects can be picked up from the inspection object stage 102 and the inspection object stocker 202 simultaneously. To move the inspection object that has been picked up, any of a rotational movement mechanism, a vertical movement mechanism, a multi-degree-of-freedom articulated mechanism, a linear movement mechanism, and the like may be employed. The inspection object stocker 202, the pickup mechanism, and the movement mechanism in combination form an exchanging unit.
As illustrated in
A process of supplying the temperature adjusted gas 304 from the nozzle 301 will now be described specifically. Referring to the upper part of
The second position may be set to such a position that the efficiency in the adjustment of the temperature of the objective optical system 104 using the nozzle 301 is maximized (for example, a position where the distance between an ejection port of the nozzle 301 and the objective optical system 104 becomes smallest). If the second position is set at the same position as the exchanging position, the temperature of the objective optical system 104 becomes adjustable while the inspection object 103 is exchanged with another. Consequently, the throughput of the apparatus is improved.
A control unit 302 may also be provided so that the temperature adjusted gas 304 ejected from the nozzle 301 is controllable. Gas controlling operations according to the embodiment include controlling of at least one of the following: switching of the nozzle 301 of whether to eject the gas 304, to suck air, or to stop the gas 304; the flow rate (pressure) of the gas 304; the duration of ejection of the gas 304; and the temperature of the gas 304. For example, the control unit 302, which controls the temperature-adjusted-gas generator to supply the gas 304 whose temperature has been adjusted to a certain level, may also control the temperature of the gas 304. Specifically, if a thermometer 303 is provided on the objective optical system 104, the control unit 302 can control, in accordance with the temperature of the objective optical system 104, the temperature of the temperature adjusted gas 304 to be supplied from the temperature-adjusted-gas generator. In this manner, the temperature of the objective optical system 104 is adjustable more accurately. Alternatively, the thermometer 303 may be provided to another position so that the temperature of the temperature adjusted gas 304 is controllable in accordance with the ambient temperature, the temperature of the inspection object stage 102, or the like. In
A valve (not illustrated) that is capable of adjusting the flow rate (pressure) of the temperature adjusted gas 304 may also be provided to one of the nozzle 301 or the tube. The opening and closing of the valve may be controlled by the control unit 302 such that the temperature adjusted gas 304 is ejected only when the inspection object stage 102 is moved to the second position. Moreover, the temperature of the objective optical system 104 may be adjusted by controlling the valve through the control unit 302 and thus adjusting the amount or duration of ejection of the temperature adjusted gas 304, instead of controlling the temperature of the gas 304 in the temperature-adjusted-gas generator.
Many particles of dust are present in the microscope 100. Particles of dust are taken into or generated in the microscope 100 during the use of the microscope 100, specifically, when the microscope 100 is assembled or the inspection object 103 is exchanged with another, or when the inspection object stage 102 is moved in the microscope 100. Hence, if there are strong air currents around the objective optical system 104 or the inspection object 103 when the temperature adjusted gas 304 is supplied toward the objective optical system 104, such particles of dust may be blown upward and adhere to the objective optical system 104 or the inspection object 103, preventing the acquisition of a high-definition, high-quality image of the inspection object 103.
With the nozzle 301 described above, however, the temperature adjusted gas 304 is ejected toward the objective optical system 104 after the inspection object stage 102 is moved from the image taking position to the second position. Hence, in the microscope 100 according to the embodiment, the flow rate of the temperature adjusted gas 304 to be ejected toward the objective optical system 104 can be reduced while particles of dust that may adhere to the objective optical system 104 or the inspection object 103 are reduced.
How to control the temperature of the objective optical system 104 will now be described.
The graph in
The amount of temperature rise Tu depends on the inspection area of the inspection object 103, conditions for the image taking operation, and so forth and is therefore difficult to control. Hence, the amount of temperature drop Td is controlled such that the temperature of the objective optical system 104 falls within the tolerable temperature range. To adjust the temperature of the objective optical system 104 that has risen from the temperature Tc by the amount of temperature rise Tu to be within the tolerable temperature range by lowering the temperature of the objective optical system 104 by the amount of temperature drop Td, a condition of T1<Tc+Tu−Td<T2 needs to be satisfied. That is, the amount of temperature drop Td is to be set so as to satisfy a condition of Tc−T2+Tu<Td<Tc−T1+Tu. In the embodiment, the amount of temperature drop Td may be increased by increasing the flow rate of the temperature adjusted gas 304, lowering the temperature of the temperature adjusted gas 304, or increasing the duration of ejection of the temperature adjusted gas 304.
The amount of temperature drop Td may be set such that the temperature of the objective optical system 104 is expressed in the form (T1+T2)/2 at which the objective optical system 104 exhibits the best performance. That is, the amount of temperature drop Td may be set to a value expressed in the form Td=Tc+Tu−(T1+T2)/2. The temperature of the objective optical system 104 rises while the inspection object stage 102 is at the image taking position. Therefore, the amount of temperature drop Td may alternatively be set to a value expressed in the form Td=Tc+Tu−T1 so that the temperature of the objective optical system 104 becomes T1 immediately before an image taking operation is started.
To correctly and quickly perform the above-described temperature adjusting operation, a thermometer may be provided directly on the objective optical system 104 so that the temperature of the objective optical system 104 can be measured. In this manner, a required amount of temperature drop Td is calculable from the information on the measured temperature of the objective optical system 104. The calculated amount of temperature drop Td may be fed back to the calculation of, for example, the temperature, the flow rate, or the duration of ejection of the temperature adjusted gas 304 (or how long the inspection object stage 102 is at the second position).
To correctly estimate the amount of temperature drop Td, the temperature, the flow rate, the duration of ejection, and so forth of the temperature adjusted gas 304 to be ejected from the nozzle 301 may be measured. In such measurements, another thermometer may be provided on the nozzle 301 so that the temperature of the temperature adjusted gas 304 can be measured directly. In this manner, the temperature of the objective optical system 104 may be lowered by the required amount of temperature drop Td by controlling the temperature of the temperature adjusted gas 304 to be ejected from the nozzle 301.
A thermometer for the objective optical system 104 may be provided at either of the positions 501 and 502. The part of the objective optical system 104 where the temperature should be controlled is the lens portion corresponding to the position 502. Therefore, the temperature at the position 502 is to be measured. If a thermometer is provided directly on the lens portion, however, light from the inspection area of the inspection object 103 may be blocked by the thermometer. Therefore, the position 502 of a thermometer is to be defined at such a position of the lens portion that the light is not blocked by the thermometer (for example, an edge of the lens portion).
To summarize, in the microscope 100 according to the embodiment in which the inspection object 103 and the objective optical system 104 are positioned close to each other, the temperature of the objective optical system 104 is adjustable with high accuracy while the increase in the size of the apparatus as a whole is suppressed.
While an exemplary embodiment of the present disclosure has been described above, the present disclosure is not limited thereto. Various modifications and changes can be made to the above embodiment within the scope of the present disclosure.
For example, the microscope 100 according to the above embodiment may also include a measuring unit that is capable of acquiring, before an image taking operation is performed on the inspection object 103, conditions for the image taking operation such as the focus position on the inspection object 103 and the area of the inspection object 103 to be imaged. In a case where the measuring unit is provided at a position (measuring position) that is different from the image taking position, conditions for taking an image of the inspection object 103 can be acquired by moving the inspection object stage 102 holding the inspection object 103 to the measuring position.
In such a case, if the measuring position is set between the exchanging position and the image taking position, the measurement and the image taking operation for an inspection object 201 that is picked up from the inspection object stocker 202 can be performed successively. Furthermore, if the second position is set to the same position as the measuring position, the temperature of the objective optical system 104 can be adjusted while the measurement of the inspection object 103 is performed.
Furthermore, the nozzle 301 may be configured to be capable of sucking air so that the temperature adjusting operation or the dust removing operation can be performed by suction of air. In such a configuration, the control unit 302 controls the nozzle 301 to eject the temperature adjusted gas 304 or to suck air, whereby the temperature adjusting operation and the dust removing operation for the objective optical system 104 may be switched therebetween.
While the present invention has been described with reference to exemplary embodiments, it is to be understood that the invention is not limited to the disclosed exemplary embodiments. The scope of the following claims is to be accorded the broadest interpretation so as to encompass all such modifications and equivalent structures and functions.
This application claims the benefit of Japanese Patent Application No. 2012-117483, filed May 23, 2012, which is hereby incorporated by reference herein in its entirety.
Number | Date | Country | Kind |
---|---|---|---|
2012-117483 | May 2012 | JP | national |